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The present work can be seen as a natural continu�
ation of studies started in [1–5] and dedicated to solv�
ing the following problem: what metric and analytic
properties has a measurable mapping ϕ: D → D '

inducing an isomorphism ϕ*: (D ') → (D) of
Sobolev spaces by the composition rule: ϕ*(f ) = f ° ϕ
(here D, D ' are open connected sets (further domains)
either in the Euclidean space �n, n ≥ 2 (see [1–4]) or
on a Carnot group (see [5])). In the mentioned papers
there were obtained various proofs of the fact that an
isomorphism of the operator ϕ* implies, according to
a relation between the indices of smoothness, summa�
bility and the dimension of the space, the property of
mapping to be quasi�conformal or quasi�isometric
with respect to a metric of domain adequate to the
geometry of a function space.

Here we give a scetch for solving a similar problems
for measurable mappings of domains on a Riemannian
manifold which induce isomorphisms of Sobolev
spaces with the generalized first derivatives. The used
methods are based up on methods of papers [3, 4]
which were successfully applied in [5] in solving the
problem on the composition of Sobolev functions on
Carnot groups. In papers [3–5] it was provided also a
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detailed history of the problem under consideration
and an itemized bibliography.

1. Next we fix a complete Riemannian manifold
� = (M, g), n = dimtop M ≥ 2, namely a smooth man�
ifold M, in every tangent space TxM of which it is cho�
sen an Euclidean metric gx changing smoothly from a
point to a point. The length of an absolutely continu�
ous curve γ: [a, b] → � is expressed by the integral

l(γ) = dt. Here, | (t)| =  is the

length of the tangent vector (t) in the Euclidean
space Tγ(t)� with the scalar product gγ(t). The metric
d(x, y) on the Riemannian manifold � is defined as
the infimum of the lengths of absolutely continuous
curves with endpoints x and y.

2. Sobolev classes on �. Let D be an open con�
nected domain in the Riemannian manifold �. Sobo�

lev space (D) consists of locally integrable functions f :
D → � having the distribution gradient ∇f ∈ Lp(D).

The semi�norm in (D) is defined as the value

where dω is an element of the n�dimensional volume,
∇f(x) is the distribution gradient of the function f at a
point x ∈ D, and |∇f(x)| is the length of the distribution
gradient ∇f(x) in the Euclidean space Tx� with the
scalar product gx.

We will say (see [6]) that the mapping ϕ: D → �

belongs to the class (D; �) if the following con�
ditions hold.
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(A) For every z ∈ �, the function [ϕ]z: D � x �

d(ϕ(x), z) belongs to (D).

(B) The family of generalized gradients (∇[ϕ]z)z∈�

has a majorant belonging to Lp, loc(D), i.e., there is a
function g ∈ Lp, loc(D), which is independent of z, such
that |∇[ϕ]z(x)| ≤ g(x) for almost all x ∈ D.

One can verify: the mapping ϕ: D → � belongs to

the Sobolev class (D) if and only if it can be
changed on a set of measure zero so that

(1) for every z ∈ �, the function [ϕ]z: D � x �
d(ϕ(x), z) belongs to the class Lp, loc(D);

(2) for any countable set of domains Ui � D, i ∈ �,
constituting a topological base of neighborhoods of
the domain D, with a local basis Xj,  j = 1, 2, …, n, of
the tangent bundle over Ui, the mapping ϕ: D → � is
absolutely continuous on almost all integral lines of
the vector fields Xj,  j = 1, 2, …, n (ϕ ∈ ACL(D));

(3) the derivative Xjϕ(x) is defined almost every�
where in Ui, i ∈ �, and |Xjϕ| ∈ Lp(Ui) for all j = 1, 2, …, n.

We denote by Dϕ: Tx� → Tϕ(x)� the approxima�
tive differential of the mapping ϕ [7], which is defined
almost everywhere in D, and denote by J(x, ϕ) its Jaco�
bian determinant detDϕ.

Definition 1. A homeomorphism Φ: D → D ' of two

domains D, D ' ⊂ M of the class (D) is called
quasiconformal if there is a constant K such that
|DΦ(x)|n ≤ K |J(x, Φ)| almost everywhere in D.

Definition 2. A homeomorphism Φ: D → D ' of two

domains D, D ' ⊂ � of the class (D) is called
quasi�isomeric if |DΦ(x)| ≤ M and 0 < α ≤ |J(x, Φ)| for
almost all x ∈ D where the constants M and α are inde�
pendent of x.

Definition 3. Two domains D, D ' ⊂ � are called
(1, p)�equivalent if the restriction operators ri:

(D1 ∪ D2) → (Di), ri(f) = , where f ∈

(D1 ∪ D2), are isomorphisms.

The properties of (1, p)�equivalent domains in
Euclidean space were studied in [8].

3. Composition operators and mappings of the

class I . Similarly to the paper [5] we introduce the

main object of our study: the class I  of mappings on
a Riemannian manifold.

