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Abstract—On a model example of a linear hyperbolic equation with small parameter multiplying the highest
time derivative it is shown that the closeness of individual trajectories to the dynamics of the limiting para-
bolic equation essentially depends on the Fourier spectra of the initial data. The trajectories stay close if the
higher modes decay sufficiently fast. If the initial data are irregular and there are relatively high modes, then
the convergence of the trajectories becomes non-uniform. Namely, the boundary layer is formed and there
exist small moments of time such that the difference of the solutions reaches in the mean a finite value as the
coefficient of the highest time derivative tends to zero. These results reflect the difficulties that may arise in
the analysis of the systems of non-linear quasi-gasdynamic equations.
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1. INTRODUCTION

In the mathematical modeling of complex gasdy-
namic processes it is often useful to use a quasi-gasdy-
namic (QGD) system of equations and the corre-
sponding kinetic difference schemes. A new modifica-
tion of QGD is described in [1], [2] and contains the
second derivative with respect to time along with the
second spatial derivatives.

The main systems of equations of hydro- and gas
dynamics, the Euler and Navier–Stokes equations, are
known to be deduced in the past by using the methods
of the kinetic theory. These equations have proven
themselves in practice. However, there remain a lot of
questions which are useful to be looked at from the
point of view of the kinetic theory and the application
of this theory leads to additional terms in the tradi-
tional systems of equations.

From the computational point of view the useful-
ness of hyperbolization of the Navier–Stokes equa-
tions can be described as follows (for illustrative pur-
poses, it suffices to consider the case of one spatial
variable). If the system of equations has the form

, (1)

1 The article was translated by the authors.

∂ + ∂ = ν∂2
t x xxAu u u

then the use the explicit scheme (which can turn out to
be the most adequate for f lows with complex struc-
ture) requires the time step , where  is the typ-
ical size of the spatial grid. The hyperbolized system is
as follows

(2)

where  is small, and then the time step is . If
we take  of the order of , then there is a significant
gain in the computation time.

The question naturally arises, how close are the
solutions of the original parabolic equation (1) and its
QGD modification (2). In this paper it is shown that
even in the simplest case of a linear equation this ques-
tion is not trivial. Roughly speaking, the solutions
remain close if the higher modes of the initial data for (1)
decay sufficiently fast. If the initial data for (1) contain
high frequency modes of finite amplitude, then the
convergence of the trajectories becomes non-uniform,
and a boundary layer is formed in the limiting dynam-
ics, when there are small values of the time t such that
the difference between the solutions of systems (1) and
(2), generally speaking, is of the order .

Thus, strictly speaking, when using the hyper-
bolization of the basic system of equations in gas
dynamics problems we need to make sure that we are
dealing with a sufficiently smooth background flow.
On the other hand, in practice the discretization can
be carried out up to a certain limit and the grid size
necessarily bounds the number of the resolved fre-
quencies (a similar situation, for example, takes place

τ ∼

2h h

ε∂ + ∂ + ∂ = ν∂2 2 ,tt t x xxAu u u u

ε τ ε∼ h
ε h

( )1O
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in the calculation of multiphase f lows based on the
concept of multi-velocity continuum).

The physical motivation of the existence of the lim-
its of the resolution in the models of continua was pro-
posed in the seminal work [3]. With this paradigm the
results obtained in this note provide a certain theoret-
ical justification for the possibility to use the QGD
system with a small parameter in the highest time
derivative in the case of regions with large gradients,
which are shocks in the case of the Euler equation, and
in the case of the Navier–Stokes equations describe
the development of certain transients, for example, the
development of turbulence.

In this note we study the closeness of the solutions
of linear model equations of the type (1) and (2) in
terms of the conditions on the initial data only. The
passage to a model linear system of equations is natu-
rally carried out by means of splitting the system into a
set of the corresponding equations. Similar estimates
for individual modes arising from the dispersion rela-
tion were obtained in [4, 5]. In [6] an estimate of the
closeness of the solutions in the norm

 was obtained for linear
equations with variable coefficients, provided that the

-norm of the second time derivative of the solution
of the analogue of (2) is bounded. In [7] a result on the
closeness of the solutions in the norms  and  was
obtained under the condition that the second time
derivative of the solutions of the analog of (1) be
bounded in  and , respectively.

Finally, we note that the inclusion of nonlinear
effects is likely to give an even more complex picture of
the behavior of the trajectories of a dynamical system
with singular perturbation by the second time deriva-
tive.

2. ON THE CLOSENESS OF INDIVIDUAL 
TRAJECTORIES ON A FINITE INTERVAL
We consider the problem of closeness of individual

trajectories for the linear systems with constant coeffi-
cients (1) and (2).

Let in (1), (2) , and let ,  be diag-
onal positive-definite ( )-matrices, and let  be a
( )-matrix with complete set of eigenvalues and
eigenvectors. Then multiplication of the systems (1)
and (2) by the corresponding left eigenvectors gives a
family of linear equations of the type

, (3)
and

, (4)
where  and  are positive (small) numbers and  is
also number of arbitrary sign. Therefore it suffices to
study the closeness of the individual trajectories for
equations (3) and (4).

