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Abstract—The integrodifferential Kolmogorov–Feller equation describing the stochastic dynamics of a sys-
tem subjected to a regular “force” and a random external disturbance in the form of short pulses with random
“amplitudes” and occurrence times is considered. The equation is written in differential form. A method for
finding the regular force from a given stationary probability distribution is described. The method is illus-
trated by examples.
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The Kolmogorov–Feller (KF) equation is an inte-
grodifferential equation governing the transition prob-
ability density of Markov stochastic processes with
jump changes in the state of the described system. The
KF equation is used in various fields of physics and
engineering, such as control theory and Brownian
motion [1], wave theory in random inhomogeneous
scattering media [2], the modeling of tropical cyclones
[3], the motion of loads over a bridge [4], buffeting [5],
ground acceleration due to strong earthquakes or
shock waves [6], the behavior of trains on a uneven
track [7], and the simulation of processes in neurody-
namics [8], economics, ecology [9], and medicine.
Among the fundamental applications, we note the use of
the KF equation in quantum mechanics models [10].

To be more specific, we consider a first-order non-
linear system described by the stochastic differential
equation

. (1)

Here,  is an external noise perturbation represent-
ing a sequence of delta pulses:

. (2)
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The time intervals  between neighboring
pulses and the pulse “amplitudes”  are assumed to
be statistically independent and are described by prob-
ability density functions  and .

If the time intervals are exponentially distributed,
i.e.,

, (3)

then  becomes a white shot noise with Poisson-
distributed pulse occurrence times. Accordingly, 
becomes a Markov stochastic process and a closed KF
equation can be obtained for it [11]:

(4)

Here,  is the probability density of the stochas-
tic process , which satisfies the stochastic equation
(1). Equation (4) is a special case of the generalized
Kolmogorov equation derived in [12] for an arbitrary
non-Gaussian white noise . Integrating both sides
of the KF equation (4) with respect to x in the infinite
limits and taking into account the normalization con-
dition for the probability density, we obtain

. (5)

As far as we know, equations of type (4) have been
solved basically by applying numerical methods.
However, in certain cases, analytical solutions can be
found.

Using the shift operator, we write part of the inte-
grand as
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Substituting (6) into (4) and performing integration,
we obtain the KF equation in differential form:

(7)

Here,  is the characteristic func-
tion of the random pulse amplitudes and the angle
brackets denote the statistical average with respect to a
with the probability distribution .

Now we can show that, for some particular forms of
, we can find exact solutions of the KF equation

written in the form (7). Specifically, for positive
amplitudes with the exponential distribution

, (8)

Eq. (7) becomes

. (9)

The stationary (time-independent) probability distri-
bution for system (1) excited by pulses (2) of positive
polarity can be found by solving Eq. (9) with any func-
tion , i.e., with an arbitrary nonlinearity in
Eq. (1) for which it exists. The steady-state solution of
Eq. (9) has the form (see [13])

(10)

The case of an arbitrary polarity of pulses (2), when
the pulse amplitudes can be positive and negative, is of
more interest in terms of physics. For this problem,
instead of (8), we use the Laplace distribution

. (11)

Then, instead of (9), we obtain the partial differential
equation

. (12)

The stationary distribution is found by solving the
ordinary differential equation

(13)

Specifically, for the linearized system (1) with
, the solution of Eq. (13) is expressed in

terms of the modified Bessel function of the second
kind of zero order:

. (14)

The probability density (14) is similar in shape to the
Gaussian distribution, but it has an integrable singu-
larity at the origin.
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Unfortunately, there are few exact solutions of
Eq. (13) that correspond to various functions .
Nearly all of them violate the necessary boundary
conditions and symmetry properties.

The task of finding distributions  by means
of Eq. (13) with a given function  can be pulse a
direct problem. An inverse problem is to find the
“force”  or the corresponding potential

 from a given distribution .
In some cases, the inverse problem is simpler.

In Eq. (13), we set

(15)

In this case, the function  is defined up to a con-
stant. Substituting (15) into (13) and integrating the
result with respect to x, we obtain the relation

In view of the obvious condition  as

 and KF equation (4), we have .

Now, setting  yields the following relations to
determine the functions  and :

(16)

In view of (5) and (16), the function  must satisfy
the “normalization condition” and the inequality

It is convenient, using Eq. (13), to express the force 
directly in terms of :

(17)

Here,  and  are unknown constants determined by
conditions (5).

Note that, if  is an even function, then the
force  in Eq. (17) has to be an odd function. It fol-
lows that  and, in the evaluation of integral (17),
it is sufficient to consider only the domain 

Below are examples of solutions found by means of
(16) and (17).

Example 1. Let us substitute in formula (17) the
hyperbolic distributions
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(18)

which is infinitely divisible [14]. Calculating the corre-
sponding force and determining the unknown con-
stant  from condition (5), we find

(19)

The potential corresponding to force (19) is given by

(20)

Three functions are shown in Fig. 1:

(21)
Curve 1 depicts the stationary probability distribu-
tion (18); curve 2, force (19); and curve 3, the corre-
sponding potential (20). As follows from (20), the
“tails” of the potential function increase according to
a parabolic law, so curve 3 resembles in form the har-
monic potential corresponding to linear system (1).
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Example 2. In (17), we substitute the Laplace dis-
tribution

(22)

Evaluating the integral yields

(23)

The restoring force (23) describes a homogeneous
force field changing its sign on passing through the
point . The corresponding potential is confining
for  and has a “modulus” form. Some dynamical
and statistical problems for systems with such a poten-
tial and their physical interpretations were discussed
in [15].

Example 3. We put in formula (17)

(24)

For , the probability distribution (24) has two
maxima, so it should correspond to a two-well poten-
tial. Calculating the force associated with the symmet-
ric probability density (24), we obtain
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Fig. 1. Behavior of the stationary probability distribution,
force, and potential function (curves 1–3, respectively).

1

1

2

3

1 2 β x
Fig. 2. Stationary probability distribution (26) (curves 1
and 1') and the corresponding force (27) (curves 2 and 2').
The solid curves were constructed for the parameter values

, while the dashed curves, for
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By using this force, for , we can find a confining
potential, which is expressed in terms of the incom-
plete gamma function.

Example 4. In formula (17), we set

. (26)
The stationary probability distribution (26) is shown
in Fig. 2 by curves 1 and 1'. It can be seen that

curve (26) can have one, two, or more maxima,
depending on the parameter values. This means that
the potential of the force  involves one, two, or
several wells.

Calculating the integral and taking into account the
condition (5) at infinity, we obtain the following
expression for the force:

(27)

Formula (27) is valid for . To the domain ,
 is continued as an odd function. Assume the

parameter values , for which the func-
tion (27) is limited.

In Fig. 2, the function  is depicted for

 (solid curve 2) and for

 (dashed curve 2 '). Curve 2

corresponds to the stationary distribution shown by
solid curve 1, while curve 2 ', to the distribution shown
by dashed curve 1'.

In the case of a single potential well, the force is
negative for  (curve 2 ') and positive for . In
other words, the force tends to return the system to the
equilibrium position .

In the case of two wells (curve 2), the function
 changes its sign in the domain , i.e., there

appears a second “center of attraction.”
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Translated by I. Ruzanova
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