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by Applying the Method of Localization of Compact Invariant Sets
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Abstract—The asymptotic stability and global asymptotic stability of equilibria in autonomous systems of dif-
ferential equations are analyzed. Conditions for asymptotic stability and global asymptotic stability in terms
of compact invariant sets and positively invariant sets are proved. The functional method of localization of
compact invariant sets is proposed for verifying the fulfillment of these conditions. Illustrative examples are
given.
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1. INTRODUCTION

Stability analysis is an important problem in the
theory of differential equations. Beginning with Lya-
punov’s work [1], this problem has been extensively
studied in various aspects [2–4] and still remains top-
ical (see [5, 6], etc.) One of the causes is that the Lya-
punov function method is usually invoked when tech-
niques based on the first approximation fail. However,
in that case, a Lyapunov function has to be con-
structed, which is a complicated problem [3].

It is well known that an important role in stability
theory is played by the invariance principle [7] and
positively invariant sets are frequently used in the
study of nonlinear systems. In Sections 2 and 5 below,
it is shown that necessary and sufficient conditions for
the asymptotic stability and global asymptotic stability
of equilibria of an autonomous system can be formu-
lated in terms of compact invariant sets and positively
invariant sets. In Section 3, the fulfillment of these
conditions is verified by applying the functional
method of localization of compact invariant sets. An
overview of this method is also presented in Section 3.
Examples are given in Section 4.

2. CONDITIONS FOR ASYMPTOTIC 
STABILITY

Given an autonomous system

(1)= ∈�

1( ), ( ),nx f x f C R

the following necessary and sufficient conditions for
the asymptotic stability and global asymptotic stability
of its equilibria are valid.

Theorem 1. An equilibrium is asymptotically stable if
and only if the following conditions hold:

(i) In some of its neighborhoods, the equilibrium is a
unique compact invariant set of the system.

(ii) Any neighborhood of the equilibrium contains a
bounded positively invariant neighborhood of this equi-
librium.

Theorem 2. An equilibrium is globally asymptotically
stable if and only if the following conditions hold:

(i) The equilibrium is asymptotically stable.

(ii) The equilibrium is a unique compact invariant set
of the system.

(iii) As t → +∞, any trajectory of the system reaches
a bounded positively invariant set.

The proofs of Theorems 1 and 2 are presented in
Section 4 and are based on inversion theorems and the
properties of ω-limit sets of trajectories [8] and local-
izing sets for compact invariant sets [9] of system (1).

Below is a consequence of Theorems 1 and 2.

Theorem 3. An equilibrium is globally asymptotically
stable if and only if the following conditions hold:

(i) The equilibrium is a unique compact invariant set
of the system.

(ii) Any neighborhood of the equilibrium contains a
bounded positively invariant neighborhood of this equi-
librium.

(iii) As t → +∞, any trajectory of the system reaches
a bounded positively invariant set.
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3. FUNCTIONAL METHOD 
OF LOCALIZATION

To analyze the stability of an equilibrium with the
help of Theorems 1–3, we need the following results
concerning the functional method of localization of
compact invariant sets of system (1) [9–11].

Any function ϕ ∈ C1(Rn) is associated with the set

which is called a universal cross section. Let

Theorem 4 [9, 10]. All compact invariant sets of an
autonomous system are contained in the set

The following result holds for compact invariant
sets of system (1) contained in a subset Q ⊂ Rn.

Theorem 5 [9, 10]. All compact invariant sets of the
system contained in a subset Q ⊂ Rn are contained in
the set

(2)

where

and

If, for example, ϕinf(Q) = infS(ϕ, Q)ϕ(x) = infQϕ(x),
then the left inequality in (2) holds for all x ∈ Q, so it
can be dropped.

The sets Ω(ϕ) and Ω(ϕ, Q) are called the localizing
sets corresponding to the function ϕ, while any sets
containing all compact invariant sets of the system are
referred to merely as localizing sets. Note that, if Q =
Rn, then, for any localizing function ϕ, we have Ω(ϕ,
Rn) = Ω(ϕ).

Localizing sets indicate subsets of the state space in
which the system has trajectories with complex, in
particular, chaotic behavior, while outside localizing
sets, the behavior of any trajectory is described rela-
tively easily [12]. Among the properties of localizing
sets and universal sections, we consider those that are
important for analyzing the asymptotic stability and
global asymptotic stability of equilibria.

Let a localizing set Ω(ϕ) be nontrivial, i.e., Ω(ϕ) ≠
Rn, x0 ∉ Ω(ϕ), and c = ϕ(x0). The set ϕc = {x ∈ Rn :
ϕ(x) = c} is a semipermeable C1-manifold of dimen-
sion n – 1. The trajectories of the system intersect this
manifold transversally, and it is the interface between
the sets  = {x ∈ Rn: ϕ(x) > c} and  = {x ∈ Rn:
ϕ(x) < c}.

