$=$ **MATHEMATICS** $=$

Estimates for the Norms of Monotone Operators on Weighted Orlicz–Lorentz Classes

M. L. Goldman

Presented by Academician of the RAS E.I. Moiseev May 25, 2016

Received June 9, 2016

Abstract—A monotone operator P mapping the Orlicz–Lorentz class to an ideal space is considered. The Orlicz–Lorentz class is the cone of measurable functions on $R_+ = (0, \infty)$ whose decreasing rearrangements with respect to the Lebesgue measure on R_+ belong to the weighted Orlicz space $L_{\Phi, y}$. Reduction theorems are proved, which make it possible to reduce estimates of the norm of the operator $P: \Lambda_{\Phi, v} \to Y$ to those of the norm of its restriction to the cone of nonnegative step functions in $L_{\Phi, y}$. The application of these results to the identity operator from $\Lambda_{\Phi, v}$ to the weighted Lebesgue space $Y = L_1(R_+; g)$ gives exact descriptions of associated norms for $\Lambda_{\Phi, v}$.

DOI: 10.1134/S1064562416060065

1. WEIGHTED ORLICZ SPACE

This section briefly describes the necessary (mostly known) general properties of weighted Orlicz spaces (see, e.g., $[1-4]$).

Definition 1. *The notation* Θ *is used for the class of* $\textit{functions} \ \Phi : [\ 0 \ \ \infty \) \rightarrow \ [\ 0 \ , \ \infty], \ \ \textit{such that}$

 $\Phi(0) = 0;$

 Φ *increases and is left continuous on R*₊;

$$
\Phi(+\infty)=\infty;
$$

 Φ *is not identically equal to zero or infinity on* R ₊.

For $\Phi \in \Theta$, we set

$$
t_0 = \sup \{ t \in [0, \infty) : \Phi(t) = 0 \};
$$

\n
$$
t_{\infty} = \inf \{ t \in R_+ : \Phi(t) = \infty \}.
$$
 (1)

We have
$$
t_0 \in [0, \infty); t_\infty \in (0, \infty]; t_0 \leq t_\infty
$$
,

$$
\Phi(t) = 0, \quad t \in [0, t_0], \quad \Phi(t) = \infty, \quad t > t_{\infty}
$$

(the last relation holds if $t_{\infty} < \infty$). Throughout this paper, we assume that

$$
\Phi \in \Theta, \quad t_0 t_{\infty}^{-1} = 0; \quad v \in M, \quad v > 0 \tag{2}
$$

almost everywhere on R_+ .

Here, $M = M(R_+)$ denotes the set of Lebesgue measurable functions on R_+ . Given $\lambda > 0$, $f \in M$, we set

$$
J_{\lambda}(f) \coloneqq \int_{0}^{\infty} \Phi(\lambda^{-1}|f(x)|) \nu(x) dx, \tag{3}
$$

$$
||f||_{\Phi,\mathsf{v}} = \inf \left\{ \lambda > 0; J_{\lambda}(f) \le 1 \right\} < \infty,\tag{4}
$$

$$
L_{\Phi,\nu} = L_{\Phi,\nu}(R^+) = \{ f \in M : ||f||_{\Phi,\nu} < \infty \}.
$$

Example 1. Suppose that condition (2) holds, $p \in (0,1]$, and Φ is *p*-convex on $[t_0, t_\infty)$, i.e., for $\alpha, \beta \in (0,1], \quad \alpha^p + \beta^p = 1$, we have

$$
\Phi(\alpha t + \beta \tau) \leq \alpha^p \Phi(t) + \beta^p \Phi(\tau), \quad t, \tau \in [t_0, t_\infty). \tag{5}
$$

For example, the function $\Phi(t) = t^p$ is *p*-convex for $p \in (0,1]$ and 1-convex for $p > 1$.

Example 2 (Young function). Suppose that Φ : $[0, \infty) \rightarrow [0, \infty]$ is a Young function, i.e.,

$$
\Phi(t) = \int_{0}^{t} \varphi(\tau) d\tau,
$$
\n(6)

Peoples Friendship University, ul. Miklukho-Maklaya 6, Moscow,117198 Russia e-mail: seulydia@yandex.ru

 $0 \leq \varphi$ increases and is left continuous on $R_+,\varphi(0) = 0;$ and φ is not identically equal to zero or infinity on R_+ .

