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Approximation of Solution Components for Ill-Posed Problems
by the Tikhonov Method with Total Variation
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Abstract—An ill-posed problem in the form of a linear operator equation given on a pair of Banach spaces is
considered. Its solution is representable as a sum of a smooth and a discontinuous component. A stable
approximation of the solution is obtained using a modified Tikhonov method in which the stabilizer is con-
structed as a sum of the Lebesgue norm and total variation. Each of the functionals involved in the stabilizer
depends only on one component and takes into account its properties. Theorems on the componentwise con-
vergence of the regularization method are stated, and a general scheme for the finite-difference approxima-
tion of the regularized family of approximate solutions is substantiated in the n-dimensional case.
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INTRODUCTION

Consider an ill-posed problem in the form of a lin-
ear equation

(1)

with an operator  acting on a pair of Banach
spaces. The ill-posedness of the problem means that
the inverse operator A–1 is discontinuous, which leads
to the instability of the solution with respect to pertur-
bations of the right-hand side f of Eq. (1). The solution
is assumed to have different smoothness properties on
different segments of its domain. In the case of the
conventional (one-component) regularization
method, the task arises of choosing an adequate stabi-
lizing functional that recovers the solution equally well
on all segments, while capturing its fine structure. An
approach to addressing this task is to represent the
solution as a sum of several components and to con-
struct a stabilizer in the form of a sum of functionals,
each depending only on one of the components. As a
result, each functional takes into account the smooth-
ness property characteristic for the given component if
there is a priori information on this property of the
desired solution. This technique is used, for example,
when noisy signals are processed by applying the Tik-
honov method to recover the continuous and discon-
tinuous components of the solution [1]. Theoretical
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substantiation of this two–three-component
approach can be found in [2, 3], where the discontin-
uous component is approximated using the total vari-
ation, which leads to the necessity of solving a nons-
mooth optimization problem.

In this paper, as a stable method for the approxi-
mate solution of Eq. (1), we propose a modified ver-
sion of the Tikhonov method, which, assuming that
the solution of Eq. (1) can be represented as the sum

 of a smooth and a nonsmooth component,
has the form

(2)

Here, , d = 1, 2, 3

the stabilizing functional  for the second compo-
nent is defined by the formulas

(3)

(4)

where  Let

 denotes  in (4) at , and let 
denote the objective functional in problem (2). Obvi-
ously, the functional  is a smooth approximation
of the  norm. The functional , which can be
treated as a smooth approximation of the total varia-
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tion , was introduced in [4] and was used as a sta-
bilizer in the traditional one-component version of the
Tikhonov method ( ).

In Section 1, we establish the existence of a normal
solution of Eq. (1) that minimizes the stabilizing func-
tional. Additionally, the convergence of regularized
solutions is proved. In Section 2, for problem (2) a
convergence theorem for discrete approximations
formed of extremal elements of finite-dimensional
minimization problems with differentiable convex
objective functions is stated. As a result, these prob-
lems can be solved by applying gradient and Newton-
type methods.

1. REGULARIZING PROPERTIES
OF THE METHOD

First, we prove the existence of a pair ( ) mini-
mizing the functional

, (5)

where  is given by formula (3). Note that, even if
Eq. (1) has a unique solution, its representation in the
form of the sum  is not unique. For exam-
ple, along with , the pair , when
summed, also yields a solution.

Theorem 1. Suppose that A is a linear continuous
operator from  to , where D, ,

; the domain D satisfies the cone

condition; and Eq. (1) has a unique solution ,
 Then the problem

(6)

where the functional  is defined by formula (5), has a
solution ( ), possibly nonunique.

Proof. Let  be a minimizing sequence, i.e.,

, where  is the objective
functional in problem (5). Therefore, in view of [4,
Theorem 2.2], each of its terms is uniformly bounded
with respect to :

(7)

Therefore, in the uniformly convex space , there is a
weakly converging sequence

, (8)

and the embedding theorem  (see [4, Theo-
rem 2.5]) implies that
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(9)

.

Since (7) and (9) hold, we can assume that

whence, by the Fatou theorem,

(10)

Combining the conditions of the theorem with rela-
tions (8)–(10) and Theorem 2.3 from [4] on the weak
lower semicontinuity of the functional , we obtain
the inequalities

i.e., the pair  is a minimizer in problem (6) and,

for any such pair, 
Now we consider the Tikhonov regularization

method (2).
Theorem 2. Let the conditions of Theorem 1 hold.

Then, for any , problem (2) has a solution 
such that, if the regularization parameter is related to the
error  as

,

then the following properties hold:

(i)  is relatively compact in the space .

