MATHEMATICS =

On Coincidences of Families of Mappings on Ordered Sets

D. A. Podoprikhin and T. N. Fomenko*

Presented by Academician of the RAS A.B. Kurzhanskii March 17, 2016

Received July 13, 2016

Abstract—New results on fixed points and coincidences of families of set-valued mappings of partially ordered sets obtained without commutativity assumptions are presented. These results develop theorems on fixed points of an isotone self-mapping of an ordered set (for families of set-valued mappings) and theorems about coincidences of two set-valued mappings one of which is isotone and the other is covering (for finite families of set-valued mappings).

DOI: 10.1134/S106456241606003X

The theory of fixed points and coincidences of mappings of ordered sets goes back to the well-known Knaster–Tarski theorem [1]. There exist various versions and generalizations of this theorem. It is extensively used in applications. Its well-known generalization to set-valued mappings was proposed in 1971 by Smithson [2]. The problem of coincidences of two mappings of ordered sets was first considered in [3–6]. In [3, 4], it was studied for two single-valued mappings, and in [5, 6], the obtained results were extended to the case of two set-valued mappings.

As is known, results of the theory of fixed points and coincidences in ordered sets can be applied to a similar theory in metric spaces. Given a metric space (X,ρ) , we can specify a partial order on $X \times \mathbb{R}_+$ determined by the metric ρ using a method proposed in [7, 8]. Namely, for any $x, y \in X$ and $r_1, r_2 \in \mathbb{R}_+$, we set $(x,r_1) \preceq (y,r_2) \Leftrightarrow \rho(x,y) \leq r_1 - r_2$. There exist modifications of this method. Such a passage from a metric space to an ordered set makes it possible to derive theorems on fixed points and coincidences in a metric space from the corresponding results in an ordered set. For example, in [1], such a derivation of Nadler's theorem about fixed points of a set-valued mapping [9] from Smithson's theorem [2] was presented. In [5, 6], a similar reduction was performed for results about coincidences of two mappings of ordered sets.

In this paper, we present theorems on common fixed points of an (infinite) family of set-valued mappings of an ordered set and new theorems on coincidences of a finite set of n ($n \ge 2$) set-valued mappings

of ordered sets, which generalize Smithson's theorem [2] and results of [3-6].

By \Rightarrow we denote a set-valued mapping. Suppose that (X, \preceq) is an ordered set, $A \neq \emptyset$, and $\mathscr{F} = \{F_{\alpha}\}_{\alpha \in A}$ is a family of set-valued mappings $F_{\alpha} : X \Rightarrow X$, $\alpha \in A$. Following [3–6], for each element $x \in X$, we set $\mathbb{O}_{X}(x) = \{x' \in X | x' \preceq x\}$. The set of \mathscr{F} -values at a point $x \in X$ is defined as the set $\{y_{\alpha}\}_{\alpha \in A} \subseteq X$, where $y_{\alpha} \in F_{\alpha}(x), \alpha \in A$. The set of common fixed points of a family \mathscr{F} is denoted by $\operatorname{Comfix}(\mathscr{F}) :=$ $\{x \in X | x \in \bigcap_{\alpha \in A} F_{\alpha}(x)\}$. A family \mathscr{F} is said to be concordantly isotone if, given any $x \in X$, any set $\{y_{\alpha}\}_{\alpha \in A}$ of \mathscr{F} -values at x, and any $x' \in X, x' \prec x$, there exists a set $\{z_{\alpha}\}_{\alpha \in A}$ of \mathscr{F} -values at x' such that $z_{\alpha} \preceq y_{\beta}$, $\forall \alpha, \beta \in A$.

Let $x_0 \in X$. We use $\mathscr{C}_1(x_0; \mathscr{F})$ to denote the set of all pairs of the form (S, f), where $S \subseteq \mathbb{O}_X(x_0)$ is a chain in X and f is a special \mathscr{F} -selector on S, i.e., $f = \{f_{\alpha}\}_{\alpha \in A}, \quad f_{\alpha} : S \to X, \quad f_{\alpha}(x) \in F_{\alpha}(x), \text{ and}$ $x \succeq f_{\alpha}(x) \quad \forall x \in S, \text{ and } v \prec u \Rightarrow v \preceq f_{\alpha}(u), \quad \alpha \in A,$ $\forall u, v \in S$. The following theorem is valid.