Then $\Phi \in \Theta$ and, since $0 \leq \phi \uparrow$, Φ is 1-convex on $[t_0, t_{\infty}).$

Theorem 1. *Suppose that conditions* (2) *holds and* Φ is p-convex on $[t_0, t_{\infty})$ for $p \in (0,1]$. Then, in $L_{\Phi, \mathrm{v}}$, the tri*angle inequality holds: if* $f, g \in L_{\Phi, \nu}$ *, then* $f + g \in L_{\Phi, \nu}$ *and*

$$
||f+g||_{\Phi,\nu} \leq (||f||_{\Phi,\nu}^p + ||g||_{\Phi,\nu}^p)^{1/p}.
$$

The quantity $||f||_{\Phi, v}$ *is a quasi-norm (a norm for* $p = 1$; *moreover, it is monotone, i.e.,*

$$
f \in M
$$
, $|f| \le g \in L_{\Phi,v} \Rightarrow f \in L_{\Phi,v}$,
 $||f||_{\Phi,v} \le ||g||_{\Phi,v}$

and has the Fatou property:

$$
f_n \in M
$$
, $0 \le f_n \uparrow f \Rightarrow ||f||_{\Phi, v} = \lim_{n \to \infty} ||f_n||_{\Phi, v}$.

Conclusion. Under the conditions of Theorem 1, the set $L_{\Phi, v}$ forms a quasi-Banach ideal space (it is Banach for $p = 1$, in particular, for a Young function) with Fatou property. Φ

Remark 1. For $\Phi(t) = t^p$, $p \in R_+$, the Orlicz space $L_{\Phi, \nu}$ coincides with the weighted Lebesgue space

$$
L_p(R_+;v)
$$

=
$$
\left\{ f \in M: ||f||_{L_p(v)} = \left(\int_0^{\infty} |f(x)|^p v(x) dx \right)^{1/p} < \infty \right\}.
$$

Remark 2. Suppose that, in (2), the condition $t_0 t_{\infty}^{-1} = 0$ is violated, i.e., $0 < t_0 \le t_{\infty} < \infty$. Then, for any function $f \in M$,

$$
t_0 \|f\|_{\Phi, v} \le \|f\|_{L_{\infty}} \le t_{\infty} \|f\|_{\Phi, v},
$$

so that $L_{\Phi, v} = L_{\infty}$ c and the norms on these spaces are equivalent. Here, $L_{\infty} = L_{\infty}(R_{+})$ is the space of essentially bounded functions.

2. ESTIMATES OF THE NORM OF A MONOTONE OPERATOR ON A CONE

Below we describe a discretization procedure consistent with the properties of a weight function. We assume here that the weight v satisfies the conditions

$$
0 < V\left(t\right) \coloneqq \int_{0}^{t} \nu \, d\tau < \infty, \quad t \in R_{+}, \tag{7}
$$

where V strictly increases and

$$
V(+\infty) = \infty. \tag{8}
$$

We fix $b > 1$ and define a sequence $\{\mu_m\}$ by

$$
V(\mu_m) = b^m, \quad m \in Z = \{0, \pm 1, \pm 2, \ldots\}.
$$
 (9)

We have

$$
0 < \mu_m \uparrow;
$$

$$
\sum_{m} \Delta_m = R_+; \ \Delta_m = \left[\mu_m, \mu_{m+1} \right], \ m \in Z. \tag{10}
$$

Consider the cone

$$
\Omega \equiv \left\{ f \in L_{\Phi,\mathbf{v}} \colon 0 \le f \downarrow \right\} \tag{11}
$$

of nonnegative decreasing functions in the Orlicz space. We also associate procedure (9), (10) with the cones

$$
S \equiv \left\{ f \in L_{\Phi,\mathbf{v}} : f = \sum_{m} \gamma_m \chi_{\Delta_m}; \gamma_m \ge 0, m \in Z \right\}
$$
 (12)

of nonnegative step functions and

$$
\tilde{\Omega} \equiv \Omega \cap S = \left\{ f \in L_{\varphi,v}: f = \sum_{m} \alpha_m \chi_{\Delta_m}; 0 \le \alpha_m \downarrow \right\}.
$$
\n(13)

of nonnegative decreasing step functions.

Let (N, η) be a space with nonnegative complete σ finite measure η ; we use $L=L\left(\mathrm{N},\eta\right)$ to denote the set of all η -measurable functions and set $L^+ = \{u \in L : u \ge 0\}$ and $M^+ = \{ f \in M : f \ge 0 \}.$ Let $P: M^+ \to L^+$ be a monotone operator, i.e.,

$$
f, h \in M^+, \quad f \leq h
$$
 μ almost everywhere
\n $\Rightarrow Pf \leq Ph$ η almost everywhere.