(ii)  is relatively compact for  and

relatively weakly compact for  in

the space .

(iii) Any pair  defines a unique element uα =

.
(iv) If  are limit points of the sequences

, then this pair solves problem (6).

(v) .

Proof. Let us sketch the scheme for checking prop-
erties (i)–(v). The existence of the solution  to
problem (2) can be proved by following the argument
used in Theorem 1. The uniqueness of the function
uα =  follows from the strict convexity of L2
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and the existence of an inverse operator A–1. The com-
pactness of the families  and  follows from
the fact that, under the conditions imposed on the
parameter , the functionals involved in the stabi-
lizer  are bounded, i.e., we have inequalities (7),
where  are replaced by . Next, we use
the theorem of embedding of the space BV in Lp, the
E-property of Lq, and the (weak) lower semicontinuity
of the functionals involved in .

Remark 1. Theorems 1 and 2 remain valid if the
functional  in problem (2) is replaced by ,
1 < r < ∞. In this case, the solution  is guaran-
teed to be unique and the substantiation of the scheme
for the finite-dimensional approximation of regular-
ized problem (2) is simplified.

2. DISCRETIZATION OF THE 
REGULARIZATION METHOD

Now we consider regularization method (2) with

, (11)
i.e., in (3) we make the substitution indicated in
Remark 1 and set  Thus, we examine the regu-
larization method (2) with  in functional (11)
replaced by the nonsmooth total variation ,
which corresponds to the discontinuous component
u2. To construct numerical algorithms, we need to pass
from the infinite-dimensional problem (2) to its
finite-dimensional (discrete) analogue. For the Tik-
honov method in the one-dimensional case , a
semidiscretization scheme based on a piecewise linear
approximation of the function only in the solution
space was proposed and studied in [5]. In this section,
we substantiate the general scheme for the discrete
approximation of problem (2) with a nonsmooth sta-
bilizer by a sequence of finite-dimensional minimiza-
tion problems with convex differentiable objective
functions.

Let D be a d-dimensional rectangular domain, for
example, a unit cube. A grid analogue of the space Rd

is defined as

Consider grid functions , where  is an
nd-dimensional vector space and the index n means

that  is defined on a grid with step size  in

each variable. Define the family of coupling operators

,
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. The family P provides a discrete approxima-

tion of the space  by the sequence of

spaces  with the norm

and generates the discrete and discrete weak conver-
gence of elements and operators. The basic properties
and the necessary facts concerning the discrete con-
vergence properties to be used to substantiate the gen-
eral scheme for the discrete approximation of prob-
lem (2) can be found in [6–8].
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therefore,

. (14)

On the other hand, direct verification shows that, for
, where

we have

. (15)

Representation (13) follows from (14) and (15).
Corollary 1. It is true that

. (16)

The notation “ ” and “ ” will be
used for discrete and discrete weak convergence, respec-
tively.

Lemma 2. The pair of functionals , where
, is discretely weakly lower semicontinuous, i.e.,

. (17)

Proof. Relation (17) follows from the discrete weak
lower semicontinuity of the pair J,  [10, Lemma 4.3]
and from inequalities (16).

Retaining the notation  for the solution of

problem (2) at , we denote by  the solu-
tion of problem (12) at , where the functional

 is replaced by 
Theorem 3. Suppose that problems (2) and (12) sat-
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Moreover, the total variations and the optimal values sat-
isfy the limit relations

. (20)

Proof. In view of the conditions of the theorem and
Lemmas 1 and 2, the solvability of problem (12), i.e.,
the existence of a pair , is proved using the
scheme applied in the one-component case [10, The-
orem 4.1]. Following this scheme in checking the rela-
tion

, (21)

we need to prove that, for any , there exists a pair
 such that

, (22)

(23)

for the family of grid projection operators . Rela-
tion (22) follows from Lemma 2.1 in [4], while the
validity of (23) follows from (16) and the inequalities

According to (21), the components  are uni-
formly bounded and, hence, discretely weakly com-
pact [8] (see also [10, Theorem 5.1]), i.e., for a subse-
quence of indices ,

. (24)

Combining conditions (18) with Lemma 2 and rela-
tion (21), we obtain the chain of inequalities

(25)

which implies that the pair  solves problem (2),
where  and  is replaced by , i.e.,

, . Inequalities (25) and the discrete
weak semicontinuity of the functionals involved in

 imply the norm convergence relations

,

which, when combined with (24) and the uniqueness
of the solution, yield (19). Applying the same argu-
ment, we conclude that relations (20) hold as well.
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Corollary 2. Let  be a family of piecewise constant
extension operators. Then
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