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Abstract—The Dirichlet problem for the p(x)-Laplacian with a continuous boundary function is considered,
and a sufficient condition is found for the continuity of its solution at a boundary point, assuming that the
exponent p(x) satisfies the log-Hölder continuity condition at this point.
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In a bounded domain , , we consider
the equation

, (1)

where p(x) is a measurable function in D that satisfies
the condition

(2)

In the case , this equation has been studied
in detail. Specifically, Ladyzhenskaya and Uraltseva
established the Hölder continuity of its solutions [1],
and Serrin proved the Harnack inequality for nonneg-
ative solutions [2].

For the first time, equations of form (1) were con-
sidered by Zhikov [3, 4] in the context of homogeniz-
ing integrands of the form  as applied to elastic-
ity problems. Such equations also arise in the mathe-
matical simulation of f luids with properties varying
under the influence of an electromagnetic field or
temperature [5, 6].

To define the solution of Eq. (1), we introduce the
class of functions

where  is the Sobolev space of functions that
are summable in  together with their generalized first
derivatives. A sequence  is said to converge
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We say that  belongs to the class  if
there exists a sequence of functions  with a
compact support in D such that (3) holds. A sequence

 is said to converge in  to a function
 if (3) holds.

We are interested in the classes of functions 
and  that are the completions, in  and

, of smooth functions in D with respect to the
introduced convergence properties. Namely, let

Zhikov’s results [4] imply that assumption (2)
alone is insufficient for smooth functions to be dense
in the classes  and . The density of smooth
functions in these classes is ensured by the well-known
logarithmic condition

(4)

which was found by Zhikov [7].
Let us define H-solutions and W-solutions of Eq. (1).
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called an H-solution (W-solution) of Eq. (1) if it satis-
fies the integral identity

(5)

for test functions  ( , respec-
tively).

In this paper, we consider only H-solutions of Eq. (1),
which are hereafter referred to as solutions.

Consider the Dirichlet problem

(6)

Its solution is related to the minimizer  of the varia-
tional problem

by the formula .
The unique solvability of problem (6) in a Lipschitz

domain D follows from Theorem 5.2 in [7]. For an
arbitrary bounded domain D, the required result is
contained in Theorem 3.1 in [8].

GENERALIZED DIRICHLET PROBLEM
Below, we consider the generalized Dirichlet

problem

(7)

with a continuous function f on  and examine the
behavior of its solution at a fixed boundary point

, assuming that the exponent p satisfies condi-
tion (2) and has a logarithmic modulus of continuity at

, i.e.,

(8)

The solution of problem (7) is defined as follows.
The boundary function  is extended by
continuity to  with the same notation retained for the
extension. Consider a sequence of infinitely differen-
tiable functions  in  that converge uniformly on 
to f. Solve the Dirichlet problems

By the maximum principle, the sequence  con-
verges uniformly in D to a function u belonging to

 for all . Since the sequence  is uni-
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formly bounded in , we can assume that  con-
verges weakly to  in  and  con-
verges weakly in  to an element . Let
us show that  by applying the methods
of [9]. Let . By virtue of integral iden-
tity (5) for , we have

With the help of the monotonicity

we find that  converges to  almost every-
where in D. Therefore,  converges to

 weakly in  for any . Pass-
ing to the limit for  in integral identity (5), we see
that (5) holds for the limit function u on test functions

. The limit function, which is bounded in D
and independent of the extension method or the
approximation of the boundary function f, is called a
weak solution of Dirichlet problem (7). In this con-
struction, the exponent p is only required to have
property (2).

REGULARITY OF A BOUNDARY POINT

Definition. A boundary point  is called reg-
ular if

for any function f continuous on .
For the Laplace equation, a regularity criterion for

a boundary point was obtained by Wiener in [10]. For
linear divergence uniformly elliptic equations of the
second order, a similar result was obtained in [11]. A
sufficient condition for the regularity of a boundary
point of the Wiener type and an estimate for the mod-
ulus of continuity of the solution near the boundary
for the p-Laplacian were found by Maz’ya [12]. Kil-
peläinen and Malý [13] proved that this sufficient con-
dition is also necessary. A criterion for the regularity of
a boundary point for Eq. (1) under condition (4) was
obtained in [8].