∞∩1
2 2(0, ; ) (0, ; )L T H L T L

2L

2L C

2L C

{ }= 1, ..., nu uu ε ν
×n n A

×n n

∂ + ∂ = ν∂2
t x xxu a u u

ε∂ + ∂ + ∂ = ν∂2 2
tt t x xxu u a u u

ε ν a

We thus consider one-dimensional equations (3),
(4) in the class of functions periodic with respect to

 and supplemented with initial data

. (5)

We use the Fourier series to represent the solutions

Let  and  be the solutions of (3), (5) and

(4), (5), respectively, with  and  being the
corresponding Fourier coefficients. Then the follow-
ing result holds.

Theorem 1. Led  be fixed. Suppose that the fol-
lowing series converges

. (6)

Then  as .

Proof. For the problem (3), (5) we clearly have

. (7)

For the problem (4), (5) we obtain

(8)

and from the corresponding characteristic equation
we find

(9)

and

. (10)

We estimate . We set

, 

 , , cosϕ = , .

Then
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(11)

To estimate  we first estimate

, since if  is negative and

unbounded with respect to  and , then with appro-

priate choice of the sign of  there are

unbounded terms in the exponentials in (11). We have

if we multiply and divide the expression in brackets by
. Acting similarly once again

we obtain  for some Q > 0. Since

, it follows that I > 0. Therefore the exponents in

(11) have negative real parts.

We consider in (11) the coefficient of :

The absolute value of the sum of the first three terms
is not greater than 2. Consider the last term

where b = , D = .

Suppose first that а = 0. When k varies from 0 to

 the function D varies from 1 to 0 (and is real).

Neхt, when  varies from  to +∞ D varies from i0

to i∞ and is purely imaginary. We fix b ≥ 0. For real

 the function  increases from 1 to

. Therefore for k ∈ , D ∈ [0, 1] and

( )
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Now let k ∈ . Then D = iy, y ∈ [0, ∞) and

The coefficient of   in (11) is equal  to

ε2be–b  , therefore

(12)

If а ≠ 0, then for ε   somewhat more lengthy calcu-

lations show that estimate (12) still holds.

Next, since Λ  Λ(k, ε, t)|, taking into account

the hypotheses of Theorem 1 and (12), for any δ > 0

there exists a k0 > 0, such that Λ(k, ε, t)| < . In

the case when |k| < k0 we have λ1 ~ – + κ(k), λ2 ~ –

κ(k) as ε → 0 and |Λ(k, ε, t)| ≤ const ε.
This directly gives the assertion of Theorem 1.

3. ON THE EXISTENCE OF BOUNDARY 
LAYER

If the initial data contain sufficiently high modes
with finite amplitude, then unlike in the case of the
limiting parabolic operator, they do not decay as ε →
0 and preserve a finite amplitude forming thereby a
boundary layer.

Theorem 2. Consider the sequence of single mode ini-
tial data

where k(ε) = ε–m, m > . Let uε(x, t) and ε(t, x) be the

corresponding solutions of (3), (4). Then

(13)

where const > 0 is independent of ε. Furthermore, this
estimate holds for any consistent choice of the second ini-
tial condition .

Proof. To simplify notation we set in this example
ν = 1, a = 0. Then the solution of (3) contains only one

non-zero Foureir coefficient k(t) = , k = k(ε)
and for t = ε this coefficient is exponentially small.
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Therefore it suffices to show that the corresponding
Fourier coefficient of the solution of equation (4) sat-
isfies

In view of (9) we have

where G(ε) → ∞ as ε → 0. We fix an arbitrary second
initial condition setting = α , where α is arbi-
trary (and can depend on ; this is, for instance, the
case when the second initial condition is found from
equation (4) by setting t = 0 and ε = 0 there, then α =
–k(ε)2). The solution of (4) (see (10)) for t = ε takes
the form

Since G(ε) → ∞ as ε → 0, it follows that there exists a
sequence εn → 0 as n → ∞, for which G(εn) = 2πn.
This gives that

and completes the proof of Theorem 2.
Thus, by limiting the spatial resolution the choice

of the time step must also take into account the forma-
tion of the boundary layer. Probably, this effect will be

more important in a non-linear version of the equa-
tions of the type (3), (4).

In conclusion, we observe that the solutions of
equations (3) and (4) tend to zero as . If the
equations have a right-hand side and a nonlineariry,
then clearly there can be no closeness of the solutions
on the infinite time interval, and the behavior of the
solutions as is commonly described by the global
attractors [8]. In this case a general result holds on the
upper semicontinuity on ε as ε → 0 of the attractors of
the singularly perturbed hyperbolic equation. Namely,
every μ-neighborhood of the attractor of the limiting
equation contains all the attractors of the perturbed
equation for ε < ε0(μ) [4, 8].
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