MATHEMATICS

Fischer Decomposition of the Space of Entire Functions for the Convolution Operator

Corresponding Member of the RAS V. V. Napalkov*a,b**** and A. U. Mullabaeva***^a* ******

Received April 11, 2017

Abstract—It is known that any function in a Hilbert Bargmann–Fock space can be represented as the sum of a solution of a given homogeneous differential equation with constant coefficients and a function being a multiple of the characteristic function of this equation with conjugate coefficients. In the paper, a decomposition of the space of entire functions of one complex variable with the topology of uniform convergence on compact sets for the convolution operator is presented. As a corollary, a solution of the de la Vallée Poussin interpolation problem for the convolution operator with interpolation points at the zeros of the characteristic function with conjugate coefficient is obtained.

DOI: 10.1134/S1064562417050155

1. PROBLEM STATEMENT

Let $H(\mathbb C^n)$ be the space of entire functions with the topology of uniform convergence on compact sets. By M we denote the set of all homogeneous polynomials in variables z_1, z_2, \ldots, z_n . In 1917, Fischer obtained the following result [1].

Theorem 1. Let $P(z) \in M$, and let $P^*(z)$ denote the *polynomial conjugate to* $P(z)$ *, i.e.,* $P^*(z) = P(z)$. *Then the representation*

$$
M = M_1 \oplus M_2
$$

 $\emph{holds, where M_1 is the Kernel of the operator $P^*\bigg(\frac{\partial}{\partial z}\bigg)$ and}$

the polynomials in M_2 *are divisible by* $P(z)$ *.*

The polynomials $P(z)$ and $P^*(z)$ are said to form a Fischer pair. In [2], it was shown that, given any polynomial $P(z)$, $(P(z), P^*(z))$ is a Fischer pair in the Bargmann–Fock space. In 1989, Shapiro [3] proved that, given any $P(z) \in M$, the polynomials $P(z)$ and $P^*(z)$ form a Fischer pair in the space $H(\mathbb{C}^n)$.

In what follows, we study the space $H(\mathbb{C})$. Let us introduce the space $H^*(\mathbb{C})$ dual to $H(\mathbb{C})$ and the space

 $P_{\mathbb{C}}$ of entire functions with exponential growth. The Laplace transform

$$
\widehat{F}(\lambda)=(F,e^{\lambda z})=\varphi(\lambda),\quad F\in H^*(\mathbb{C}),
$$

establishes a topological isomorphism between the spaces $H^*(\mathbb{C})$ and $P_{\mathbb{C}}$. According to [4], a sequence ${q_n(z)}_{n=1}^{\infty}$, ${q_n(z) \in P_{\mathbb{C}}}$ converges in the topology of $P_{\mathbb{C}}$ if and only if the sequence of $q_n(z)$ converges uniformly on each compact set in the plane $\mathbb C$ and there exist constants $c, \sigma > 0$ such that

$$
|q_n(z)| \le c e^{\sigma |z|}, \quad z \in \mathbb{C}, \tag{1}
$$

uniformly in *n*.

Consider the convolution operator with a characteristic function $\varphi(z)$ on $H(\mathbb{C})$:

$$
M_{\varphi}[f(z)] = (F_t, f(z+t)),
$$

$$
f(z) \in H(\mathbb{C}), \quad t \in \mathbb{C}.
$$

This paper is devoted to the Fischer decomposition of the space $H(\mathbb C)$ in the case of the convolution operator

$$
f(z) = w(z) + \varphi^*(z) \cdot l(z),
$$

$$
w(z) \in \ker M_{\varphi}, \quad l(z) \in H(\mathbb{C}), \quad \varphi^*(z) = \overline{\varphi(z)}. \quad (2)
$$

The Fischer decomposition is applied to solve Goursat and Dirichlet problems, the Cauchy problem and the de la Vallée Poussin interpolation pro-blem.