Theorem 1. Suppose that, for an ordered set (X, \preceq) and a family $\mathcal{F} = \{F_{\alpha}\}_{\alpha \in A}$ of set-valued mappings on X, the following conditions hold:

(i) the family \mathcal{F} is concordantly isotone;

(ii) for some $x_0 \in X$, there exists a set $\{y_{\alpha}^0\}_{\alpha \in A}$ of \mathcal{F} -values at x_0 , such that $x_0 \succeq y_{\alpha}^0 \forall \alpha \in A$;

(iii) for any pair $(S, f) \in \mathcal{C}_1(x_0; \mathcal{F})$, there exists a common lower bound $w \in X$ for the chains $f_{\alpha}(S)$

Mechanics and Mathematics Faculty, Moscow State University, Moscow, 119991 Russia

^{*}e-mail: tn-fomenko@yandex.ru

 $\forall \alpha \in A \text{ and } a \text{ set } \{w_{\alpha}\}_{\alpha \in A} \text{ of } \mathcal{F}\text{-values at the point } w$ such that $w \succeq w_{\alpha} \forall \alpha \in A$.

In the case where the family $Comfix(\mathcal{F})$ consists of one set-valued mapping, Theorem 1 generalizes Smithson's theorem [2] and coincides with a special case of Theorem 1 in [5] (see also [6]), where the covering mapping is the identity. In [5] (see also [6]), it was mentioned that, under the conditions of Theorem 1 of [5], the set of coincidences may contain no minimal elements, but it was not mentioned that, in this special case, the fixed point set of an isotone mapping always contains a minimal element.

Suppose that a set *A* is endowed with a linear order \preceq_1 . The set $\{y_{\alpha}\}_{\alpha \in A}$ of \mathcal{F} -values at a point $x \in X$ is called a nonincreasing chain of \mathcal{F} -values (with respect to the order \preceq_1) at the point *x* if $\alpha \preceq_1 \beta \Rightarrow y_\beta \preceq y_\alpha$ $\forall \alpha, \beta \in A$. We say that a family $\mathcal{F} = \{F_{\alpha}\}_{\alpha \in A}$ of set-valued mappings is concordantly chain-isotone on *X* if, for any $x \in X$, any nonincreasing chain $\{y_{\alpha}\}_{\alpha \in A}$ of \mathcal{F} values at *x*, and any $x' \in X$, $x' \prec x$, there exists a nonincreasing chain $\{z_{\alpha}\}_{\alpha \in A}$ of \mathcal{F} -values at *x'* such that $z_{\alpha} \preceq y_{\beta} \forall \alpha, \beta \in A$.

We refer to a special \mathcal{F} -selector $f = \{f_{\alpha}\}_{\alpha \in A}, f_{\alpha} : S \to X, \alpha \in A, \text{ on a chain } S \subseteq X \text{ as a special chain } \mathcal{F}$ -selector if $\forall x \in S \{f_{\alpha}(x)\}_{\alpha \in A}$ is a nonincreasing chain of \mathcal{F} -values at x.

Take a point $x_0 \in X$ and let $\mathscr{C}_2(x_0; \mathscr{F})$ denote the set of all pairs of the form (S, f), where $S \subseteq \mathcal{O}_X(x_0)$ is a chain, $f = \{f_\alpha\}_{\alpha \in A}$ is a special chain \mathscr{F} -selector on S, and, in addition, the chain S satisfies the following condition:

 $\forall x \in S \quad \exists x' \in \mathbb{O}_{X}(x_{0}), \\ \exists \{y_{\alpha}\}_{\alpha \in A} \text{ is a nonincreasing chain} \\ \text{ of } \mathcal{F}\text{-values at } x' \qquad (*) \\ \text{ such that } x = \inf\{y_{\alpha}\}_{\alpha \in A}.$

Theorem 2. Suppose given a partially ordered set (X, \preceq) , a linearly ordered set (A, \preceq_1) , and a family $\mathcal{F} = \{F_{\alpha}\}_{\alpha \in A}, F_{\alpha}: X \rightrightarrows X$; suppose also that the following conditions hold:

(i) the family \mathcal{F} is concordantly chain-isotone;

(ii) for each point $x \in X$, any nonincreasing chain of \mathcal{F} -values at x has an infimum;

(iii) for some $x_0 \in X$, there exists a nonincreasing chain $\{y_{\alpha}^0\}_{\alpha \in A}$ of \mathcal{F} -values at x_0 , such that $x_0 \succeq y_{\alpha}^0 \quad \forall \alpha \in A;$

(iv) for any pair $(S, f) \in \mathcal{C}_2(x_0; \mathcal{F})$, where $f = \{f_{\alpha}\}_{\alpha \in A}$, there exists a common lower bound $w \in X$ of all chains $f_{\alpha}(S), \alpha \in A$, and a nonincreasing chain $\{w_{\alpha}\}_{\alpha \in A}$ of \mathcal{F} -values at w such that $w \succeq w_{\alpha}, \alpha \in A$.

