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Abstract—The problem of nonparametric estimation of a signal function by thresholding the coefficients of
its wavelet decomposition is considered. In models with various noise distributions, asymptotically optimal
thresholds and orders of the loss functions are calculated on the basis of probabilities of errors in the calcula-
tion of wavelet coefficients.

DOI: 10.1134/S1064562416060028

When methods of wavelet analysis are used for
nonparametric estimation of signals from noisy obser-
vations, it is usually assumed that the signal function
belongs to a certain class of functions. This assumption
leads to the conclusion that the signal function admits
an “economical” representation in the space of its
wavelet coefficients, i.e., the majority of the wavelet
coefficients are small in absolute value and can be
neglected. Such considerations lead to so-called
thresholding procedures, which set all wavelet coeffi-
cients whose absolute values are smaller than a certain
threshold to zero. In models with an additive Gaussian
noise, the statistical properties of these procedures
have been well studied, and expressions for “optimal”
thresholds oriented to various loss functions were
obtained (see, e.g., [1–4]). This paper considers a
model of wavelet coefficients of an additive-noise sig-
nal function whose distribution is subject to very gen-
eral constraints. For the class of Lipschitz continuous
signals, we give relations that make it possible to calcu-
late a threshold ensuring an asymptotically optimal
order of the loss function, which is based on the prob-
ability that the error of the computation of wavelet
coefficients exceeds a certain critical level. We also
exemplify the calculation of an asymptotically optimal
threshold for various distributions of noise coeffi-
cients.

1. A MODEL FOR WAVELET COEFFICIENTS 
AND A METHOD FOR SUPPRESSING NOISE

Consider the class of functions  given on
a finite interval  and uniformly Lipschitz regular
with an exponent : . The signal func-
tion  is usually given at discrete sampling positions.
Suppose that the number of these positions equals 
for some . A discrete wavelet transform multi-
plies the vector of values of  by the orthogonal matrix
determined by some wavelet function  (see [5]). This
yields a set  of wavelet coeffi-
cients; the subscript  is referred to as the scale and the
subscript , as the shift.

If a wavelet function is -times continuously dif-
ferentiable ( ), has  zero moments, and rap-
idly decreases at infinity together with its derivatives,
i.e., for all  and any , there exists a
constant  such that

for all , then there exists a  such that [5]

(1)

In what follows, we assume that the wavelet func-
tion  meets these requirements.

In real-life observations, there is a noise, which we
assume to be additive. In this paper, we use the follow-
ing model for empirical wavelet coefficients:
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where the  are the discrete wavelet coefficients of
the “pure” signal  and the  are “noise” coeffi-
cients, which are assumed to be independent and have
symmetric absolutely continuous differentiable distri-
bution function  = .

Suppose that  and let  denote the
derivative (density) of the distribution function of .
Suppose also that  has no discontinuities of the
second kind.

The noise is usually suppressed by thresholding; in
essence, this is setting the coefficients with absolute
values not exceeding a certain threshold to zero.

Let  denote the estimate of the corresponding
wavelet coefficient obtained by means of thresholding,
which is determined by a function for the threshold

: . This paper considers hard

thresholding functions  and soft

thresholding functions  = .
Consider a loss function based on the probability

that the error in calculating the wavelet coefficients
exceeds a certain critical level . For this purpose,
we take a two-dimensional random variable  not
depending on all  and having discrete uniform dis-
tribution on the set of indices ,

 and set

Such a loss function is the averaged probability that
the error of the calculation of wavelet coefficients
exceeds . This definition of a loss function general-
izes that proposed in [4]. In the same paper [4], it was
shown that estimates aimed at minimizing the loss

 give results comparable with and sometimes
even better than those obtained by using estimates
minimizing the standard deviation.

The purpose of this paper is to find an asymptoti-
cally optimal threshold for processing an observed sig-
nal in the class of functions , for which the
loss function is defined as

(2)

i.e., a threshold asymptotically optimal in the mini-
max sense. A detailed study of the behavior of an
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asymptotically optimal threshold for standard devia-
tion in a model with an additive Gaussian noise can be
found in [2, 3]. In [1], a method for determining an
adaptive optimal threshold was also proposed, which
can be used to estimate the thresholding risk for a par-
ticular function. This method is based on constructing
an unbiased risk estimator, whose statistical properties
were thoroughly studied in [6, 7]. Note that a “reason-
able” threshold must increase with  (see [3]). How-
ever, to simplify formulas, we do not explicitly specify
the dependence of the threshold on  in what follows.

We use  to denote the order of a quantity under
consideration with respect to ; i.e.,  if

 for some positive constants 
and , provided that is sufficiently large. By 

we mean that .

2. HARD THRESHOLDING

Let .