2. MAIN RESULT

Together with the operator M_{φ} , consider the continuous linear operator

a Institute of Mathematics and Computer Center, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Bashkortostan, 450077 Russia

b Bashkir State University, Bashkortostan, Russia, Ufa, Bashkortostan, 450077 Russia

^{} e-mail: napalkov@matem.anrb.ru*

*^{**} e-mail: mullabaeva.87@mail.ru*

$$
M_{\varphi}[\varphi^*]: H(\mathbb{C}) \to H(\mathbb{C}).
$$

Lemma 1 [6]**.** *Relation* (2) *is equivalent to the surjectivity of the operator* $M_{\varphi}[\varphi^*$.].

Thus, the Fischer decomposition reduces to the surjectivity of the operator $M_{\varphi}[\varphi^*]$ According to the Dieudonné–Schwartz theorem, the operator $M_{\varphi}[\varphi^*]$ is surjective if and only if the adjoint operator $K_{\varphi^*}[\varphi]$. is injective and has closed image.

Consider the convolution operator K_{φ^*} in the space $P_{\mathbb{C}}$:

$$
K_{\varphi^*}[\psi(\lambda)] = \frac{1}{2\pi i} \int_C e^{\lambda z} \varphi^*(z) g_{\psi}(z) dz, \quad \psi(\lambda) \in P_{\mathbb{C}},
$$

where $\varphi^*(z)$ is the characteristic function of the operator, $g_{\psi}(z)$ is the Borel transform of $\psi(z)$, and the contour C encloses all singularities of $g_{\psi}(z)$.

The kernel of K_{φ^*} consists of functions of the form (see [7])

$$
r(z) = \sum_{i=1}^{Q} c_i e^{\overline{\lambda}_i z},
$$

where $\overline{\lambda}_1, \dots, \overline{\lambda}_Q$ are the zeros of $\varphi^*(z)$ enclosed by the integration contour *C*.

Let $N_{\varphi} = {\lambda_k}_{k=1}^{\infty}$ denote the set of zeros of the function $\varphi(z)$.

Definition 1. We say that $N_{\varphi} \subset \mathbb{C}$ is a sequentially sufficient set in the space $\ker K_{\varphi^*}$ if the convergence to zero of any sequence of functions in $\ker K_{\varphi^*}$ on compact subsets of N_{ϕ} implies the convergence of this sequence to zero at all points *z* belonging to any compact set $K \subset C$ in the space ker $K_{\varphi^*}.$

Theorem 2. *The set* N_{φ} *is sequentially sufficient in* $\ker K_{\varphi^*}.$

Proof. Estimate (1) implies $|\overline{\lambda}_i| \leq \sigma$. We assume that the closed disk of radius σ centered at the origin contains finitely many different points $\overline{\lambda}_i$, $i = 1, 2, ..., p$ (some of the points may fall on the boundary). These points determine the kernel of the operator *K*ϕ* . Consider the sequence $|\overline{\lambda}_i| \leq \sigma$. σ

$$
r_n(z) = \sum_{i=1}^{p_n} c_i^n e^{\overline{\lambda}_i z}.
$$
 (3)

Let us show that if the sequence of $r_n(z) \in \ker K_{\varphi^*}$ tends to zero on any compact set in N_{φ} , then this sequence tends to zero on any compact set $K \subset \mathbb{C}$ in the space $\text{ker}K_{\varphi^*}$. Consider the system

$$
\sum_{i=1}^{p_n} c_i^n e^{\overline{\lambda}_i \lambda_j} = r_n(\lambda_j), \quad j = 1, 2, \dots, p, \quad \forall n. \tag{4}
$$

Let us show that the uniform convergence

$$
r_m(\lambda_k) \mathop{\to}\limits^{\longrightarrow} 0 \quad \text{as} \quad m \to \infty \tag{5}
$$

on any compact set in N_{φ} implies that the coefficients c_i^n tend to zero.