DOKLADY MATHEMATICS Vol. 94 No. 3 2016

Then the set $Comfix(\mathcal{F}) \neq \emptyset$ contains a minimal element.

In the special case where $A = \{1, 2, ..., n\}$ and \leq_1 is the usual order on the set \mathbb{N} of positive integers, any nonincreasing chain of the form $x_n \leq ... \leq x_1$ automatically has the infimum X in x_n ; therefore, condition (ii) in Theorem 2 is automatically satisfied. Condition (*) for each pair $(S, f) \in \mathcal{C}_2(x_0; \mathcal{F})$, takes the form

$$\forall x \in S \quad \exists x' \in \mathbb{O}_X(x_0), \quad \exists \{y_i\}_{1 \le i \le n}, \\ y_n \le \dots \le y_1, \text{ is a nonincreasing chain } (**) \\ \text{of } \mathcal{F}\text{-values at } x' \text{ such that } x = y_n.$$

Examples show that Theorems 1 and 2 do not follow from each other. Mappings in a concordant chainisotone family consisting of at least two mappings may be nonisotone. In the case n = 1, Theorem 2 coincides with Theorem 1 of [5, 6] under the assumption that the ordered covering mapping is the identity.

Now, consider the question about the existence of coincidences for a set of *n* set-valued mappings $(n \ge 2)$. Suppose given ordered sets (X, \preceq) and (Y, \preceq) and a set $\mathcal{F} = \{F_1, ..., F_n\}$ of set-valued mappings $F_i : X \rightrightarrows Y, i = 1, 2, ..., n, n \ge 2$. Take a point $x_0 \in X$.

We say that mappings $F_1, ..., F_{n-1}$ concordantly cover the mappings $F_2, ..., F_n$ on $\mathbb{O}_X(x_0)$ if, for any $x \in \mathbb{O}_X(x_0)$ and any nonincreasing chain $\{y_i\}_{1 \le i \le n}$ of \mathcal{F} -values at x, i.e., $y_1 \succeq y_2 ... \succeq y_n$, $y_i \in F_i(x)$, there exists an $x' \in \mathbb{O}_X(x_0)$, $x' \preceq x$, such that $y_{i+1} \in F_i(x')$, i = 1, 2, ..., n-1.

Remark 1. It follows from the definitions of concordantly covering mappings and a set-valued mapping $F: X \rightrightarrows Y$ orderly covering a set $Q \subset Y$ [5, Definition 1] that if n = 2 and a mapping F_1 orderly covers $F_2(\mathbb{O}_X(x_0))$, then F_1 concordantly covers F_2 . The converse is not generally true, because, in the definition of concordantly covering mappings for n = 2, given any $x \in \mathbb{O}_X(x_0)$ and any $y_1 \succeq y_2$, $y_i \in F_i(x), i = 1, 2$, the existence of a point $x' \preceq x$ such that $F_1(x') = y_2$ is required only for points $y_2 \in F_2(x)$, while in the definition of orderly covering mappings, for a map F_1 to orderly cover $F_2(\mathbb{O}_X(x_0))$, the existence of such points x' is required for any point $y_2 \in F_2(\mathbb{O}_X(x_0)), y_2 \preceq y_1$.

Let $\mathscr{C}_3(x_0; \mathscr{F})$ denote the set of all pairs of the form (S, f), where $S \subseteq \mathcal{O}_X(x_0)$ is a chain, $f = \{f_i\}_{1 \le i \le n}, f_i : S \to Y$,

$$f_i(x) \in \left(\bigcap_{j=i+1}^n F_j(\mathbb{O}_X(x_0))\right) \cap F_i(x),$$

 $i = 1, 2, ..., n - 1, f_n(x) \in F_n(x), f_1(x) \succeq ... \succeq f_n(x)$ for each $x \in S$, and, moreover, if $x, z \in S$ and $x \prec z$, then $f_1(x) \preceq f_n(z)$.

