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Abstract—Infinite quantum graphs with δ-interactions at vertices are studied without any assumptions on the
lengths of edges of the underlying metric graphs. A connection between spectral properties of a quantum
graph and a certain discrete Laplacian given on a graph with infinitely many vertices and edges is established.
In particular, it is shown that these operators are self-adjoint, lower semibounded, nonnegative, discrete, etc.
only simultaneously.
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Consider a metric graph & = (9, %), where 9 =
{vn} is a countable vertex set and % = {ek} is a count-
able edge set. Each edge e ∈ % has length |e| ∈ (0, ∞).
We write v ∈ e if v is a vertex of the edge e. Given a ver-
tex v ∈ 9, we use %v to denote the set of edges going
from v. The number

is called the degree of the vertex v ∈ 9. Given two ver-
tices v, u ∈ 9 we write v ~ u and say that the vertices
u and v are adjacent if there exists an edge eu,v ∈ %
connecting v with u. Throughout the paper, we
assume that the graph & is connected and has no iso-
lated vertices, loops, and multiple edges. We also
assume that & is directed, that is, each edge e ∈ % has
a direction, an origin eo, and a terminal vertex ei.

The main object of study in this paper is a quantum
graph with δ-interactions at vertices (see

= ∈deg( ) : #{ : }e e vv %

Definition 1). Our main result is a connection
between the spectral properties of a quantum graph
and a certain discrete Laplacian given on & (see (10)).

The duality between continuous and discrete oper-
ators on graphs was first noticed by physicists; the first
mathematical results were obtained about 30 years
ago. We mention related papers [2, 4, 10] (and the ref-
erences therein).

Quantum graphs model various nanostructures
arising in experiments; they also serve as a tool for
studying properties of various quantum systems. The
spectral theory of such graphs is comparatively new; it
has been extensively developed during the past two
decades. The mathematical interest in this theory is
caused, in particular, by the interaction of geometric
and topological methods with those of ODE theory.
Quantum graphs have an extensive literature; we only
mention monograph [1] and collection of papers [5]
for further reference. However, it should be mentioned
that most statements concerning quantum graphs
assume either the finiteness of the edge set (#% < ∞)
or the existence of a positive lower bound for the edge
lengths (infe ∈ %|e| > 0). Our main purpose is to study the
spectral properties of quantum graphs without these
constraints on the geometry of the metric graph &.

Notation. ET(⋅) denotes the resolution of identity of
a self-adjoint operator T = T* on a Hilbert space H;
T –: = ET((– ∞, 0))T and κ–(T) = dim ran(T –) is the
total multiplicity of the negative spectrum of T. In par-
ticular, if T – is compact, then κ–(T) is the number of
negative eigenvalues of the operator T (counting mul-
tiplicities); Gp(H), p ∈ (0, ∞] are the von Neumann–
Schatten ideals in H.
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1. QUANTUM GRAPHS 
WITH δ-INTERACTIONS

Consider the Hilbert space L2(&) = ⊕e ∈%L2(e) on
the graph &. We define the maximal operator on this
space by

(1)

where W2, 2(e) is the Sobolev space on the edge e. It is
easy to show that, for each function fe ∈ W2, 2(e), the
quantities

(2)

and

(3)

are well defined.
Let α: 9 → ℝ. We specify boundary conditions at

the vertices by

(4)

If α(v) = 0, then (4) is the standard Kirchhoff condi-
tion. Otherwise, condition (4) is called a δ-interaction
at the vertex ν of the force α(v) (see [1]). The family of
symmetric boundary conditions at the vertices is sig-
nificantly larger (see [1]); however, the requirement of
continuity at the vertices leads to conditions of the
form (4). We define an operator Hα as the closure of

the preminimal operator :

(5)

Here, (&) is the linear submanifold in L2(&)
consisting of functions not identically vanishing only
on a finite set of edges. Note that the operator Hα is
symmetric. Simple examples show that it may be non-
self-adjoint.

Example 1. Consider the half-axis ℝ+. Suppose
given a strictly increasing sequence of points 
such that x0 = 0 and xk ↑ +∞. Taking the points xk for
vertices and the intervals ek = (xk – 1, xk) for edges, we
obtain the simplest infinite metric graph. For this
graph, by virtue of definitions (3), conditions (4) take
the form f '(0) = 0,
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(6)

where α =  is a real sequence with α0 = 0.
The operator Hα is known as the one-dimensional

Schrödinger operator with δ-interactions at the points
xk, k ∈ ℕ:

(7)

It was shown in [13] that the operator Hα is self-

adjoint if  = ∞; in the case  < ∞,
this operator may be non-self-adjoint (see [13, Propo-
sition 5.9]).