Suppose that a function  arbitrarily slowly
increases without bound and a function  arbi-
trarily slowly tends to zero with increasing . We set

where  is a positive constant.
Inequality (1) makes it possible to divide the whole

set  of indices into three classes,
depending on . Suppose that indices  and 
( ) are such that

(3)

By virtue of (1), we have

(4)

Let us split the sum in the definition of the loss
function into three components:
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Consider . Note that, for any , there exists a
 such that  and , ,

for all , and there exists a  such
that, for any , we have

for . Therefore, for one summand in ,
we can write

(6)

provided that .
It can be shown that condition (3) implies

therefore, for , the quantities  do
not affect the order of the right-hand side of (6). Tak-
ing into account the fact that the number of terms in

 is of order , we obtain

(7)

Let us find an upper bound for the loss function (2)
under hard thresholding.

For this purpose, suppose that all summands of 
and  in (5) are bounded away from zero by some
constant. Then (4) implies

(8)

A threshold  satisfying the relation

(9)

ensures the equality of the orders of the right-hand
sides of (7) and (8) and, therefore, is a lower bound for
a threshold asymptotically optimal in the sense of the
loss function .

Now, let us find a lower bound for the loss func-
tion (2). Note, that for any constant in (1), there exists
a function  such that (1) becomes an equal-
ity for  (see [5]). Therefore, for any

, there exists a function  such that
 for . Thus,

In this case, the order of the sum  in (5) equals
the number of summands, i.e.,
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Let us equate the orders of  and  in (10) and (7).
The equality of orders in the case under consideration
ensures that the threshold  satisfies the relation

(11)

Note that the above argument does not use the sum
. This means that the order of the true value  is no

lower than the given one, i.e., the order under consid-
eration is a lower bound for the true order of the loss
function, and  is an upper bound for an asymptot-
ically optimal threshold .

These considerations allow us to state the following
theorem.

Theorem 1. For hard thresholding with asymptoti-
cally optimal threshold, the loss function (2) satisfies the
inequalities

where  and  are positive constants. For hard
thresholding with asymptotically optimal threshold mini-
mizing the order of the loss function (2), the following
inequality holds for sufficiently large :

where  and  are determined by (9) and (11),
respectively.

3. SOFT THRESHOLDING

Let . Suppose that a function
 arbitrarily slowly increases without bound

and a function  arbitrarily slowly tends to
zero with increasing . Unlike in the preceding sec-
tion, the decrease of the function  does not
depend on the behavior of the tail of the noise distri-
bution.

As in Section 2, we break the index set
 into three classes by using  and  in

(4) and the sum in the definition of the loss function,
into the three components (5).
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provided that . Thus,

Assuming that all summands of  and  in (5) are
bounded away from zero by some constant, we obtain

. For any constant  in (1), there exists
a function  such that inequality (1) becomes
an equality for ; therefore, for each

, there exists a function  such that
 for . Thus, for any  and

sufficiently large , we have

This implies .
Repeating the argument in Section 2, we see that

the upper bound  and the lower bound  of an
asymptotically optimal threshold, which give, respec-
tively, lower and upper bounds for the loss function (2),
must satisfy the relation

(12)

for , respectively.
Thus, the following theorem is valid.
Theorem 2. For soft thresholding with asymptotically

optimal threshold, the loss function (2) satisfies the
inequalities

where  and  are some positive constants. For soft
thresholding with asymptotically optimal threshold mini-
mizing the order of the loss function (2), the following
inequality holds for sufficiently large :

where  and  satisfy relation (12) for ,
respectively.

4. EXAMPLES
Consider a noise distribution of the form

(it is assumed that  satisfies all requirements
listed in Section 1). Since 
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it follows that, under hard thresholding, we obtain
 for  and  and 

otherwise. For , we have ; therefore,
for an asymptotically optimal hard threshold,

(13)

for  and . In particular, for , ,

and , the noise has a centered normal distribu-
tion with variance , for which, as shown in [8], an
asymptotically optimal hard threshold has order

Moreover, it is easy to show that relation (13)
remains valid for  and .

Consider the case , in which the tail of the
noise distribution decreases polynomially (provided
that ). Asymptotic estimates for an optimal hard
threshold have the form

This means that it is impossible to determine the
exact order of  by the method described above,
because the bounds are specified by using arbitrarily
slowly decreasing and increasing functions. More-
over, if

then, as seen from (1), the whole useful signal is lost
under thresholding.

Under soft thresholding, bounds for an asymptoti-
cally optimal threshold satisfy relation (12), which,
unlike in relations (9) and (11), involves the tail of the
noise distribution at the point  instead of .
Since , it follows that all relations for
asymptotically optimal thresholds mentioned in this
section are also valid for soft thresholding.
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