The matrix *A* has the form

$$
A = \begin{bmatrix} e^{\overline{\lambda}_1 \lambda_1} & \dots & e^{\overline{\lambda}_p \lambda_1} \\ \dots & \dots & \dots \\ e^{\overline{\lambda}_1 \lambda_p} & \dots & e^{\overline{\lambda}_p \lambda_p} \end{bmatrix}.
$$

According to a theorem in [8, p. 226 of the Russian original], the determinant Δ of this matrix is nonzero

and, therefore, the coefficients c_i^n are solutions of the system of equations (4). Cramer's rule yields the coefficients

$$
c_i^n=\frac{\Delta_i}{\Delta},
$$

where Δ_i is the determinant of the matrix obtained from Δ by replacing the *i*th column by the column of constant terms. According to condition (5), as $n \to \infty$, the column of constant terms tends to zero; therefore, for any *i*, $\Delta_i \to 0$ as $n \to \infty$, and, thereby, $c_i^n \to 0$ as

 $n \to \infty$.

Given any compact set $K \subset \mathbb{C}$, the functions $e^{\lambda_i z}$ are bounded on this set, the coefficients c_i^n tend to zero, and, hence, the whole linear combination (3) tends to zero as $n \to \infty$. Therefore, $r_n(z) \to 0$ as $n \to \infty$ on any compact set $K \subset \mathbb{C}$.

Let us show that, for any sequence of functions $r_n(z) \in \text{ker } K_{\varphi^*}$, there exist numbers $c, \sigma > 0$ for which estimate (1) holds. Since all $\overline{\lambda}_i$, $i = 1, 2, ..., p$, lie in the disk of radius σ , it follows that $|\overline{\lambda}_i| \leq \sigma$, which implies

$$
|r_n(z)| \le \sum_{i=1}^{p_n} |c_i^n||e^{\overline{\lambda}_i z}| \le p_n \max_i \{c_i^n\} e^{|\overline{\lambda}_i||z|} \le ce^{\sigma |z|}, \quad (6)
$$

$$
\forall z \in K \subset \mathbb{C}.
$$

Taking into account the uniform convergence of $r_n(z)$ on compact sets K and estimate (6), we see that $r_n(z) \to 0$ on any compact set $K \subset \mathbb{C}$ as $n \to \infty$. Therefore, the set N_{φ} is sequentially sufficient in the space ker K_{φ^*} . This completes the proof of the theorem.

Theorem 3. *If* N_{φ} *is a sequentially sufficient set in the* κ *kernel of the operator* K_{φ^*} *, then the operator* $M_{\varphi}[\varphi^*]$ *is surjective in the space* $H(\mathbb{C})$.

466

DOKLADY MATHEMATICS Vol. 96 No. 2 2017

The proof of this theorem is similar to that of Theorem 5 in [9].

Finally, we state the main result of this paper.

Theorem 4. *If the set of zeros of the characteristic* function $\varphi(z)$ *of an operator* \overline{M}_{φ} *is sequentially sufficient* in ker K_{φ^*} , then there exists a Fischer decomposition of *the space* $H(\mathbb{C})$ *for the operator* M_{φ} *.*

The de la Vallée Poussin problem consists in finding a function in the kernel of the convolution operator which takes preset values at points from a given sequence.

Corollary 1. *The results obtained above make it possible to solve the de la Vallée Poussin problem with inter*polation points at $\overline{\lambda}_k$ in the kernel of the operator $M_{\textrm{\textrm{\tiny{Q}}}}.$

REFERENCES

- 1. E. Fischer, J. Math. **148**, 1 (1917).
- 2. V. Bargmann, Commun. Pure Appl. Math. **14**, 187 (1961).
- 3. H. S. Shapiro, Bull. London Math. Soc. **21**, 513 (1989).
- 4. J. Sebastian-i-Silva, in *Mathematics: Collection of Translations of Foreign Articles* (Inostrannaya Literatura, Moscow, 1957), Vol. 1, p. 60.
- 5. D. J. Newman and H. S. Shapiro, Bull. Am. Math. Soc. **72**, 971 (1966).
- 6. V. V. Napalkov, Proc. Steklov Inst. Math. **235**, 158 (2001).
- 7. H. Muggli, Comment. Math. Helv. **11**, 151 (1938).
- 8. F. R. Gantmacher, *The Theory of Matrices* (Nauka, Moscow, 1966; Chelsea, New York, 1959).
- 9. V. V. Napalkov and A. A. Nuyatov, Sb. Math. **203** (2), 224 (2012).

Translated by O. Sipacheva