Definition 1. The self-adjoint extensions of the
operator Hα in the space L2(&) are called quantum
graphs with δ-interactions at vertices.

Remark 1. If deg(v0) = ∞, then, according to [9,
Theorem 5.2], condition (4) leads to a nonclosed
operator, whose closure is generated by the Dirichlet
condition f(v0) = 0 at the vertex v0. Thus, hereafter, we
assume without the loss of generality that deg(v) < ∞
for all v ∈ 9.

2. THE MAIN RESULT
First, we introduce our second main object of

study, which is a difference operator on a graph. For
this purpose, we define a function m: 9 → (0, ∞) by

(8)

b: 9 × 9 ° [0, ∞):

(9)

On the weight Hilbert space ℓ2(9; m), consider the
minimal operator hα generated by the difference
expression

(10)

Namely, the operator hα on ℓ2(9; m) is defined as
the closure of the preminimal operator

(11)

where dom( ): = (9; m) is the set of functions tak-
ing nonzero values only at finitely many vertices. It
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readily follows from the constraints imposed on the
metric graph & that  is a densely defined symmetric
operator; therefore, hα is well defined. Discrete opera-
tors of the form (10) play an important role in the the-
ories of electric networks and of Markov processes,
and their spectral properties have an extensive litera-
ture (see, e.g., [7, 8]).

Remark 2. Sometimes, instead of hα, it is useful to
consider the operator  defined on the space ℓ2(9) by
the difference expression

(12)

It is easy to show that the operators hα and  are
unitarily equivalent.

It turns out that the spectral properties of the oper-
ators Hα and hα are closely related. The following the-
orem is the main result of this paper.

Theorem 1. Let & = (9, %) be a metric graph such
that supe ∈ %|e| < ∞. Suppose that α: 9 → ℝ and Hα is a
closed symmetric operator on the graph & = (9, %) with
δ-interactions (4) at the vertices. Suppose also that hα is
the discrete Laplacian given by (10), (11) on ℓ2(9; m)
and m: 9 → (0, ∞) and b: 9 × 9 → [0, ∞) are func-
tions of the forms (8) and (9), respectively. Then

(i) the deficiency indices of the operators Hα and hα
are equal:

(13)
(in particular, the operator Hα is self-adjoint if and only
if so is hα);

(ii) the operator Hα is lower semibounded if and only
if so is hα.

Suppose that Hα (and, hence, hα) is self-adjoint.
Then

(iii) the operator Hα is nonnegative (positive definite)
if and only if so is hα;

(iv) the total multiplicities of negative spectra of the
operators Hα and hα coincide:

(14)
(v) for each p ∈ (0, ∞],

(15)

(in particular, the negative spectra of the operators Hα
and hα are discrete simultaneously);

(vi) if  ∈ S∞(ℓ2(9; m)), then, for each p ∈ (0, ∞],
the absolute values of the negative eigenvalues of Hα and
hα numbered in decreasing order are related by

α
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(16)

as j → ∞; moreover, either ab ≠ 0 or a = b = 0;
(vii) σess(Hα) ⊂ (0, ∞) (σess(Hα) ⊂ [0, ∞)) if and

only if σess(hα) ⊂ (0, ∞) and (σess(hα) ⊂ [0, ∞));
(viii) the spectrum of the operator Hα is discrete if and

only if # {e ∈ %: |e| > ε} is finite for all ε > 0 and the spec-
trum of hα is discrete;

(ix) for each p ∈ (0, ∞],

(17)

Remark 3. The condition supe ∈ %|e| < ∞ is not
essentially restrictive, because the graph & can be
modified by adding virtual vertices, which does not
affect the operator Hα. However, this changes the dif-
ference operator hα.

Theorem 1 is proved by a method proposed in [13, 14]
for the case of Hamiltonians with δ-interactions (7).
Namely, we use the apparatus of boundary triplets and
the corresponding Weyl functions (see definitions in
Appendix A). One of the key difficulties in this
approach is the construction of an adequate boundary
triplet Π = {*, Γ0, Γ1} for the maximal operator Hmax
in the case where infe ∈ %|e| = 0. It turns out that, under
an appropriate choice of the boundary triplet, hα is a
boundary operator parameterizing the extension Hα of

the minimal operator Hmin: = :

Let us illustrate Theorem 1 for the example of
operator (7) in Example 1.

