= MATHEMATICS =

On Extensions of Some Block Designs

Corresponding Member of the RAS A. A. Makhnev

Received June 1, 2016

Abstract—There are some results concerning *t*-designs in which the number of points in the intersection of two blocks takes less than *t* values. For example, if t = 2, then the design is symmetric (in such a design, v = b or, equivalently, k = r). In 1974, B. Gross described t-(v, k, l) designs that, for some integer s, 0 < s < t, do not contain two blocks intersecting at exactly s points. Below, it is proved that potentially infinite series of designs from the claim of Gross' theorem are finite. Gross' theorem is substantially sharpened.

DOI: 10.1134/S1064562416050227

An incidence system (X, \mathbf{B}) , where X is a set of points and **B** is a set of blocks, is called a t- (v, k, λ) design if |X| = v, each block contains precisely k points, and any t points lie in precisely λ blocks. Given a t- (v, k, λ) design $\mathbf{D} = (X, \mathbf{B})$, its derivative design \mathbf{D}_x at a point $x \in X$ is one with the set of points $X_x = X - \{x\}$ and the set of blocks $\mathbf{B}_x = \{B - \{x\} | x \in B \in \mathbf{B}\}$. A design **E** is said to be an extension of a design **D** if the derivative design of **E** at some point is isomorphic to **D**.

Let *b* be the number of blocks and *r* be the number of blocks containing a given point. For any 2-(*v*, *k*, λ) design, it is true that *vr* = *bk* and (*v* - 1) λ = *r*(*k* - 1). A design is called symmetric if *b* = *v*. A 2-design is called quasi-symmetric with intersection numbers *x*, *y* (assuming that *x* < *y*) if, for any two blocks *B*, *C* \in **B**, we have $|B \cap C| \in \{x, y\}$. The block graph of a quasisymmetric design (*X*, **B**) has the blocks of the latter as vertices, and two blocks *B*, *C* \in **B** are adjacent if $|B \cap$ *C*| = *y*.

A *t*-design with $\lambda = 1$ is called a Steiner system. Below is a well-known conjecture concerning Steiner systems.

Conjecture. Let a t-(v, k, λ) design exists and $\lambda = 1$. Then $t \le 5$, and, if t = 5, then we have one of two Witt designs, namely, with v = 12, k = 6 or v = 24, k = 8.

This conjecture is folklore, and an obstacle to its publication was the following 1974 result of B. Gross [1, Theorem 1.55].

Proposition. Let **D** be a t-(v, k, 1) design and s be an integer such that $0 \le s < t$. If the design does not have two blocks intersecting at exactly s points, then one of the following assertions holds:

(1) s = t - 2, and **D** is a projective plane or its extension.

(2) s = 0, k = t + 1, v = 2t + 3. (3) s = 1, k = t + 1, v = 2t + 2. (4) s = 0, 2, t = 4, k = 7, and v = 23. (5) s = 1, 3, t = 5, k = 8, and v = 24.

The projective plane of order q is defined as a 2- $(q^2 + q + 1, q + 1, 1)$ design. The existence of projective planes is known only when q is a prime power. D. Hughes proved in 1961 [1, Proposition 1.34] that a projective plane can be extended only for q = 2, 4, 10. Later, it was proved that there is no projective plane of order 10 [1, p. 9].

Below, we prove that the infinite series of designs from items (2) and (3) exist only for small t.

Theorem. Let **D** be a t-(2t + 2, t + 1, 1) design. Then there are no two blocks in the design intersecting at exactly one point, the complement of any block is a block, and t = 3, 5.

Remark. By the extension theorem in [2], any t-(2t + 3, t+1, 1) design is uniquely extended to a (t + 1)-(2t + 4, t + 2, 1) design in which the complement of any block is a block. Clearly, in the extended design, there are no two blocks intersecting at a single point. Therefore, the initial t-(2t + 3, t + 1, 1) design does not have two disjoint blocks and t = 2, 4.