For the cone $A \subset L_{\Phi, v}$ of nonnegative functions and an ideal space $Y = Y(N, \eta) \subset L$, we define the norm of the restriction of P to this cone as

$$
||P||_{A \to Y} = \sup \{ ||Pf||_Y : f \in A, ||f||_{\Phi, v} \le 1 \}.
$$
 (14)

Theorem 2. *Suppose that conditions* (7) *and* (8) *hold, a function* $\Phi \in \Theta$ *is p-convex on* $[t_0, t_{\infty})$ *for* $p \in (0,1]$ (*see* (5)), *and the discretization procedure* (9), (10) *is performed. Then the norms of the restrictions of a monotone operator to cones* (11)–(13) *satisfy the inequalities* Then the norms of the restrict
r to cones (11)–(13) satisfy t $\sum_{\tilde{\Omega}\rightarrow Y}\leq\left\Vert P\right\Vert _{\Omega\rightarrow Y}\leq b^{1/p}\left\Vert P\right\Vert _{\tilde{\Omega}\rightarrow Y}$ \ddot{j}

$$
||P||_{\tilde{\Omega}\to Y} \le ||P||_{\Omega\to Y} \le b^{1/p} ||P||_{\tilde{\Omega}\to Y}; \tag{15}
$$

$$
(1 - b^{-1})^{1/p} ||P||_{S \to Y} \le ||P||_{\Omega \to Y} \le b^{1/p} ||P||_{S \to Y}.
$$
 (16)

Remark 3. Relations (16) reduce estimating the norm of the restriction of a monotone operator to the cone Ω to estimating the norm of this operator on the

DOKLADY MATHEMATICS Vol. 94 No. 3 2016

cone of nonnegative step functions. In some cases, such a reduction makes it possible to use known results concerning step functions (or their purely discrete analogues) for obtaining required estimates on the cone Ω . This approach is realized in Section 3 for the example of a description of associated norms.

3. ASSOCIATED NORMS FOR THE CONE Ω IN THE ORLICZ SPACE

We keep the notation of Sections 1 and 2 and apply results of Section 2 in the special case where the ideal space Y coincides with the weighted Lebesgue space $L_1(R_+; g)$, $g \in M^+$, and the monotone operator P is the identity operator. In this case, the norm $\|P\|_{\Omega\rightarrow Y}$ coincides with the associated norm for the cone Ω :

$$
\|P\|_{\Omega \to Y} = \sup \left\{ \int_0^\infty fgdt; \ f \in \Omega; \|f\|_{\varphi, \nu} \le 1 \right\} \equiv \|g\|_{\Omega}^/.\ (17)
$$

According to Theorem 2, we have

$$
||P||_{\Omega \to Y} \cong ||P||_{S \to Y}.
$$
 (18)

In the case under consideration,

$$
||P||_{S\to Y}
$$

= sup $\left\{\sum_{m\in Z} \alpha_m g_m: \alpha_m \geq 0; \sum_{m\in Z} \Phi(\alpha_m) \beta_m \leq 1\right\}$ (19)

for

$$
g_m = \int_{\Delta_m} g dt \ge 0;
$$

$$
\beta_m = \int_{\Delta_m} v dt = b^m (b-1), \quad m \in Z.
$$
 (20)

When Φ is a Young function (see Example 2), using known properties of discrete norms, we obtain an explicit description of norm (19) in terms of the complementary Young function Ψ , that is,

$$
\Psi(t) = \int_{0}^{t} \psi(\tau) d\tau, \quad t \in [0, \infty];
$$

$$
\psi(\tau) = \inf \{ \sigma : \phi(\sigma) \ge \tau \}, \quad \tau \in [0, \infty].
$$
 (21)

The discrete description thus obtained can be reduced to the integral form given below by the "antidiscretization method."

Theorem 3. Suppose that Φ, Ψ are complementary *Young functions and conditions* (7) *and* (8) *hold. Then, for any fixed number* $a \in (0,1)$ *, the following two-sided estimate of the associated norm* (17) *is valid:*

DOKLADY MATHEMATICS Vol. 94 No. 3 2016

$$
||g||'_{\Omega} \cong ||\rho_a(g)||_{\Psi,\nu}
$$

= inf $\left\{\lambda > 0: \int_0^{\infty} \Psi(\lambda^{-1} \rho_a(g;t)) v(t) dt \le 1 \right\},$ (22)

where

$$
\rho_a(g;t) := V(t)^{-1} \int_{\delta_a(t)}^t |g(\tau)| d\tau,
$$

\n
$$
\delta_a(t) := V^{-1}(aV(t)), t \in R_+.
$$
\n(23)

Norms (22) with different $a \in (0,1)$ are equivalent.