Example 2. Let Hα be the Schrödinger operator (7)
with δ-interactions on the half-axis ℝ+. In this case,
we have

and for k ≥ 1, the difference expression (12) takes the
form of a three-term recurrence relation:

Thus, the corresponding difference operator hα is
the minimal operator generated on ℓ2(ℕ) by the Jacobi
matrix
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(18)

Theorem 1 was proved for this case in [13]; in the
recent paper [15], it was extended to matrix
Schrödinger operators with δ-interactions.

Remark 4. Let us explain the relationship between
the operators Hα and hα from the elementary point of
view. The kernel + = ker(Hmax) of the maximal oper-
ator Hmax consists of piecewise-linear functions on &.
Each function f ∈ + is uniquely determined by its val-
ues at the vertices {f(ei), f(e0)}e ∈ %. Therefore, for all

f ∈ +c = + ∩ (&), we have

(19)

Obviously,

determines an equivalent norm on +c. On the other
hand, for each f ∈ +c, we have

It remains to note that, 

(20)

This relation sheds some light on the relationship
between the operators Hα and hα.

3. SPECTRAL PROPERTIES 
OF QUANTUM GRAPHS

The relationship between operators (7) and Jacobi
matrices (18) discovered in [13] has made it possible to
obtain new results about the spectral properties of the

− −
+

−

−

⎛ ⎞
α + +⎜ ⎟ =

⎜ ⎟
= ⎜ ⎟
⎜ ⎟ = −
⎜ ⎟⎜ ⎟
⎝ ⎠

0 1 1 1
1

1 1 2

2 2 3 1

3 3
1

0 0 ...
| | | |

0 ... ,
( )0 ... ,
| |0 0 ... .

( ) ( )... ... ... ... ...

k k k
k

k

k
k

k k

a b
e e

b a b a
m xb a bJ

eb a b
m x m x

2
cL

∈

+ +
= ∑2

2 2
2 0 0

( )

| ( )| Re( ( ) ( )) | ( )|
|| | | | | .

3
i i

L
e

f e f e f e f e
f e

&

%

∈

∈ ∈

+

= =

∑

∑ ∑ 2

2 2
0

2 2
( ; )

| |(| ( )| | ( )| )

| ( )| | | | | | |

i

e

m
e

e f e f e

f e f
vv

v

%

, 9

9 %

α
∈ ∈

∈ ∈

∈

α
∈

= + α

−= + α

= −

+ α =

∑ ∑

∑ ∑

∑

∑

2 2

2
20

2

,

2
,

( , ) | '( )| ( )| ( )|

| ( ) ( )| ( )| ( )|
| |

1 ( , )| ( ) ( )|
2

( )| ( )| : [ ].

e

i

e

u

f f f x dx f

f e f e f
e

b u f f u

f f

H
v

v

v

v

v v

v v

v v

v v

% 9

% 9

9

&

9

t

α α= ∈2
2

,( ; )( , , ) [ ], ( ; ).cm
h f f f f m&, &

t , &

Schrödinger operator with δ-interactions. Similarly,
applying the fairly well developed spectral theory of
difference operators on graphs, we can obtain new
results about quantum graphs. Because of space lim-
itations, we present only a few statements on self-
adjointness, semiboundedness, and negative spec-
trum.

In the rest of the paper, we assume that

(21)

3.1. Self-Adjointness

It is well known (see, e.g., [8]) that the operator hα
with potential α ≡ 0 is bounded if and only if

(22)

and C& ≤ ||h0  ≤ 2C&. This fact and Theorem 1 (i)
imply the following result.

Lemma 1. If condition (22) holds, then the operator
Hα is self-adjoint for all α: 9 → ℝ.

Corollary 1. If infe ∈%|e| > 0, then the operator Hα is
self-adjoint for all α: 9 → ℝ.

Corollary 1 follows from Lemma 1, because condi-
tion (21) and the inequality infe ∈%|e| > 0 imply (22).
Another proof uses [9, Theorem 3.2]. We also mention
that (22) is equivalent to the condition infe ∈%|e| > 0
only if supv ∈ 9deg(v) < ∞.

3.2. Semiboundedness

Following [8], we introduce the following condi-
tion.

Condition 1. Given any sequence {vn}n ∈ ℕ of vertices
such that b(vn, vn + 1) ≠ 0 for all n ∈ ℕ, the series

(23)

Our next result is as follows.
Proposition 1. If Condition 1 holds and α: 9 → ℝ is

such that

(24)

then the operator Hα is self-adjoint and lower semib-
ounded.
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Simple examples of operators with δ-interactions
on ℝ+ show that both conditions (23) and (24) are
essential for the validity of Proposition 1 (see [13]).

