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On The Problem of Falling Motion of a Circular Cylinder 
and a Vortex Pair in a Perfect Fluid1

S. V. Sokolov
Presented by Academician of the RAS V.V. Kozlov January 11, 2016

Received April 25, 2016

Abstract—We consider a system consisting of a heavy circular cylinder in the field of gravity interacting
dynamically with a vortex pair in a perfect f luid. The circulation about the cylinder is assumed to be zero. It
is shown that, unlike the famous Föppl configuration, the vortices cannot be in a relative equilibrium. An
asymptotic system and a suitable regularization are considered.

DOI: 10.1134/S1064562416050173

1. INTRODUCTION AND SETTING 
OF THE PROBLEM

The study of the dynamics of a heavy body
immersed in a perfect f luid containing vortical struc-
tures is a fundamental problem in modern mathemat-
ical physics [1–9].

Föppl’s well-known solution is organized as fol-
lows [10]: Consider the f low over a circular cylinder.
The f low is symmetric about the line passing through
the cylinder’s center parallel to the f low direction. In
the f low, there are two point vortices that are at rest
relative to the cylinder. Their circulations are of the
same magnitude and opposite in sign.

Consider the fall of a rigid body, a circular cylinder
in our case, in an unbounded volume of perfect f luid.
The f low is plane parallel, with the f luid at infinity
being at rest, and orthogonal to the cylinder’s genera-
tor. There are two straight vortex filaments with circu-
lations  and  parallel to the cylinder’s generator.

In this paper we extend the analysis due to Föppl by
adding gravity. Given that the gravity force is directed
downward, the vortices are assumed to be located
symmetrically about the vertical through the cylin-
der’s center. Their circulations satisfy the equation

, and the circulation is . Thus, the sys-
tem is essentially two-dimensional.

1 The article was translated by the author.
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2. GOVERNING EQUATIONS 
AND INTEGRALS OF MOTION

According to [5], the equations of motion for a cyl-
inder and N point vortices in the presence of gravity
can be written as

(1)

Here,  is the radius vector from the ori-
gin of a laboratory frame of reference  to the cylin-
der’s center,  is the velocity of the cylinder,

 is the radius vector from the center of the

cylinder to the ith vortex,  is the

radius vector from the center of the cylinder to the
image of the ith vortex,  is the radius of the cylinder,
the constant  is the mass plus the added mass of the

cylinder,  is the gravity force, , and .

The density of the f luid is assumed to be . The func-
tion  represents that portion of the velocity poten-
tial  of the f luid that does not have a singularity at
the point :
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System (1), which governs the motion of the cylin-
der and the vortices in the gravity field, preserves the
standard measure and can be represented in Hamilto-
nian form with the Hamiltonian function

The nonzero components of the tensor of the Pois-
son structure read

The system has two integrals of motion: an auton-
omous integral P, namely, the projection of the sys-
tem’s linear momentum onto the horizontal axis, and
a nonautonomous Q, the projection of the system’s
linear momentum onto the vertical axis:
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3. FÖPPL’S SYSTEM IN THE GRAVITY FIELD
The motion of the cylinder and the vortex pair is

governed by Eqs. (1) restricted, for symmetry reasons,
to the following manifold:

(2)

Let us find the fixed points of the phase f low of sys-
tem (1). We have

(3)

Using (2) in (1), we get

(4)

where , , and  are the initial conditions.
Obviously, conditions (3) and (4) are incompatible,
which means that Föppl configurations never exist in
the presence of gravity.

A numerical analysis of (1) on manifold (2) sug-
gests the following hypotheses.

Hypothesis 1. Depending on the circulations of the
vortices, one of the following two scenarios occurs:

(a) After a single act of scattering, the cylinder
leaves the vortices behind and eventually moves alone
guided by the gravity.

(b) The vortices moving ahead of the cylinder are
scattered by the latter many times. They move with an
increasing velocity and a decreasing amplitude in a
series of similar patterns.

Hypothesis 2. In the case of multiple scattering,
due to the interaction with the vortex pair, the average
acceleration of the cylinder is less than the accelera-
tion of gravity.

The most intriguing case of multiple scattering is
shown in the figure (Fig. 1). The parameters of the
system are , , , and . The
time of motion is . Initially, the coordinates
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Fig. 1. Circular cylinder and a pair of point vortices in the
gravity field. (a) Repeatedly scattered, the pair moves
ahead of the cylinder; the first three acts of scattering;
(b) the vortex to vortex distance ; and (c) the dis-

tance from the vortices to the cylinder, . 
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of the vortices are  and  and the coordi-
nates of the cylinder’s center are .

4. RESTRICTED FÖPPL PROBLEM, 
ASYMPTOTIC SYSTEM, 

AND REGULARIZATION
Suppose that the cylinder is so massive that it is

guided only by the force of gravity, but is unaffected by
the vortices. This means that system (1) has to be fur-

ther restricted to an invariant manifold that is a sub-
manifold of the manifold from the previous section.
This invariant manifold is given by the relations

From (1), it follows that

(5)

Simulations of (5) demonstrate a good qualitative
agreement with the behavior of the original unre-
stricted problem.

Following [11], we explore the behavior of solu-
tions of system (5) at long times. On the basis of
numerical integration of the restricted problem, we
seek solutions such that  and  is bounded as

. In view of (4) and the initial conditions, we

introduce the new variables  and .
Equations (5) now become

(6)

Notice that the asymptotic system (6) is Hamilto-
nian with the Hamiltonian function

Since  and  are separated from zero, we see that
the right-hand side of the asymptotic system has no
singularities and, therefore, the solutions of the origi-
nal system are smooth at long times.

Similar to the case of the unrestricted problem,
simulations of the restricted problem reveal, among
other things, the existence of a scenario in which the
vortices repeatedly get close to the surface of the cylin-
der. When this is the case, each vortex almost merges
with its inverse image, thereby making the right-hand
side of (5) grow infinitely. As a result, the numerical
procedures become unstable, so the closeness of the
numerical solution to the exact one must be discussed.
Consider a regularization procedure. Suppose that a

vector field  in a domain  gives rise to the dif-
ferential equation

(7)

Let  be a positive function on . Then the
integral curves of the equation

coincide with those of (7). This is equivalent to the

change of time .

In our case, we can put in (5)

Integration of the equations that ensue reveals a
smooth behavior of the integral curves at the points
where the vortices get close to the surface of the cylin-
der. This indicates that the numerical solutions of the
original (unrestricted) system converge to the exact
solutions and thus completes the analysis of the
restricted Föppl problem.
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