To formulate the result, we introduce the concept
of capacity. Preliminarily, we extend  to the entire
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 with the preservation of properties (2), (8) and
denote by  an open ball of radius R. The capacity of
a compact set  with respect to the ball  is the
number

where the infimum is taken over the set of functions
 equal to unity in a neighborhood of K.

For , let

where  is the ball of radius t centered at . The
main result of this work is the following theorem.

Theorem 1. If conditions (2) and (8) hold and

(9)

then the boundary point  is regular.
If p satisfies logarithmic condition (4), then (9) is

also a necessary condition for the regularity of the
point  [8].

In the case , condition (9) always holds,
which follows from the capacity estimate Cp({x0},

. Any point  at which
 and (8) holds is regular. With the help of the

Sobolev embedding theorem, for sufficiently small 

and , we can prove the estimate

which implies that  is continuous at .

In the case , a key role in the proof of Theo-
rem 1 is played by the following estimate for the oscil-
lation of the solution u to problem (6) with a smooth
(in ) boundary function f in balls of sufficiently small

radius :

(10)

where 

Here, the dependence on p is determined by the con-
stants from conditions (2) and (8). From this, we
obtain the following result.
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Theorem 2. Let . There exist positive constants
 and C depending only on , , and M such that, for

 and , we have the inequality

The proof of estimate (10) is based on a weak Har-
nack inequality of special form for the solution u of
problem (6) with a smooth boundary function f in 
such that  on . Define

.

Theorem 3. For any 

(11)

Estimate (11) is given in Theorem 6.1 in [8], where
the proof relies heavily on logarithmic condition (4)
holding in a neighborhood of the point . We propose
a fundamentally different proof technique whereby
Theorem 3 can be proved under the weaker condi-
tion (8). The proof is based on a modification of the
technique from [14], in which a novel method was
used to prove a weak Harnack inequality for nonnega-
tive solutions of nonuniformly degenerate linear ellip-
tic equations of divergence type.

Let us present a geometric condition for the regu-
larity of a boundary point , which is assumed to
coincide with the origin O. Suppose that  in a
neighborhood of  has the form

where  is a continuous nondecreasing function
such that  for , where  is a
constant.

Theorem 4. If , then the boundary
point O is regular, while, for , a sufficient con-

≤0p n
θ n p

ρ ≤ ρ ,0( )n p ρ≤
4

r

ρ

∩
ρ

−

∂ ∩

−

⎛ ⎛ ⎞⎞
≤ + ρ + −θ γ⎜ ⎜ ⎟⎟

⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

∫

0

0

0

1

ess sup | ( ) ( )|

osc exp ( ) .

x
r

x

f
D B

D B r

u x f x

C f t t dt

D
≤ ≤0 f M ∂D

∂ ∩
= , <

⎧ , ∈ ∩ ,⎪= ⎨
∈ ,⎪⎩

0
4

0

0

4

4

1inf where ,
16

min( ( ) ) if
( )

if \

x
RD B

x
R

m x
R

m f R

u x m x D B
u x

m x B D

= +v ( ) ( )m mx u x R

−< <
−

0( 1)0 ,
1

n pq
n

/

−
⎛ ⎞
⎜ ⎟ ≤ , , , .
⎜ ⎟
⎝ ⎠

∫
00

3

1

( )ess inf
xx RR

q

n q
m m

BB

R dx C n p q Mv v

0x

0x
R \n D

O

−

=

⎧ ⎫⎪ ⎪< < , < ,⎨ ⎬
⎪ ⎪⎩ ⎭

∑
1

2 2

1
: 0 ( )

n

n i n
i

x x a x g x

( )g t
≤ ≤( )bt g t t ∈ ,[0 ]t a > 1b

− ≤ ≤01n p n
< −0 1p n



68

DOKLADY MATHEMATICS  Vol. 97  No. 1  2018

ALKHUTOV, SURNACHEV

dition for its regularity is the divergence of the following
integral at zero:
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