Corollary. Let **D** be a t-(v, k, 1) design and s be an integer such that $0 \le s \le t$. If the design does not have two blocks intersecting at exactly s points, then one of the following assertions holds:

(1) s = t - 2, and **D** is a projective plane or its extension.

(2) s = 0, k = t + 1, v = 2t + 3, and t = 4.

(3) s = 1, k = t + 1, v = 2t + 2, and t = 5.

(4) s = 0, 2, t = 4, k = 7, and v = 23.

(5) s = 1, 3, t = 5, k = 8, and v = 24.

First, we state some auxiliary results.

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620219 Russia

e-mail: makhnev@imm.uran.ru

Lemma 1 [1, Proposition 1.4]. Any t-(v, k, λ) design is an s-design for any $0 \le s \le t$ and

$$\lambda_s \binom{k-s}{t-s} = \lambda \binom{v-s}{t-s}.$$

Lemma 2 [3, Proposition 0]. Let **B** be the family of *k*-subsets of a v-set X, $|\mathbf{B}| = b$, and the maximum number of points in the intersection of two blocks be equal to d. Then, for any integer i such that $1 \le i \le k - d$, we have the $\beta(i)$ -bound

$$\binom{\mathbf{v}}{d+2i-1} \ge b \sum_{0 \le j < i} \binom{k}{d+2i-1-j} \binom{\mathbf{v}}{j},$$

which holds as an equality if and only if, for any (d + 2i - 1)-subset Y of X, there is $B \in B$ with $|Y \cap B| \ge d + i$.

Note that, for the Steiner *t*-(*v*, *k*, 1)-system, an equality in $\beta(1)$ holds with d = t - 1. Hauck [4] proved that, if equalities in $\beta(1)$ and $\beta(2)$ hold under the conditions of Lemma 2, then (*X*, **B**) is the 5-(24, 8, 1) design or a *t*-(2*t* + 2, *t* + 1, 1) design. The theorem implies that an equality in $\beta(1)$ and $\beta(2)$ holds only for three designs: the Hadamard 3-(8, 4, 1) one and two Witt designs, namely, 5-(12, 6, 1) and 5-(24, 8, 1) ones.

Let us prove the theorem.

Lemma 3. Let $\mathbf{D} = (X, \mathbf{B})$ be a t-(2t + 3, t + 1, 1) design. Then the following assertions hold:

(1) *t* is an even number that is not divided by 3, and t + 3 is a prime number.

(2) If S is a (t - 2)-subset of X, then \mathbf{D}_S is a quasisymmetric 2-(t + 5, 3, 1) design and its block graph Γ is strongly regular with parameters ((t + 5)(t + 4)/6, 3(t + 2)/2, (t + 8)/2, 9).

(3) If B is a block and \mathbf{B}_i is the set of blocks intersecting B at exactly i points, then any (t-1)-subset of X - Blies in three blocks from \mathbf{B}_1 and in (t-2)/2 blocks

from
$$\mathbf{B}_2$$
, specifically, $|\mathbf{B}_2| = \binom{t+2}{3}(t-2)/2$.

Proof. By Lemma 1, we have $\lambda_{t-1} = (t+2)/2$ and $\lambda_{t-2} = (t+5)(t+4)/6$, so *t* is an even number that is not divided by 3. Theorem 1 from [5] implies that t+3 is a prime number.

Assume that $t \ge 8$. Consider a (t - 2)-subset *S* of *X*. Let $\mathbf{D}_S = (X_S, \mathbf{B}_S)$, where $X_S = X - S$ and \mathbf{B}_S is the set of all blocks containing *S*. Then \mathbf{D}_S is a quasi-symmetric 2-(t + 5, 3, 1) design with a strongly regular block graph Γ . By Theorem 5.3 from [1], Γ has the eigenvalues 3(t + 2)/2, (t - 4)/2, and -3. Therefore, Γ has the parameters ((t + 5)(t + 4)/6, 3(t + 2)/2, (t + 8)/2, 9).

