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Abstract—An extended version of the principle of empirical risk minimization is proposed. It is based on the
application of averaging aggregation functions, rather than arithmetic means, to compute empirical risk. This
is justified if the distribution of losses has outliers or is substantially distorted, which results in that the risk
estimate becomes biased from the very beginning. In this case, for optimizing parameters, a robust estimate
of the mean risk should be used. Such estimates can be constructed by using averaging aggregation functions,
which are the solutions of the problem of minimizing the function of penalty for deviation from the mean
value. An iterative reweighting scheme for numerically solving the problem of empirical risk minimization is
proposed. Illustrative examples of the construction of a robust procedure for estimating parameters in the lin-
ear regression problem and in the problem of linearly separating two classes based on the application of an
averaging mean function, which replaces the α-quantile, are given.
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INTRODUCTION
The solution of many recognition and prediction

problems is based on the application of the principle of
empirical risk minimization (ERM) [1], which is a
kind of the general extremum principle for searching
an optimal recognition algorithm [2]. This principle
consists in minimizing the mean loss caused by the
incorrect operation of a trained system on a given
finite set of precedents. The value of empirical risk is
estimated as the arithmetic mean of the loss:

(1)

where  is the loss function associated with the
kth precedent. The sought parameter values w* must
minimize empirical risk:

(2)

In the case where the empirical loss distribution
has outliers, estimate (1) may become biased. The
outliers may be caused by both distortions of the initial
data and the inadequacy of the model. This difficulty
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might be overcome by using the weighted empirical
risk

(3)

However, the complexity of searching for adequate
weights , which would compensate the con-
tribution of outliers is comparable with that of search-
ing for outliers themselves. For this reason, another
approach is used, which is based on the application of
empirical mean estimates stable with respect to outli-
ers, such as medians [4, 5] or quantiles [6].

This paper considers a generalizing approach, in
which mean loss is estimated by using arbitrary averag-
ing aggregation functions (AFs) [7, 8]; such functions
have already proved efficient in the construction of
correcting operations on algorithms which preserve
algorithm correctness [9, 10].

EMPIRICAL RISK AND AVERAGING 
AGGREGATION FUNCTIONS

Let M be any averaging AF. In the presence of out-
liers, M must be a stable estimate of the mean. The
empirical risk is defined by

(4)
Consider the standard class of averaging AFs, which

includes the overwhelming majority of the known aver-
aging AFs. An important property of standard AFs is the
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possibility of determining grad  as an
implicit function, which makes it possible to reduce
searching for w* which minimizes (4) to solving a sys-
tem of equations or apply the method of descent along
directions computed from its gradient.

Following [7, 8], we define standard AFs as fol-
lows. Consider functions of the form

(5)

where is the function dissimilarity (see [8] for
the definition).

Let us define a function Mρ based on a dissimilarity
function ρ.

Definition. We set

(6)

if  is

a singleton and

if  is an interval with endpoints  and .
If , where  is a nonnegative

convex function and is a monotone invertible func-
tion, then  is an AF [8]. If , then  is an
averaging AF.

According to the likelihood maximum principle,
an estimate of an empirical mean  by using an
averaging AF  is adequate if the loss value is distrib-

uted according to a law , where  =
. In this sense,  can be called the М-

mean function.
The class of standard averaging AFs is large enough

for computing stable estimates of the mean value. For
example, it includes

(i) the family of symmetric means

(7)

where 0 ≤ γ ≤ 1; here, M0 is the median function and
M1 is the arithmetic mean function;

(ii) the family of asymmetric means

(8)

where , 0 ≤ γ ≤ 1; here,  is
the -quantile and  is the α-expectile;

(iii) the family of Kolmogorov-type symmetric
means
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where g is a self-inverse function and 0 ≤ γ ≤ 1; here,
 is the scalable median

and  is the Kolmogorov mean

If the function  has partial derivatives up to the
second order, then the mean value 
is a solution of the equation

which can be regarded as the definition of the averag-
ing AF as an implicit function. Therefore,

where

(9)

Thus, the sought functions w* and 
are solutions of the system of equations

(10)

THE CASE OF A MEDIAN
AND A QUANTILE

If  does not have a second derivative, then the
above approach cannot be applied directly. For exam-
ple, in the case of an -quantile 
(which is the median for ), instead of , we
can consider the one-parameter family 
of functions satisfying the following conditions:

(i) for each , the derivatives  and  exist;
(ii) ;

(iii) .

Examples of such functions  are
(i) ;
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(ii) .