ϕ = ∈ ϕ =�( ) { : ( ) 0},nS x xR

ϕ ϕ
ϕ = ϕ ϕ = ϕinf sup

( ) ( )
inf ( ), sup ( ).
S S

x x

Ω ϕ = ∈ ϕ ≤ ϕ ≤ ϕinf sup( ) { : ( ) }.nx xR

Ω ϕ = ∈ ϕ ≤ ϕ ≤ ϕinf sup( , ) { : ( ) ( ) ( )},Q x Q Q x Q

ϕ ϕ
ϕ = ϕ ϕ = ϕinf sup

( , ) ( , )
( ) inf ( ), ( ) sup ( ),

S Q S Q

Q x Q x

ϕ = ∈ ϕ =�( , ) { : ( ) 0}.S Q x Q x

+ϕc
−ϕc

If c > ϕsup and  > 0 on the set ϕc, then  is posi-

tively invariant, while, if c > ϕsup и  < 0 on ϕc, then 
is positively invariant and contains Ω(ϕ).

For c < ϕinf, the properties of the sets  are similar.

Thus, each component of the boundary ∂ (ϕ) of
the set

(3)
where τ > 0, is always semipermeable for trajectories of
the system. From this point of view, set (3) is positively
invariant only in the case depending on the signs of

(x) on the connected components of ∂ (ϕ), while,
in the other cases, the system has no compact invariant
set attracting all its trajectories.

Theorem 6. If an equilibrium is globally asymptoti-
cally stable, then, for any localizing function ϕ, the local-
izing set Ω(ϕ) is positively invariant.

Applying Theorem 5 sequentially with various
localizing functions, we can find new localizing sets.

Theorem 7 [9, 10]. Given a set Q ⊂ Rn and a
sequence of localizing functions hi ∈ C1(Q), i = 1, 2, …,
all compact invariant sets of the system contained in Q
are contained in the sets

(4)
The localizing sets Ki are such that Q ⊇ K1 ⊇ K2 ⊇ ….
The construction of localizing sets Ki in Theorem 7

is called an iterative procedure.
By an extended iterative procedure, we mean the

construction of localizing sets  (open in Rn) accord-
ing to the following theorem.

Theorem 8. Given a set Q ⊂ Rn, a neighborhood  of
Q, a sequence of localizing functions hi ∈ C1(Q) (i = 1,
2, …), and a sequence of nonnegative numbers τi (i = 1,
2, …), all compact invariant sets of the system contained
in Q are contained in the sets  =  and , i > 0,

S(hi, ) = {x ∈ :  (x) = 0}. All localizing sets
, i = 0, 1, …, are open in Rn and  ⊇  ⊇  ⊇ ….
The proof of Theorem 8 follows from the fact that

Ki ⊂  for i ≥ 0, so the sets  also contain all compact
invariant sets contained in Q.

The boundary ∂  of the set  consists of points
of the sets ∂ ,

ϕ� +ϕc

ϕ� −ϕc

±ϕc

Ω̂

Ω ϕ = ∈ ϕ − τ < ϕ < ϕ + τinf sup
ˆ ( ) { : ( ) },nx xR

ϕ� Ω̂

−= = Ω >0 1, ( , ), 0.i i iK Q K h K i

ˆ
iK
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−
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and

j = 1, 2, …, i. If ∂ ∩ ∂  = ⌀, then the positive invari-
ance of  and the absence of a compact invariant set
attracting all trajectories of the system depend on the
signs of the derivatives  on the corresponding con-
nected components of the boundary of .

The above results allow us to check whether or not
the conditions of Theorems 1 and 2 hold. For exam-
ple, an equilibrium P is a unique compact invariant set
of the system contained in Q if there is a sequence of
localizing sets (4) contracting to the point P, i.e.,

 = P. The second condition of Theorem 1 and

the third condition of Theorem 2 can be verified with
the help of the sequence of localizing sets from Theo-
rem 8. In some cases, it may happen that it suffices to
consider only a few terms of these sequences.

In a similar manner, we can prove that a positively
invariant set is contained in the basin of attraction of
an asymptotically stable equilibrium [13].

4. EXAMPLES
As an example, consider the two-dimensional

system

(5)

with equilibrium O(0, 0). Assume that, in the phase
plane of system (5), there is a line L = {y = lx, l > 0}
such that the sets A = {a(x, y) = 0} and B = {b(x, y) = 0}
intersect L only at the point O(0, 0); the set A\O(0, 0)
is contained in the set

which is bounded by L and the Oy axis; and the set
B\O(0, 0) is contained in the similar set

Let us show that the only compact invariant set of
system (5) is the point O. Indeed, consider the set

. (6)
If there exists another compact invariant set, then,

at some p = p0, it is contained in set (6). Starting from
an arbitrary set Q = Q(p), we construct iteration
sequence (4) corresponding to the localizing functions

As a result, we obtain a sequence of localizing sets
Kn, n = 0, 1, …. It is easy to prove that, for any positive
number p1, the set Q(p1) contains some localizing set

− −∈ = − τ1 ,inf 1
ˆ ˆ{ : ( ) ( ) }j j j j jx K h x h K

− −∈ = + τ1 ,sup 1
ˆ ˆ{ : ( ) ( ) },j j j j jx K h x h K

ˆ
iK Q̂

ˆ
iK

�

jh
ˆ

iK

=∞

=
∩

0

i

i

i

K

= =
∈

� �

1 2

( , ), ( , ),

( , ), ( , ) ( )

x a x y y b x y

a x y b x y C R

= ≥ > ∪ ≤ <{ 0, } { 0, },X x y lx x y lx

= > ≤ < ∪ < ≥ >{ 0,0 } { 0,0 }.Y x y lx x y lx

= < <( ) {| | , | | }Q p x p y lp

− = = =2 1 2, , 1,2,... .m mh x h y m

Kn. Therefore, the sequence of sets Kn contracts to the
point O, which, hence, is the only compact invariant
set in Q.