Let *B* be a block, *S* be a (t-1)-subset of X - B, and *C* be a block containing *S*. Since s = 0, we conclude that *C* intersects *B* at a single point and the number of blocks intersecting *B* at a single point is $\binom{t+2}{t} = \binom{t+2}{t}$

 $\binom{t+2}{2}$. Therefore, a point from *B* lies in (t+2)/2

blocks intersecting B at a single point.

Let \mathbf{B}_i be the set of blocks intersecting *B* at exactly *i* points. Then any (t - 1)-subset of X - B lies in three blocks from \mathbf{B}_1 and in (t - 2)/2 blocks from \mathbf{B}_2 . From

this,
$$|\mathbf{B}_2| = \binom{t+2}{3}(t-2)/2.$$

Lemma 4. Let the conditions of the theorem be satisfied. Then the following assertions hold:

(1) The complement of a block is a block, and t + 2 is a prime number.

(2) For this design, an equality holds in the bound $\beta(2)$ in Lemma 2; specifically, any (t + 2)-subset of X contains a unique block.

(3) If B is a block and \mathbf{D}_2 is the set of blocks intersecting B at t - 1 points, then (B, \mathbf{D}_2) is a 2- $(t + 1, t - 1, t(t^2 - 1)/4)$ design.

Proof. Let the conditions of Theorem 1 hold. By Lemma 3, t + 2 is a prime number. By Lemma 1, $\lambda_{t-1} = (t+3)/2$ and $\lambda_{t-2} = (t+4)(t+3)/6$.

The remark implies that the complement of any block is a block.

By Lemma 2, we have
$$\binom{v}{d+3} \ge b\binom{k}{d+3} +$$

 $\binom{k}{d+2}(v-k)$, where *d* is the maximum number of points in the intersection of two blocks. Since *b* =

 $\binom{v}{l} / \binom{k}{l}$ and d = t - 1, we obtain an equality in $\beta(2)$

if v = 2t + 2 and k = t + 1. By Lemma 2, any (t + 2)-subset of X contains a block, which is obviously unique.

Let *B* be a block, C = X - B, Λ_2 be the number of blocks intersecting *B* in a given 2-subset, and μ_2 be the number of blocks of \mathbf{D}_2 containing this 2-subset of *B*. Then any (t-1)-subset S of X - B lies in the block *C* and in (t+1)/2 blocks $D_1, ..., D_{(t+1)/2}$ intersecting *B* at two points; moreover, $\{B \cap D_i | i = 1, 2, ..., (i+1)/2\}$ forms a partition of *B*. Furthermore, any block intersecting *C* in C - S is obtained by deleting D_i from *B*, and $\Lambda_2 = (t+1)/2$.

Fix a 2-subset *R* of *B*. Then, for any 2-subset *T* of B - R, the complement of any block intersecting *B* in *R* belongs to **D**₂. Therefore, $\mu_2 = \binom{t-1}{2}(t+1)/2$ and (B, \mathbf{D}_2) is a 2- $(t+1, t-1, t(t^2-1)/4)$ design. The lemma is proved.

Let us complete the proof of the theorem. Any point of the design (B, \mathbf{D}_2) lies in *r* blocks, where r(t - t)

DOKLADY MATHEMATICS Vol. 94 No. 2 2016

2) = $t^2(t^2 - 1)$. Since *t* is an odd number, t - 2 divides t + 1 and t = 3, 5. The theorem is proved.

The corollary follows from our theorem in view of the remark and the proposition.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 14-11-00061) (theorem) and by the Ministry of Education and Science of the Russian Federation and Ural Federal University (contract no. 02.A03.21.0006 of August 27, 2013) (corollary).

REFERENCES

- 1. P. Cameron and J. H. van Lint, *Designs, Graphs, Codes, and Their Links* (Cambridge. Univ. Press, Cambridge, 1981).
- W. O. Alltop, J. Combin. Theory Ser. A 12, 390–395 (1972).
- 3. R. Noda, Eur. J. Combin. 22, 91-94 (2001).
- 4. P. Hauck, J. Combin. Theor. Ser. A 32, 99–102 (1982).
- 5. B. H. Gross, Math. Z. 139, 87-104 (1974).

Translated by I. Ruzanova