Here, .
Now, for sufficiently small , we can use the aver-

aging AF  as a “substitute” for the -quantile.

ALGORITHMS FOR SOLVING
THE SYSTEM

The system of linear equations (10) can be solved
by Seidel’s method. In the framework of this method,
the first and second equations can be solved by any
known iteration algorithm. However, in solving the
second equation, it is often necessary to calculate

, which has high computational cost for large
. This can be overcome by introducing the new vari-

ables , :

The application of Seidel’s method to solve this
nonlinear system of equations yields the IRLAL (Iter-
atively Reweighted Least Averaged Losses) algorithm,
which is a version of the iterative reweighting scheme.
This algorithm reduces solving the initial minimiza-
tion problem (4) to solving a sequence of problems of
minimizing the weighted empirical risk (3).

COMPARISON WITH THE М-METHOD
Search for w* by minimizing (4) can be regarded as

a generalization of the М-method. This method
searches for an optimal set of parameters w* is by min-
imizing the function

(11)
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where  (in the regression prob-
lem),  (in the two-classification
problem), or some other function and g(r) is a non-
negative quasi-convex function having a unique mini-
mum and such that .

The minimum of (11) can also be sought by the well-
known IRLS (Iteratively Reweighted Least Squares)

algorithm (with weight function ϕ(r) = ), which we

give here in order to compare it with the IRLAL algo-
rithm.

The IRLAL algorithm differs from the IRLS algo-
rithm in the method for recalculating the weights

. In the algorithm,

where

while in the IRLS algorithm, . Thus, in
the former case, the weight depends on the deviation
of  from the averaged value , and in the lat-
ter, from the value  itself.

Note that if g is an invertible function, then the
problem of minimizing  is equivalent to the prob-
lem of minimizing the Kolmogorov mean of the
squared error, that is,

(12)

where . Thus, in this case, the
M-method is equivalent to the extension of the ERM
method suggested here, while the mean loss is esti-
mated by using the Kolmogorov mean with scaling
function g. Therefore, the robustness of the М-
method is directly related to that of (12).
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Fig. 1.The algorithms IRLAL and IRLS.

Algorithm IRLAL Algorithm IRLS

until {ut} and {wt} converge 

until {wt} converge 

repeat repeat
t ← 0 t ← 0

t ← t + 1

t ← t + 1
wt + 1 ← arg min vk N(w)

ut ← Mρ{ 1(wt), ..., N(wt)} vk = ϕ{rk(wt)),k = 1, ..., N
vk = αk(wt, ut), k = 1 ..., N

k=1
w ∑

N wt + 1 ← arg min vkrk (w)2

k=1
w ∑

N
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MODEL EXAMPLES

Let us give an example of a linear regression prob-
lem and an example of a two-classification problem in
which the data are selected so that the M-method
surely fails. Computational results are presented in
Fig. 2.

To the linear regression problem the M-method

with the functions g:  |r|, r2, and the Tukey function

 was also applied. The

method with the averaging AF Mρ, where ρ(z, u) =

 – 1, and the error absolute value as the
loss function was also considered. The data were com-

posed for the model of linear regression  with
absolute noise ±2 and outliers amounting to 80% of
the amount of data without outliers.

To the problem of linear two-classification, the
classical SVC (support vector classification) method
with the best parameter values and the ERM method
with the averaging AF Mρ for the asymmetric dissimi-

larity function ,  = 0.45,
were applied. The data contained 100% of outliers
(50% for each class).

The presented examples demonstrate that replac-
ing the arithmetic mean by a more robust averaging
function in estimating the mean loss makes it possible
to overcome the problem of outliers.

CONCLUSION

The generalization of the ERM principle based of
the application of standard averaging aggregation
functions for averaging loss values, which is proposed
in this paper, makes it possible to solve an ever-widen-
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ing class of learning problems, especially in the pres-
ence of outliers. This is achieved by applying standard
differentiable averaging AFs. For searching optimal
parameters of the algorithms, the IRLAL algorithm of
iterative reweighting is suggested.
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Fig. 2. Linear regression with 80% of outliers in data: the

solutions are obtained (1) by minimizing the AF Mρ aver-

aging the absolute error ρ(z, u) =  – 1 and by

applying the M-method with function (2) r2, (3) |r|, and

(4) Tukey function.
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Fig. 3. Linear two-classification with 100% of outliers in
data: the solution is obtained by the SVC method and
by minimizing the AF Mρ averaging the hinge function,
α = 0.45. 
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