If condition (8) is violated, the answer is somewhat different from (22).

Theorem 4. *Suppose that the assumptions of Theorem* 3 *hold but condition* (8) *is replaced by*

$$
V(+\infty) < \infty. \tag{24}
$$

Let

$$
b = \frac{V(+\infty)}{V(1)} > 1, \quad a = b^{-2}.\tag{25}
$$

Then

$$
||g||_{\Omega}' \cong ||\rho_a(g)\chi_{(0,1)}||_{\Psi,\nu} + \int_{V^{-1}(aV(+\infty))}^{\infty} |g|dt. \tag{26}
$$

Remark 4. *Suppose that the assumptions of Theorem* 3 *hold and, in addition, the function* Φ *satisfies the* Δ ₂*condition, i.e.,*

$$
\exists C \in (1, \infty) : \Phi(2t) \le C\Phi(t), \quad t \in R_+.
$$

Then

$$
||g||'_{\Omega} \cong \left\| V\left(t\right)^{-1} \int_{0}^{t} |g\left(\tau\right) | d\tau \right\|_{\Psi, \mathbf{v}}.
$$
 (27)

4. APPLICATIONS TO THE WEIGHTED ORLICZ–LORENTZ CLASSES

Let $f \in M(R_+)$ be such that its distribution function λ_f is not identically equal to infinity, where

$$
\lambda_f(y) = \mu\big\{x \in R_+ : |f(x)| > y\big\}, \quad y \in R_+.
$$

Let f^* be the decreasing rearrangement of the function f , i.e.,

$$
f^*(t) = \inf \left\{ y \in R_+ : \lambda_f(y) \le t \right\}, \quad t \in R_+.
$$

The weighted Orlicz–Lorentz class $\Lambda_{\Phi, v}$ consists of functions $f \in M(R_+)$ such that $f^* \in L_{\Phi,\nu}$. It is endowed with a functional $||f^*||_{\Phi, v}$ (see (3) and (4)) taking equal values at $f \in M(R_+)$ and $|f| \in M^+(R_+).$ Let $\Lambda^+_{\Phi, v} = M^+ \cap \Lambda_{\Phi, v}$.

Suppose that (N, η) is a space with a nonnegative complete σ -finite measure η and $L = L(N, \eta)$ is the set of all η -measurable functions $u: N \to R$; let $L^+ = \{u \in L: u \ge 0\}.$

Theorem 5. Let $Y \subset L$ be an ideal space with quasi- $\mathit{norm}\Vert \cdot \Vert_{_Y},$ and let $P\mathcal{:}~ M^+ \to L^+$ be a monotone operator *such that*

 $\exists C \in [1, \infty) : ||Pf||_Y \le C ||Pf^*||_Y, \quad f \in M^+(R_+).$ (28) *Then*

$$
||P||_{\Omega \to Y} \le ||P||_{\Lambda_{\Phi,\nu}^+ \to Y} \le C ||P||_{\Omega \to Y};\tag{29}
$$

moreover, if $C = 1$ *in* (28)*, then the norms in* (29) *are equal.*

Corollary. *Under the assumptions of Theorem* 5*,*

$$
||P||_{\Lambda_{\Phi,\nu}^+\to Y} \cong ||P||_{S\to Y}.
$$
 (30)

Example 3. Theorem 5 covers all operators of the form

$$
(Pf)(x) = \int_{0}^{\infty} k(x, \tau) f(\tau) d\tau,
$$

\n
$$
x \in N, \quad f \in M^{+}(R_{+}),
$$
\n(31)

where k is a nonnegative measurable function on $N \times R_+$ such that $k(x, \tau)$ decreases and is right continuous as a function of $\tau \in R_+$. For such operators, property (28) with $C = 1$ follows from the space $Y \subset L$ being ideal and Hardy's well-known lemma

$$
(Pf)(x)
$$

=
$$
\int_{0}^{\infty} k(x,\tau) f(\tau) d\tau \leq \int_{0}^{\infty} k(x,\tau) f^{*}(\tau) d\tau = (Pf^{*})(x).
$$

Example 4. If $Y = Y(R_+)$ is a rearrangementinvariant ideal space, then inequality (28) holds for the Hardy–Littlewood maximal operator M: $\overline{M}^+(R_+) \to \overline{M}^+(R_+),$ where

$$
(Mf)(x) = \sup \left\{ |\Delta|^{-1} \int_{\Delta} f(\tau) d\tau : \Delta \subset R_+; x \in \Delta \right\}
$$

(the supremum is taken over all intervals Δ containing the point $x \in R_+$). Therefore, in this case, Theorem 5 can be applied, too.

