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Abstract—The stability of an equilibrium of a nonautonomous Hamiltonian system with one degree of free-
dom whose Hamiltonian function depends 2π-periodically on time and is analytic near the equilibrium is
considered. The multipliers of the system linearized around the equilibrium are assumed to be multiple and
equal to 1 or –1. Sufficient conditions are found under which a transcendental case occurs, i.e., stability can-
not be determined by analyzing the finite-power terms in the series expansion of the Hamiltonian about the
equilibrium. The equilibrium is proved to be unstable in the transcendental case.
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Consider a mechanical system whose motion is
described by the canonical equations

(1)

Assume that the origin  is an equilibrium of
this system and that the Hamiltonian function H in a
sufficiently small neighborhood of the origin can be
represented in the form of a convergent series

(2)

where  is a homogeneous form of degree  in q and
p with continuous coefficients being -periodic
functions of t.

If the multipliers of the linear system with Hamil-
tonian  are not equal to unity in absolute value, then
the equilibrium of system (1) is Lyapunov unstable.
However, if they are, we have the critical case, when
stability cannot be determined by analyzing the linear
system [1].

According to the general technique for solving the
stability problem in the critical case, system (1) has to
be normalized, i.e., we need to construct a canonical
change of variables reducing the Hamiltonian func-
tion (2) to its normal form. The Hamiltonian has to be
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normalized up to terms with powers of q and p such
that the stability problem for the truncated system with
the Hamiltonian being the normalized part of the
Hamiltonian function is equivalent to the stability
problem for the original system. Stability can be con-
cluded on the basis of sufficient conditions written as
inequalities for the coefficients of the normal form [2].

In the general case, it suffices to normalize the
Hamiltonian function up to terms of the fourth power
inclusive. However, there are degenerate cases in
which normalization has to be performed up to terms of
higher powers. In such degenerate cases, the stability
problem was studied in detail in recent works [3–5].

In this paper, we consider a special degenerate case
in which no strict stability conclusions can be drawn
by normalizing the Hamiltonian of the problem up to
terms of arbitrarily high (but finite) power, i.e., when
the above-mentioned general approach to stability
analysis cannot be applied.

1. FORMULATION OF THE PROBLEM
Let the multipliers of the linear system with Ham-

iltonian  be multiple and equal to 1 or –1. In this
case, the characteristic exponents  are such that
either , where N is an integer (there is a first-
order resonance) or  (there is a second-
order resonance). The stability analysis of an equilib-
rium under first- and second-order resonances and a
qualitative analysis of the motion in its neighborhood
have been addressed in numerous works (see, e.g., [3,
6, 7] and references therein).

Assume that the elementary divisors of the charac-
teristic matrix of the linear system are not simple.
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Then, by using a linear real change of variables
 that is T-periodic in t (where  in the

case of first-order resonance and  in the case of
second-order resonance), Hamiltonian (2) can be
reduced to the form (see [8, 9])

(3)

where  and the coefficients 

are continuous T-periodic functions of t. The value of
δ is equal to 1 or –1.

With the help of a canonical close-to-identity ana-
lytical change of variables  (constructed, for
example, with the help of the Deprit–Hori method
[2, 10]) Hamiltonian (3) can be brought to the form
(see [8, 11])

(4)

where M is an integer and the coefficient  is a con-
stant. If , then the stability of the equilibrium of
the system with Hamiltonian (4) (and, hence, of the
original system (1)) can be determined using the fol-
lowing criterion [8].

Criterion. If M is an even number and , then
the equilibrium is Lyapunov stable. If M is an odd num-
ber or M is an even number, but , then the equi-
librium is Lyapunov unstable.

