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Abstract—A theorem related to the theory of zero-sum games is proved. Rather general assumptions on the
payoff function are found that are sufficient for an optimal strategy of one of the players to be chosen in the
class of mixed strategies concentrated in at most m + 1 points if the opponent chooses a pure strategy in a
finite-dimensional convex compact set and m is its dimension. This theorem generalizes results of several
authors, starting from Bohnenblust, Karlin, and Shapley (1950).
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This paper generalizes the result obtained by
Bohnenblust, Karlin, and Shapley in [1] (see also [2,
Chapter 2, Subsections 3.5, 3.6; 3, Chapter 20, p. 736]).
The redundant assumption that the function f is con-
tinuous is replaced with semicontinuity, so that our
assumptions are similar to those made in Kneser’s [4]
and Fan’s [5] theorems. Moreover, we use quasicon-
vexity in the spirit of Sion’s work [6]. In fact, the pres-
ent result is an improvement of these theorems for the
case when one of the arguments of the payoff function
(involved in the theorems in [4–6]) takes values in a
finite-dimensional convex compact set. In style, our
proof is close to Davydov’s [7], which, in turn, relies
on Shnirel’man’s ideas [8]. However, the function f in
[7, 8] is assumed to be jointly continuous with respect
to its arguments. Interestingly, our result was obtained
in studying a financial problem, namely, the problem
of pricing and hedging of a contingent claim on
option, formalized with the help of guaranteed estima-
tion method [9], i.e., the solution of the corresponding
Bellman–Isaacs equation relies on the proved theo-
rem. The proof of the theorem is of interest. Moreover,
the following result is of interest in itself.

Lemma. Let

(i) X be a nonempty compact convex subset of  , m ≥ 1,
Y be an arbitrary nonempty set; 
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(ii) f(x, y) be a scalar function of arguments 
and  such that, for any , the functions

 are

(a) lower semicontinuous and

(b) quasiconvex. 

Define1

(1)

then W = Wm.

Proof. It is easy to check that . Indeed, for
all  and , i = 1, 2, …, m + 1,

Therefore, for all , i = 1, 2, …, m + 1,

1 Here and below, the symbol  is used to denote the binary asso-
ciative (and commutative) operation of taking the maximum,
which justifies notation of the form . The use of the mini-
mum in (1) is correct, since the function  is lower
semicontinuous; moreover, this function can take the value of
+∞ (here, by neighborhoods of +∞, we mean intervals of the
form (a, +∞], ), so that the minimum is reached at some
point of the compact set X.
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and, hence,

Let us prove the reverse inequality W ≤ Wm. It is
nontrivial only if Y contains more than m + 1 ele-
ments. Indeed, since the operation  of taking the
maximum is jointly continuous with respect to its

arguments, the function  is lower
semicontinuous, so that its minimum is reached at
some point of X (depending on y1, …, ym + 1). There-
fore, if we define

then

for any y1, …, ym + 1 from Y.
Note that, by assumption (a) in (ii), Cy are closed,

hence compact, while, by assumption (b) in (ii), they
are convex; thus, the Helly theorem [10] is applicable:

Therefore, there is a point  such that
 for all . Consequently,

Now we formulate and prove the theorem. Define

Theorem. Consider a zero-sum game satisfying the
following assumptions:

(I) The first player chooses pure strategies in a space
X that is a compact convex subset of , m ≥ 1, while the
second player chooses a mixed strategy, namely, a distri-
bution2 on a nonempty set Y.

(II) The payoff function f(x, y), ,  is such
that, for any , the functions 

(a) are lower semicontinuous,

2 That is, the probability measure on , where the -algebra
 contains all singletons Y and the functions  must

be measurable with respect to . In fact, a particular choice of 
is not used in the proof of the first part (i) of the theorem, which
does not rely on assumption (III), so, in this part, we can
assume, for example, it  is the -algebra of all at most count-
able subsets of Y. Then the measurability condition is satisfied
for any function, while we discuss only discrete distributions.
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(b) convex combinations of functions from the family
, , are quasiconvex.3

Then the following equality is valid:

 (*)

where  is the class of all probability measures on Y
concentrated in at most m + 1 points, i.e.,

and δy denotes a probability measure concentrated at the
point .

(III) Under the additional assumption that Y is a
compact Hausdorff topological space and the functions

 are upper semicontinuous for all x, the
supremum on both sides of ( ) can be replaced by the
maximum.

Proof. Note that, for any , u ≥ 0, and ,
i = 1, 2, …, n + 1, the function

,

is affine and continuous and, by assumption (IIb), the
convex combination

,

is a quasiconvex function and, as a consequence of
assumption (IIa), is lower semicontinuous for any

. Applying Sion’s theorem (see [6, Corollary 3.3]),
we obtain

(2)

Moreover, it is obvious that

(3)

If Y = {y1, …, yn + 1} for n ≥ 0 and n ≤ m, then it is

obvious that ; in view of (2) and (3), we
obtain ( ).