Now, suppose that the ideal space Y coincides with the weighted Lebesgue space $L_1(R_+; g)$, $g \in M^+$, and the monotone operator P is the identity operator. Then $||P||_{\Lambda_{\Phi,\mathrm{v}}^\mathrm{+}\to Y}$ coincides with the associated norm for

the function $g \in M^+$ on the Orlicz–Lorentz class. It reduces to the associated norm (17) on the cone Ω for the decreasing rearrangement g^* :

$$
|g\|_{*}^{\prime} := \sup \left\{ \int_{0}^{\infty} fgdt \colon f \in M^{+}; \|f^{*}\|_{\Phi, v} \leq 1 \right\} = \|g^{*}\|_{\Omega}^{\prime}.
$$

Thus, Theorems 3 and 4 imply the following result. **Theorem 6.** *If the assumptions of Theorem* 3 *hold, then*

$$
||g||'_{*} \cong ||\rho_{a}(g^{*})||_{\Psi,v}
$$

= inf $\left\{\lambda > 0: \int_{0}^{\infty} \Psi(\lambda^{-1}\rho_{a}(g^{*};t))v(t) dt \le 1\right\},$ (32)

where $ρ$ _{*a} is defined by* (23). *Under the assumptions of*</sub> *Theorem* 4*,*

$$
||g||'_{*} \cong ||\rho_{a}(g^{*})\chi_{(0,1)}||_{\Psi,\nu} + \int_{V^{-1}(aV(+\infty))}^{\infty} g^{*}dt. \tag{33}
$$

Remark 5. Suppose that the assumptions of Theorem 3 and the function Φ in this theorem satisfies the Δ_2 -condition. Then

$$
||g||'_{*} \cong \left||V(t)^{-1}\int_{0}^{t} g^{*}(\tau)d\tau\right||_{\Psi,v}.
$$
 (34)

Remark 6. Relations (32)–(34) are modifications of results of paper [8], which develop previous results of [9] (in [9], it was assumed that both functions Φ , Ψ satisfy the Δ_2 -condition). Duality for Orlicz, Lorentz, and Orlicz–Lorentz spaces was studied in [2, 4, 5, 10–13].

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Education of Russia (project no. 1.333.2014/K) and, in part, by the Russian Foundation for Basic Research (project nos. 15-01-02732 and 14-01-00684).

REFERENCES

- 1. M. A. Krasnosel'skii and Ya. B. Rutitskii, *Convex Functions and Orlicz Spaces* (Moscow, 1958) [in Russian].
- 2. L. Maligranda, *Orlicz Spaces and Interpolation* (Dept. de Mat., Univ. Est. de Campinas, Campinas, SP, 1989).
- 3. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, *Interpolation of Linear Operators* (Nauka, Moscow, 1978) [in Russian].
- 4. C. Bennett and R. Sharpley, *Interpolation of Operators* (Academic, Boston, 1988).
- 5. H. Hudzik, A. Kaminska, and M. Mastylo, Proc. Am. Math. Soc. **130** (6), 1645–1654 (2002).
- 6. V. I. Ovchinnikov, Funct. Anal. Appl. **16** (3), 223–224 (1982).
- 7. P. P. Zabreiko, Math. Notes **2** (6), 853–855 (1967).
- 8. M. L. Goldman and R. Kerman, in *Proceeding of International Conference "Function. Differential Operators. Problems of Mathematical Education" Dedicated to the*

75th Birthday of Professor Kudryavtsev, Moscow, Russia, 1998 (Moscow, 1998), Vol. 1, pp. 179–183.

- 9. H. Heinig and A. Kufner, J. London Math. Soc. **53** (2), 256–270 (1996).
- 10. E. Sawyer, Stud. Math. **96**, 145–158 (1990).
- 11. M. L. Goldman, H. P. Heinig, and V. D. Stepanov, Canad. Math. J. **48** (5), 959–979 (1996).
- 12. A. Kaminska and L. Maligranda, Stud. Math. **160**, 267–286 (2004).
- 13. A. Kaminska and Y. Raynaud, Rev. Mat. Complut. **27**, 587–621 (2014).