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Abstract—New results on fixed points and coincidences of families of set-valued mappings of partially
ordered sets obtained without commutativity assumptions are presented. These results develop theorems on
fixed points of an isotone self-mapping of an ordered set (for families of set-valued mappings) and theorems
about coincidences of two set-valued mappings one of which is isotone and the other is covering (for finite
families of set-valued mappings).
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The theory of fixed points and coincidences of
mappings of ordered sets goes back to the well-known
Knaster–Tarski theorem [1]. There exist various ver-
sions and generalizations of this theorem. It is exten-
sively used in applications. Its well-known generaliza-
tion to set-valued mappings was proposed in 1971 by
Smithson [2]. The problem of coincidences of two
mappings of ordered sets was first considered in [3–6].
In [3, 4], it was studied for two single-valued map-
pings, and in [5, 6], the obtained results were extended
to the case of two set-valued mappings.

As is known, results of the theory of fixed points
and coincidences in ordered sets can be applied to a
similar theory in metric spaces. Given a metric space

, we can specify a partial order on  deter-
mined by the metric  using a method proposed in [7,
8]. Namely, for any  and , we set

 ⇔  There exist modifi-
cations of this method. Such a passage from a metric
space to an ordered set makes it possible to derive the-
orems on fixed points and coincidences in a metric
space from the corresponding results in an ordered set.
For example, in [1], such a derivation of Nadler’s the-
orem about fixed points of a set-valued mapping [9]
from Smithson’s theorem [2] was presented. In [5, 6],
a similar reduction was performed for results about
coincidences of two mappings of ordered sets.

In this paper, we present theorems on common
fixed points of an (infinite) family of set-valued map-
pings of an ordered set and new theorems on coinci-
dences of a finite set of  set-valued mappings
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of ordered sets, which generalize Smithson’s theorem
[2] and results of [3–6].

By  we denote a set-valued mapping. Suppose
that  is an ordered set, , and 
is a family of set-valued mappings ,

. Following [3–6], for each element , we
set . The set of -values at a
point  is defined as the set , where

  The set of common fixed points of
a family  is denoted by  :=

. A family  is said to be con-
cordantly isotone if, given any , any set 
of -values at , and any , , there exists a
set  of -values at  such that 

.

Let . We use  to denote the set of
all pairs of the form , where  is a
chain in  and  is a special -selector on , i.e.,

, , , and
 , and  ,
. The following theorem is valid.

Theorem 1. Suppose that, for an ordered set 
and a family  of set-valued mappings on ,
the following conditions hold:

(i) the family  is concordantly isotone;

(ii) for some , there exists a set  of -
values at  such that  ;

(iii) for any pair , there exists a
common lower bound  for the chains 

⇒
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 and a set  of -values at the point 
such that  .

In the case where the family  consists of
one set-valued mapping, Theorem 1 generalizes
Smithson’s theorem [2] and coincides with a special
case of Theorem 1 in [5] (see also [6]), where the cov-
ering mapping is the identity. In [5] (see also [6]), it
was mentioned that, under the conditions of Theorem 1
of [5], the set of coincidences may contain no minimal
elements, but it was not mentioned that, in this special
case, the fixed point set of an isotone mapping always
contains a minimal element.

Suppose that a set  is endowed with a linear order
. The set  of -values at a point  is

called a nonincreasing chain of -values (with respect
to the order ) at the point  if 

 We say that a family  of set-val-
ued mappings is concordantly chain-isotone on  if,
for any , any nonincreasing chain  of -
values at , and any , , there exists a non-
increasing chain  of -values at  such that

 
We refer to a special -selector

, , on a chain  as
a special chain -selector if  is a
nonincreasing chain of -values at .

Take a point  and let  denote the
set of all pairs of the form , where  is
a chain,  is a special chain -selector on

, and, in addition, the chain  satisfies the following
condition:

 (∗)

Theorem 2. Suppose given a partially ordered set
, a linearly ordered set , and a family

, ; suppose also that the follow-
ing conditions hold:

(i) the family  is concordantly chain-isotone;
(ii) for each point , any nonincreasing chain of

-values at  has an infimum;
(iii) for some , there exists a nonincreasing

chain  of -values at , such that

(iv) for any pair  where
 there exists a common lower bound 

of all chains , and a nonincreasing chain
 of  -values at  such that .
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Then the set  contains a minimal
element.

In the special case where  and  is
the usual order on the set  of positive integers, any
nonincreasing chain of the form  auto-
matically has the infimum  in ; therefore, condi-
tion (ii) in Theorem 2 is automatically satisfied. Con-
dition  for each pair  takes the
form

 (∗∗)

Examples show that Theorems 1 and 2 do not fol-
low from each other. Mappings in a concordant chain-
isotone family consisting of at least two mappings may
be nonisotone. In the case , Theorem 2 coincides
with Theorem 1 of [5, 6] under the assumption that the
ordered covering mapping is the identity.

Now, consider the question about the existence of
coincidences for a set of  set-valued mappings
( ). Suppose given ordered sets  and 
and a set  of set-valued mappings

, , . Take a point .

We say that mappings  concordantly
cover the mappings  on  if, for any

 and any nonincreasing chain  of
-values at , i.e., , , there

exists an , , such that ,
.

Remark 1. It follows from the definitions of con-
cordantly covering mappings and a set-valued map-
ping  orderly covering a set  [5,
Definition 1] that if  and a mapping  orderly
covers , then  concordantly covers .
The converse is not generally true, because, in the
definition of concordantly covering mappings for

, given any  and any ,
,  the existence of a point  such

that  is required only for points ,
while in the definition of orderly covering mappings,
for a map  to orderly cover , the existence
of such points x' is required for any point

, .

Let  denote the set of all pairs of the form
, where  is a chain,
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 ,  for
each , and, moreover, if  and , then

.
Theorem 3. Suppose given ordered sets  and

 and a set  of set-valued mappings
,  satisfying the following con-

ditions:
(i) the mappings  concordantly cover the

mappings  on ;

(ii) for some point , there exists a nonincreas-
ing chain of -values at ,

;

(iii) the mapping  is isotone;
(iv) for each pair , the chain  has

a lower bound , there exists a nonincreasing chain
 of -values at , ,

and each  is a lower bound of ,

Then the coincidence set  :=

 of the mappings  is
nonempty.

By virtue of Remark 1, for , Theorem 3
strengthens Theorem 2 of [5].

There arises the important question on sufficient
conditions for the existence of minimal and least ele-
ments in coincidence sets. Consider the following
additional conditions.

Condition A. For any , , and
any , , the set ,
where , is nonempty.

Condition B. For , the set
 is nonempty, and there exists a point

 such that ,
,  and,

for any sets  and  of values (at
the points  and, , respectively) such that

 and ,
, , and any set
, , ,

, there exists a point 
such that , .

Theorem 4. Suppose that all conditions of Theorem 3
and the additional Condition A hold.

Then the set  is nonempty, and it
contains a minimal element.

Theorem 5. Suppose that all conditions of Theorem 3
and the additional Condition B hold.

Then the set  is nonempty
and contains a minimal element.

Note that, in the case , Theorems 4 and 5
imply, respectively, Theorems 2 and 3 of [5] (see also
[6]).
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