The asymptotic stability of an equilibrium of sys-
tem (5) depends on the signs of a(x, y) and b(x, y) in Y
and X, respectively. If xa(x, y) < 0 in Y and yb(x, y) < 0
in X, then the zero position of the system is asymptot-
ically stable and globally asymptotically stable. The
last conclusion follows from Theorems 1 and 2, since,
in this case, the bounded neighborhood (6) of the zero
equilibria is positively invariant.

Remark. The results that the constructed iteration
sequence contracts to the zero equilibrium and neigh-
borhood (6) is positively invariant follow only from the
inclusions A\O(0, 0) ⊂ X and B\O(0, 0) ⊂ Y and from
the fact that the signs of the right-hand sides of the
system satisfy the above-indicated condition, whereas
the structure of A and B is of no importance. It is easy
to see that these properties are preserved in the follow-
ing more general case of sets X and Y. Let γ(u), u ∈
[0, +∞), γ(0) = (0, 0) be a continuous curve in the
first quarter that issues from the origin, and let the
coordinates x(u) and y(u) of a point on this curve be
nondecreasing functions. Extend γ to a plane curve Γ
that is symmetric about the coordinate axes. Then, as
a set X (Y), we can use connected components of R2\Γ
that contain the points of the vertical axis (horizontal
axis).

5. PROOFS OF THEOREMS 1 AND 2
Assume without loss of generality that an equilib-

rium of system (1) is the point x = 0.
If the equilibrium is asymptotically stable or glob-

ally asymptotically stable, then, according to the
inversion theorem [8], in its basin of attraction RA

there exists a positive definite function V(x) ∈ C1(RA)
that grows to infinity as x → ∂RA on RA and is such that
its derivative along the solutions of the system is a neg-
ative definite function in RA. Therefore, for any c > 0,
the set {x: V(x) < c} is bounded, open, and positively
invariant and any trajectory of the system hits this set.
Therefore, the second condition of Theorem 1 and the
third condition of Theorem 2 are satisfied.

The first condition of Theorem 1 and the second
condition of Theorem 2 are also satisfied, since, if ϕ =
V(x) is used as a localizing function, then the set
S(V, RA) = {x ∈ RA : (x) = 0} coincides with the equi-
librium x = 0 due to the fact that (x) is negative defi-
nite. Therefore,

and, by Theorem 5, all compact invariant sets of the
system contained in RA are contained in the localizing

�V
�V

= = =

= = =

inf
( , )

sup
( , )

( ) inf ( ) (0) 0,

( ) sup ( ) (0) 0
A

A

A
S V R

A
S V R

V R V x V

V R V x V
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set Ω(V, RA) = {x ∈ RA: V(x) = 0}, which coincides with
the zero equilibrium, since V(x) is positive definite.

The necessity of the conditions of Theorems 1 and
2 is proved.

Let us prove the sufficiency of the conditions of
Theorem 1.

Suppose that, in a neighborhood U, the point x = 0
is a unique compact invariant set. For any neighbor-
hood O of x = 0, consider a neighborhood  of x = 0
that, together with its closure, is contained in the set
O ∩ U. According to the second condition of Theorem 1,

 contains a bounded positively invariant neighbor-
hood W of x = 0. Any trajectory of the system begin-
ning in W remains within W and, hence, remains
within O, which means that the equilibrium x = 0 is
stable. All such trajectories are bounded and tend to
their ω-limit sets, which coincide with x = 0. This fol-
lows from the fact that the ω-limit sets of these
bounded trajectories are compact invariant sets con-
tained in U, which coincide with x = 0 according to the
first condition of the theorem. Therefore, the equilib-
rium x = 0 is asymptotically stable and Theorem 1 is
proved.

Let us prove the sufficiency of the conditions of
Theorem 2.

Let x0 ∈ Rn, and let x(t), t ≥ 0, with x(t)|t = 0 = x0 be
a trajectory of the system. Suppose that, as t → +∞,
this trajectory hits a bounded positively invariant set at
some time. Then this trajectory is bounded for t →
+∞ and its ω-limit set is compact and, by the second
condition of the theorem, coincides with x = 0. There-
fore, the trajectory x(t) tends to x = 0 as t → +∞. Since
x0 is an arbitrary point of Rn, the basin of attraction of
x = 0 coincides with Rn. This means that the equilib-
rium x = 0 is globally asymptotically stable, since it is
asymptotically stable according to the first condition
of the theorem. Theorem 2 is proved.
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