In the study of the dynamic stability of particular
mechanical systems, one can encounter a special case
where  for any M. Following the terminology
proposed by Lyapunov [12], this case in the stability
problem will be called transcendental. Obviously, in
the transcendental case, the above criterion is not
applicable. Transcendental cases are of interest both
theoretically and in applications. Specifically, they
occur in classical and celestial mechanics. It was
established in [13] that the transcendental case takes
place in the problem of determining the orbital stabil-
ity of periodic pendulum motions of a heavy rigid body
in the Goryachev–Chaplygin case. Due to the pres-
ence of a first integral, it was shown that the periodic
pendulum motions are orbitally unstable in the indi-
cated case. Note also that a transcendental situation
also arises in the Lagrange integrable case [14].

The stability of an equilibrium of an autonomous
Hamiltonian system with two degrees of freedom in
the transcendental case when the characteristic equa-
tion of the linearized system has a multiple zero at the
origin was studied in [15].

The goal of this work is to obtain sufficient condi-
tions for the existence of a transcendental situation and to
study the stability of the equilibrium of system (1) in the
transcendental case.
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2. CONDITIONS FOR THE EXISTENCE
OF A TRANSCENDENTAL CASE

In [11] a transcendental case was considered in
connection with the existence of a family of periodic
solutions for system (1). Specifically, in the transcen-
dental case, the system was shown to have a one-
parameter (analytical with respect to the parameter)
family of T-periodic solutions emanating from the
equilibrium. In other words, the existence of this fam-
ily of periodic solutions is a necessary condition for
the transcendental situation occurring in system (1).
Let us show that this condition is also sufficient.
Indeed, suppose that system (1) admits a family of
periodic solutions that, in the variables , have the
form

(5)

where  are T-periodic functions of
 that are analytic with respect to the parameter  and

vanish identically at .
Let us construct a canonical T-periodic (in t)

change of variables  such that solution (5)
in the new variables  becomes

, (6)

i.e., in the variables , the one-parameter family of
T-periodic solutions (5) is associated with a family of
equilibrium positions. The generating function 
of the above-mentioned canonical transformation is
determined by the conditions

(7)

Simple computations show that  can be defined as

(8)

The Hamiltonian function written in the variables
 becomes

(9)

where F is a T-periodic function of  that is analytic
near ; moreover, .

The structure of Hamiltonian function (9) guaran-
tees that, after normalization, the coefficients  of
normal form (4) vanish for any M. Indeed, let the
series expansion of F in powers of  and  begins with
terms of some power  ( ). We perform a canoni-
cal change of variables  given by

(10)
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(11)

where  is a form of degree  in  and 
with coefficients being T-periodic functions of t. It is
easy to show that these coefficients can be chosen so
that the Hamiltonian function in the new variables

 becomes

(12)

where  is a T-periodic function of  and its series
expansion about  begins with terms
whose powers are at least . This means that terms
with any finite power   can be eliminated
from the Hamiltonian function by applying a
sequences of canonical changes of form (10), i.e., the
transcendental case occurs in the system with Hamil-
tonian (12).

3. STABILITY ANALYSIS
OF THE EQUILIBRIUM

IN THE TRANSCENDENTAL CASE

Let us show that, in the transcendental case, the
equilibrium  of system (1) is unstable. Since
the stability problem in the original variables  is
equivalent to one in the variables , it is sufficient
to show the instability of the system with Hamilto-
nian (9). This can be done by applying Chetaev’s the-
orem.

Consider the Chetaev function . It is posi-
tive in the domain  and vanishes on its
boundary. The derivative of V can be calculated using
the canonical equations with Hamiltonian (9):

For sufficiently small  and , the derivative  is

positive in the domain . Thus, by Chetaev’s the-
orem, the equilibrium  is unstable, which
obviously implies that the equilibrium of the original
system is unstable as well. Combining the results of

this and the preceding sections, we obtain the follow-
ing theorem.

Theorem. If system (1) admits a one-parameter fam-
ily of T-periodic solutions  or  emanat-
ing from the equilibrium , then a transcenden-
tal case occurs and the equilibrium is unstable.
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