Theorem 3. Suppose given ordered sets (X, \preceq) and (Y, \preceq) and a set $\mathcal{F} = \{F_1, ..., F_n\}$ of set-valued mappings $F_i : X \rightrightarrows Y, i = 1, 2, ..., n$, satisfying the following conditions:

(i) the mappings $F_1, ..., F_{n-1}$ concordantly cover the mappings $F_2, ..., F_n$ on $\mathbb{O}_{\chi}(x_0)$;

(ii) for some point $x_0 \in X$, there exists a nonincreasing chain $y_0 = \{y_{0,j}\}_{1 \le j \le n} \subseteq Y$ of \mathcal{F} -values at x_0 , $y_{0,1} \succeq \dots \succeq y_{0,n}$;

(iii) the mapping F_n is isotone;

(iv) for each pair $(S, f) \in \mathcal{C}_3(x_0; \mathcal{F})$, the chain S has a lower bound $w \in X$, there exists a nonincreasing chain $z_0 = \{z_{0,j}\}_{1 \le j \le n} \subseteq Y$ of \mathcal{F} -values at w, $z_{0,1} \succeq ... \succeq z_{0,n}$, and each $z_{0,j}$ is a lower bound of $\{f_j(x)|x \in S\}$, j = 1, 2, ..., n.

Then the coincidence set $\operatorname{Coin}(F_1, ..., F_n) := \{x \in X | \bigcap_{i=1}^n F_i(x) \neq \emptyset\}$ of the mappings $F_1, ..., F_n$ is nonempty.

By virtue of Remark 1, for n = 2, Theorem 3 strengthens Theorem 2 of [5].

There arises the important question on sufficient conditions for the existence of minimal and least elements in coincidence sets. Consider the following additional conditions.

Condition A. For any $u, v \in \mathbb{O}_X(x_0)$, $u \leq v$, and any $y \in F_n(u)$, $z \in F_n(v)$, the set $F_n(u) \cap \Omega_Y(y, z)$, where $\Omega_Y(y, z) := \mathbb{O}_Y(y) \cap \mathbb{O}_Y(z)$, is nonempty.

Condition B. For $\forall x_1, x_2 \in \mathbb{O}_X(x_0)$, the set $\Omega_X(x_1, x_2)$ is nonempty, and there exists a point $\omega(x_1, x_2) \in \Omega_X(x_1, x_2)$ such that $\forall v_1 \in F_n(x_1)$, $\forall v_2 \in F_n(x_2)$, $\exists v \in F_n(\omega(x_1, x_2)) \cap \Omega_Y(v_1, v_2)$, and, for any sets $\{y_k\}_{k=1,\dots,n-1}$ and $\{u_k\}_{k=1,\dots,n-1}$ of values (at the points x_1 and, x_2 , respectively) such that

 $y_{n-1} \leq ... \leq y_1, y_k \in F_k(x_1)$ and $u_{n-1} \leq ... \leq u_1,$ $u_k \in F_k(x_2), \quad k = 1, 2, ..., n-1,$ and any set $\{v_k\}_{k=1,...,n-1}, \quad v_k \in \Omega_Y(y_k, u_k), \quad k = 1, 2, ..., n-1,$ $v_1 \geq ... \geq v_{n-1},$ there exists a point $x, x \leq \omega(x_1, x_2)$ such that $v_k \in F_k(x), k = 1, 2, ..., n-1.$

Theorem 4. Suppose that all conditions of Theorem 3 and the additional Condition A hold.

Then the set $Coin(F_1, ..., F_n)$ is nonempty, and it contains a minimal element.

Theorem 5. Suppose that all conditions of Theorem 3 and the additional Condition B hold.

Then the set $\operatorname{Coin}(F_1, ..., F_n) \cap \mathbb{O}_X(x_0)$ is nonempty and contains a minimal element.

Note that, in the case n = 2, Theorems 4 and 5 imply, respectively, Theorems 2 and 3 of [5] (see also [6]).

ACKNOWLEDGMENTS

The authors sincerely thank the referee for comments, which helped to improve the exposition.

REFERENCES

- 1. *Handbook of Metric Fixed Point Theory*, Ed. by W. A. Kirk and B. Sims (Springer, Berlin, 2001).
- R. E. Smithson, Proc. Am. Math. Soc. 28 (1), 304–310 (1971).
- A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, Dokl. Math. 88 (3), 710–713 (2013).
- A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, Topol. Appl. 179, 13–33 (2015).
- A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, Dokl. Math. 88 (3), 727–729 (2013).
- A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, Topol. Appl. 201, 330–343 (2016).
- 7. R. DeMarr, Am. Math. Monthly 72 (6), 628–631 (1965).
- 8. E. Bishop and R. R. Phelps, in *Proceeding of Symposia in Pure Mathematics*, Vol. 7: *Convexity* (Am. Math. Soc., Providence, RI, 1963), pp. 27–35.
- 9. S. B. Nadler, Jr., Pacific J. Math. **30** (2), 475–478 (1969).