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Papers [1, 2] studied an asymptotics of the spec-
trum of the convolution integral operator on a finite
interval with kernel

, .

In [3], the asymptotic behavior of the spectra of
weakly polar integral operators was considered. In [4],
the author found an asymptotics of the spectrum of a
convolution operator such that the Fourier image of its
kernel is the characteristic function of the interval, i.e.,
has two finite points of discontinuity. In this paper, we
write out asymptotic representations of the eigenfunc-
tions of this operator.

Consider the equation

, , (1)

where , , and  is a spec-
tral parameter.

Lemma 1. The integral operator K determined by the
right-hand side of Eq. (1) is nonnegative on the space
L2(–1, 1).

In what follows, we assume that  is positive and
sufficiently large. Note that, by Mercer’s theorem, the
eigenvalues satisfy the relation

.
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Lemma 2. The eigenfunctions of the problem are
either even or odd.

First, consider the case of an odd eigenfunction.
Extending (1) to the entire real line and setting

, ;

, ;

, ,

we obtain

Passing to the Fourier images

, 

,

we arrive at the equation

, .

Note that the function  is analytic in the upper
half-plane and vanishes at infinity.
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The function  is analytic in the entire complex
plane cut along T; it may have singularities of at most
logarithmic order at the points  and vanishes at
infinity. In a standard way [5, p. 200], we obtain the
following conjugation condition with respect to the
functions :

, . (2)

In what follows, we assume that , unless oth-
erwise specified. We set

, .

We seek solutions of the conjugation problem (2) in
the form

.

Setting

,

we obtain the main equation for the function :

. (3)

In the case of an even eigenfunction, the same
argument yields the equation

, (3')

which differs from Eq. (3) in the sign of . In what fol-
lows, we write  instead of .

Let ; then Θ(x) =

. We denote the positive stationary point
of the exponent by

: , .

We set , S =
 + }, and .

We refer to bounded infinitely differentiable non-
oscillating functions which can be represented in the
form

, ,

where  do not depend on , as regular
functions.
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Lemma 3. The representation

holds, where  is a regular function, ,
 for ,  for

, , and .

Again applying the operator from Eq. (3) and using
Lemma 3, we obtain the equation

(4)

Equation (3') leads to the same equation (4).

To determine the oscillating terms in the solution,
we factorize the singular part of Eq. (4), i.e., represent
it as the superposition of integral operators whose
inverses can be written explicitly.

Consider the two singular operators

, 

,

where B(x) is a function defined later on.

By virtue of Lemma 3, the superposition of these
operators equals

.

Now, we choose  so that

.

For an appropriate solution of this quadratic equa-
tion, we set
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Lemma 4.  for .

Corollary. The Cauchy index of the expression

 is defined.

Note that

, ; , .

In this case, the superposition of operators can be
rewritten in the form

,

Remark. In the class of functions under consider-

ation, we have  as .

Now, let us invert the singular operators by the
standard method of reduction to Riemann’s conjuga-
tion problem [6, p. 176].

Lemma 5. A general solution of the equation

in the class of functions allowed to have singularities of
integrable order at ±l has the form

where
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Lemma 6. A general solution of the equation

in the class of functions allowed to have singularities of
integrable order at ±l has the form

where

Lemma 7. A solution of Eq. (4) can be represented in
the form

where the , , are regular functions and

Theorem 1. A solution of Eq. (3) can be represented
in the form

where R(x) is a regular function.
Lemma 8. A condition determining the series of eigen-

values for odd eigenfunctions has the form

,
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Considering the case of an even eigenfunction in a
similar way, we obtain the second series of eigenvalues.

Theorem 2. The spectrum of problem (1) consists of
two alternating sequences of the form

, ; 

, ,

where  are constants.
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