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Abstract—The paper is devoted to the problem of the existence of common fixed points and coincidence
points of a family of set-valued maps of ordered sets. Fixed-point and coincidence theorems for families of
set-values maps are presented, which generalize some of the known results. The presented theorems, unlike
previous ones, do not assume the maps to be isotone or coverable. They require only the existence of special
chains having lower bounds with certain properties in the ordered set.
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Classical results of the fixed-point theory of maps
of ordered sets are the Knaster–Tarski, Smithson, and
Zermelo theorems, which have extensive applications.
This paper considers the problems of the existence of
common fixed points and coincidence points for set-
values maps of ordered sets. First, we recall the classi-
cal results. We state them in terms of the dual order
(with respect to that in the statements given in [1]).

Theorem 1 (Knaster–Tarski theorem [1, Chapter 18,
Theorem 2.1]). Let  be a partially ordered set in
which each chain has an infimum. Suppose that

 is an isotone map and there exists an ele-
ment  for which . Then  has a fixed
point.

Theorem 2 (Smithson’s theorem [2; 1, Chapter 18,
Theorem 2.21]). Let  be a partially ordered set in
which each chain has an infimum. Let  be an
isotone set-valued map such that, for each chain ,
the map  has an isotone selection , i.e.,
there exists a  such that  for each

. Suppose that, for some element , there
exists an   then the fixed point set

 of the map  is nonempty and contains a mini-
mal element.

Theorem 3 (Zermelo’s theorem, [1, Chapter 18,
Theorem 3.1]). Let  be a partially ordered set in
which each chain has an infimum. Suppose that
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 is a map satisfying the condition 
for any a ∈ X. Then  has a fixed point.

The following generalization of Theorem 3 is due
to Yachymski; we state it again in terms of the dual
order.

Theorem 4 [1, Chapter 18, Theorem 3.13]. Let
 be a partially ordered set, and let  be

a regressive map, i.e., , for any . Sup-
pose that each chain in  has a lower bound. Then  has
a fixed point.

Results on the existence of points of coincidence of
two maps of ordered sets were obtained (possibly for
the first time) in [3–6] and then developed and gener-
alized in [7–9].

In this paper, we present fixed-point and coinci-
dence theorems for families of set-valued maps (The-
orems 5–7 below), which generalize the results cited
above, and their corollaries. Unlike those in papers
[3–9], the theorems presented here do not require the
given maps to be isotone or covering. They require
only the existence of special chains having lower
bounds with certain properties in the ordered set.

We use the following notation and terminology
(see [3–9]). By  we denote a set-valued map. Let

 be an ordered set, and let  be a fam-
ily of set-valued maps . For
each element , we set  = .
By a set of -values at a point  we mean any set

, where  and  The set of
common fixed points of a family  is denoted by

.
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Let . By  we denote the set of pairs
of the form , where  is a chain in 
and  is a special -selector on , i.e., f =

 ,  for any
 and , and, for any  and 

. The subset  ⊆
 consists of pairs  such that, for any

, there exists an element  and a set
 of -values at  such that  for any

.

Theorem 5. Suppose that, for an ordered set (X, ), a
family , , , and a point

, the set  is nonempty and, for any
, there exist a common lower bound-

ary  of the chains , , and a set
 of -values at w such that  .

Suppose also that the existence of a  for which
 implies the existence of an element

 and there exists a set  of
-values at  such that . Then the set

 is nonempty, and it has a minimal element.

Now, suppose that the set  is endowed with a total
order . A set  of -values at a point  is
called a nonincreasing chain of -values (with respect
to the order ) at  if  for any

We say that a special -selector f =
, α ∈ A, on a chain  is a

special chain -selector if, for any  is
a nonincreasing chain of -values at the point x.

Let . By  we denote the set of pairs
, where  is a chain, f =  is a

special chain -selector on , and, for any ,
there exists an  and a nonincreas-
ing chain of -values at  in  such that

, α ∈ A,.

Theorem 6. Suppose given an ordered set , a
totally ordered set , and a family ,

 Suppose that, for each
, any nonincreasing chain of -values at x has an

infimum. Suppose also that the set  is non-
empty and, for any pair  where

, there exists a common lower bound 
for all chains , α ∈ A, and a nonincreasing chain

 of -values at  such that .
Finally, suppose that if , then, in turn,

at the point  there exists a nonincreasing chain 
of -values such that  Then the set
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 is nonempty and contains a minimal ele-
ment.

Now, suppose that  are ordered sets, ,
, , and ,

Let  denote the set of pairs of the form
, where  is a chain and f = {fi}1 ≤ i ≤ n,

fi : S → Y is a chain -selector on  such that, for any
, we have

and there exists an  and a nonin-
creasing chain  of -values at  such that

. Suppose also that, for any ,

Theorem 7. Suppose that  are ordered
sets, , , , and

. Suppose also that  and, for any pair
(S, f) in , where , the chain S has
a lower bound , and at the point w there exists a
nonincreasing chain  of -values such that
each  is a lower bound for the set , j = 1,
2, ..., n. Finally, suppose that if , then 
contains a chain  such

that  and there exists a nonin-

creasing chain  of -values at ,
i.e., .

Then the set 

of the coincidence points of the family  is nonempty.
It can be shown that Theorems 5–7 imply, respec-

tively, Theorems 1–3 in [8, 9]. Note also that, for n =
2, Theorem 3 in [8, 9] implies Theorem 1 in [5, 6] (see
a pertinent remark in [9]). For n = 2, Theorem 7 is
stated as follows.

Theorem 8. Suppose that  are
partially ordered sets, , and ,

 are set-valued maps. Suppose also
that the set  is nonempty and, for any pair
(S, f) ∈ , where , the chain  has a
lower bound  and there exist -values  at 
such that , j = 1, 2, and , where zj is a
lower bound for the set  Finally,
suppose that if , then there exists a

 such that z2 ∈  and

Comfix( )^
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, . Then  =
.

Setting , , and
hence  in the statement of
Theorem 8, we obtain the following result.

Theorem 9. Suppose that  is a partially ordered
set, , , and . Suppose
also that, for each pair , there exists
a lower bound  for the chain  and a ,

. Finally, suppose that the relation  implies
the existence of a . Then .

Theorem 9 follows also from Theorems 5 and 6
with n = 1. Moreover, Theorems 5 (with n = 1), and 9
imply Theorem 5 in [7].

Let us compare Theorem 9 with Theorems 4 and 3.
Proposition 1. Theorem 4 follows from Theorem 9. 
The idea of the proof is that, under the assumptions

of Theorem 4, any iteration sequence of the form C =
 for any  is a chain, it has a

lower bound, and .
Thus, Theorems 7 and 8 can be regarded as gener-

alizations of Theorem 4 (and, hence, of (Zermelo’s)
Theorem 3, which follows from Theorem 4) to the case

of coincidences. We also mention that Theorems 3 and
4 do not follow from Theorems 1–3 of [8, 9] and from
the corresponding assertions in [3–6].
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