3.3. Negative Spectrum
In what follows, we assume that the function α is

nonnegative, i.e., α: 9 → [0, ∞), and Condition 1
holds. Our main purpose in this section is to estimate
the number of negative eigenvalues of the operator H–α
in terms of the interactions α. First, we note that the
operator h0 is nonnegative. Moreover, by virtue of the
first Beurling–Deny theorem, it is a generator of a
symmetric Markov semigroup. Let t& := t&, 0 be the
quadratic form (20) in Remark 4 with α ≡ 0. In [11, 12]
(see also [6]), it was mentioned that the key role in
CLR-type estimates is played by the Sobolev-type
inequalities

(25)

in which D > 2 and K > 0 are constants not depending
on f. In turn, according to Varopoulos’ theorem (see,
e.g., [11]), (25) is equivalent to the following estimate
for the semigroup T(t) = exp(–h0t) generated by the
difference operator h0:

(26)

According to Theorem 1 (iv), we have κ–(H–λα) =
κ–(h–λα). Combining this equality with Theorem 14 of
[11] (see also [6, Theorem 2.1]), we obtain the follow-
ing result.

Proposition 2. There exist D > 2 and K > 0 such
that (25) holds if and only if

(27)

for all α ∈ ℓD/2(9; m) and λ > 0.
The most difficult point in estimating the number

κ–(H–λα) is to verify estimate (25) or the equivalent
condition (26). However, such a verification has
already been performed in many cases (see, e.g.,
[11, 12]).

Corollary 4. Let & = (9, %) be a metric graph in
which 9 is a group of polynomial growth D ≥ 3. If α:
9 → [0, ∞) belongs to the space ℓD/2(9), then

(28)

where C(&) is a constant depending only on the graph &.
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In particular, in the case & = ℤD, we obtain the fol-
lowing estimate (cf. [12]).

Corollary 5. Let & = ℤN, N ≥ 3. If α: 9 → [0, ∞)
belongs to the space ℓN/2(ℤN), then

(29)

where CN is a constant depending only on N.

APPENDIX A

BOUNDARY TRIPLETS

Consider a densely defined closed symmetric oper-
ator A on H. Let Nz = Nz(A): = H ⊖ ran(A – z*) =
ker(A* – z), z ∈ ℂ±, be its defect subspaces, and let
n±(A) := dimN±i(A) be its deficiency indices. Suppose
that n+(A) = n–(A) ≤ ∞.

Definition 2. A set Π = {*, Γ0, Γ1}, where * is a
Hilbert space and Γ0 and Γ1 are linear mappings from
dom(A*) to *, is called a boundary triplet for the
operator A* if

(i) the abstract Green’s identity holds

(A.1)

(ii) the mapping Γ: f ° {Γ0 f, Γ1 f} from dom(A*) to
* × * is surjective.

A boundary triplet for an operator A* exists only if
n+(A) = n–(A). In this case, n±(A) = dim* and ker(Γ) =
ker(Γ0) ∩ ker(Γ1) = dom(A).

An extension  of an operator A is said to be proper
if A ⊂  ⊂ A*. The set of all proper (not necessarily
closed) extensions of A is denoted by ExtA. Recall that
a linear relation in H is defined as a linear subspace in
H × H. We denote the set of closed linear relations in
H by (H). Each linear operator T on H is identified
with its graph gr(T); therefore, the set #(H) of closed
linear operators on H is identified with the subset
of (H).

Proposition 3 [3]. Let Π = {*, Γ0, Γ1} be a boundary
triplet for A*. Then the mapping Γ = {Γ0, Γ1}: dom(A*) →
* × * determines the following one-to-one correspon-
dence between ExtA and the set of all linear relations
in *

(A.2)

Moreover,  = AΘ*; in particular, AΘ is a symmetric
(self-adjoint) extension if and only if the linear relation
Θ is symmetric (self-adjoint), and n±(AΘ) = n±(Θ).
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The relation Θ is called the boundary relation of
the operator  = AΘ. If Θ is the graph of a linear oper-
ator B, i.e., Θ = gr(B), then (А.2) takes the form

(A.3)

In this case, B is called the boundary operator of
the extension  = AB. An important role in the study
of the spectral properties of proper extensions is played
by Krein’s formula for resolvents [3]:

(A.4)

where A0 = A*  ker(Γ0), γ(z) = (Γ0  Nz)–1 is the
gamma-field of the operator A0, and M(z) = Γ1γ(z) is
the Weyl function of A0. We emphasize that it is for-
mula (A.4) which has made it possible to reveal deep
relations (not covered by Proposition 3) between the
spectral properties of the operator  = AΘ and the cor-
responding boundary relation Θ (see details in [3]).
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