If Y contains more than m + 1 elements, we resort
to the lemma proved above. Fix an arbitrary ε > 0 and
choose  from Y such that

3 That is, functions of the form  for any

, n ≥ 1, and arbitrary , i = 1, 2, …, n, are
quasiconvex. Specifically, the functions ,  are
quasiconvex.
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(4)

where W is given by formula (1). Applying (2) with n = m
and , i = 1, 2, …, m + 1, we note that the maxi-
mum over q on the right-hand side of (2) is reached at

some . Defining  and tak-

ing into account (2)–(4) yields

Since ε > 0 is arbitrary, we have

The reverse inequality follows from an inequality valid
for any distribution , namely,

since the mean of the function does not exceed its
supremum.

If (III) is assumed, the maximum on the left-hand
side of ( ) is attained by the compactness of Y and the
upper semicontinuity of the functions .

By A.D. Alexandroff’s theorem4, for every ,
the function  is upper semicontinu-

ous in the weak topology on the space  of all Borel
probability measures5 on Y (i.e., a minimum topology
such that the functions  are continu-
ous for any continuous scalar function g on Y).

The set  is closed. Indeed, if the net Qα,
, of measures from  converges to a measure

 in the weak topology, then Qα can be

represented as  and, since Y and the

simplex Sm are compact, there exist subnets

 and  con-

verging to the points  and

4 See Theorem 2 in [11, Section 16] (more precisely, a lower
(upper) semicontinuous function whose argument runs over a
set of probability measures and whose value is the measure of an
open (closed) set is considered in [11]. However, this case is easy
to extend to an integral of a semicontinuous function (see, e.g.,
[12, Theorem 9.1.5]).

5 Here, it is natural to define the domain  of the measures Q as a
Borel -algebra. The functions  are measurable due to
their upper semicontinuity.

+

ε

∈

∈∈ … ∈

+

=
+

=

⎡ ⎤≥ − ε = − ε⎢ ⎥
⎣ ⎦

∨
∨

1 1

1

1

,

1

, 1

min ( , )

sup min ( , ) ,
m

ix X

ix Xy Y y Y

m

i
m

i

f x y

f x y W

ε=i iy y

ε ∈ mq S ε

+
ε ε

=
= δ ∈∑ 3

1

1
i

m
m

i Yy
i

Q q

ε

∈
≥ − ε∫min ( , ) ( ) .

x X
f x y Q dy W

∈∈
≥∫

3

sup min ( , ) ( ) .
m
Y

x XQ
f x y Q dy W

∈ 3
m
YQ

∈ ∈ ∈
≤ =∫min ( , ) ( ) min sup ( , ) ,

x X x X y Y
f x y Q dy f x y W

∗
� ( , )y f x y

∈x X

∫� ( , ) ( )Q f x y Q dy

3Y

!

σ � ( , )y f x y

∫� ( ) ( )Q g y Q dy

⊆3 3
m
Y Y

α ∈ I 3
m
Y

∈ 3YQ

α

+
α α

=
= δ∑

1

1
i

m

i y
i

Q q

β β β
+= … ∈1 1( , , )m mq q q S β β

+∈ … ∈1 1, , my Y y Y

+= … ∈1 1
* ** ( , , )  m mq q q S
DOKLADY MATHEMATICS  Vol. 97  No. 3  2018
, respectively; moreover, it is obvi-
ous that the subnet Qβ converges weakly to the mea-

sure , so that . Since  is

compact in the weak topology, so is .

Thus, the function  reaches a

maximum on .
Remark 1. Assumption (IIb) in the theorem is sat-

isfied, for example, in the one-dimensional case
(when m = 1) for  and a family of uni-
modal functions , , with a common
minimizer (i.e., when there exists an argument

 such that the functions , ,
are nonincreasing for  and nondecreasing for

).
Remark 2. The convexity of the functions

, , is sufficient for the validity of
assumption (IIb) of the theorem.

Remark 3. Assumption (IIb) can also be replaced
by following one: there is a strictly monotone and con-
tinuous scalar function ϕ such that the composition

 satisfies the conditions in Remark 2, i.e., the
function  is convex for all  (spe-
cifically, the functions  are quasiconvex6

for all ).

Remark 4. The class  is not convex if Y contains
more than m + 1 points.

Remark 5. A simple example shows that only the
quasi-convexity of the functions , 
(rather than assumption (IIb) of the theorem) is not
sufficient for the validity of ( ) and that the condition
in Remark 1 on a common minimizer for the family of
unimodal functions ,  is essential.
Let

Here, the functions , , are quasi-
convex and unimodal (with unique, but different min-
imizers). It is easy to see that

but

6 Note that a quasiconvex function is not necessarily repre-
sentable as a composition of a strictly monotone scalar func-
tion and a convex function. For the first time, this was noted
by Fenchel [13].
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