Definition 4. Let D, D ' be domains in the Riman�
nian manifold �. A measurable mapping ϕ: D → D '

belongs to the class I , p ∈ [1, ∞), if ϕ induces a com�
position operator of Sobolev spaces

(1)

such that
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(1) the inequalities K–1|| f | (D ')|| ≤ ||ϕ*( f ) | (D)|| ≤

K || f | (D ')|| hold for any function f ∈ (D ') ∩
Liploc(D ') where the constant K is independent of a
function f (here Liploc(D ') is the totality of Lipschitz
functions on a domain D ');

(2) the image ϕ*( (D ') ∩ Liploc(D ')) is dense

in (D).

In the paper [6] it was shown that the second con�
dition of this definition is independent of the first one.

4. Case p ≠ n. A complete description of measur�
able mappings of domains on the Riemannian mani�

fold �, inducing isomorphisms of Sobolev spaces 
in the sense of Definition 5, when p ≠ n, is given below.

Theorem 1. Let p ∈ [1, ∞)\{n}, and D, D ' be
domains on the Riemannian manifold � (here n is a
topological dimension of �). A measurable mapping ϕ:

D → D ' belongs to the class I  if and only if ϕ coincides
with some quasi�isometry Φ: D → Φ(D) almost every�
where, for which the domains Φ(D) and D ' are (1, p)�
equivalent.

5. Case p = n. The main result, when p = n, is
Theorem 2. Let p = n, and D, D ' be domains on the

Riemannian manifold � of topological dimension n. A

measurable mapping ϕ: D → D ' belongs to the class I
if and only if ϕ coincides with some quasiconformal map�
ping Φ: D\Σ → � almost everywhere (here Σ ⊂ D is

some closed set in D of zero capacity in the space ),
for which the domains Φ(D\Σ) and D ' are (1, n)�equiv�
alent.

6. For mappings belonging to I , the following
properties are valid.

Proposition 1. (1) The domain of a mapping ϕ ∈ I ,

p ∈ [1, ∞), can be reduced to the set T = ,

|D \T | = 0, where {Tk} is an increasing, by inclusion,
sequence of bounded sets of positive measure, consisting
of points of positive density.

(2) The mapping ϕ is continuous on every Tk.
(3) On the set T, Luzin property � and �–1�Luzin

property hold for the mapping ϕ.
(4) The mapping ϕ: T → D ' is injective.
(5) The image ϕ(T) is dense in D ', and |D ' \ ϕ(T)| = 0.

Operator (1) is extended to (D) with preserving
properties of composition operator.

Lemma 1. Let a measurable mapping ϕ: D → D '

belong to I . Then the operator ϕ*: (D ') ∩

Liploc(D ') → (D) is extended by continuity to the
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operator : (D ') → (D) with the following prop�
erties:

(1) the value of the operator : (D ') → (D)

on classes [ f] ∈ (D ') can be found by formula:

(2) K–1|| f | (D ') ≤ || ( f )| (D)|| ≤ K || f | (D ')||;

(3) : (D ') → (D) is an isomorphism.

7. Case p > n. Recall that a mapping ϕ: U → �,
U ⊂ �, is called locally bilipschitz, if, for every point
x ∈ U, there are a neighborhood V ⊂ U and a constant

LV for which the relations d(y, z) ≤ d(ϕ(y), ϕ(z)) ≤
LVd(y, z) hold for all y, z ∈ V. Kâˆ¥f | L1p(Dâ ²)âˆ¥;

Lemma 2. Let D, D ' ⊂ � be two domains and ϕ:
D → D ' be a measurable mapping such that, for any

bounded function f ∈ (D '), p > n, the following con�
ditions hold:

(1)  ° ϕ ∈ (D),

(2) K–1|| f | (D ')|| ≤ ||  ° ϕ| (D)|| ≤ K || f | (D ')||,

where  is a continuous representative of f, and K is a
positive constant. Then the mapping ϕ coincides almost
everywhere with some locally bilipschitz mapping.

8. Case p ≤ n. Consideration of this case begins with
multi�path arguments, the ultimate purpose of which
is a proof of approximative differentiability of the
mappings ϕ. Notice the following lemma, which is a
base for proving Proposition 1 for p ≤ n.

Lemma 3. Let D, D' ⊂ � and a mapping ϕ: D → D '

belong to I , p ∈ [1, ν]. Then there exists a set of mea�
sure zero to be removed from the domain of ϕ such that
the following property holds on the reduced domain

Dom1ϕ: for any two balls B1, B2 ⊂ D with ∩  = ,
the intersection of images has measure zero, i.e., |ϕ(B1 ∩
Dom1ϕ) ∩ ϕ(B2 ∩ Dom1ϕ)| = 0.

Fix a ball Q ⊂ �. Define the following set function:
ΨQ: B � |ϕ(B ∩ Dom1ϕ) ∩ Q|, i.e., to every ball B ⊂ D
the function ΨQ compares the measure of the intersec�
tion of the image of the ball with the ball Q. By Lemma 3,
the function ΨQ has the following property of additiv�
ity: ΨQ(B1 ∪ B2) = ΨQ(B1) + ΨQ(B2) for any balls B1,

B2 ⊂ D such that ∩  = . Using this property
and applying the arguments of the proof in [9, Theo�
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rem 3], we can show that a finite derivative (x) =

 is defined for almost all x ∈ D, and the

inequality (x)dx ≤ ΨQ(U) holds where U is a finite

union of balls, the closures of which are desjoined. We
denote by ΣΨ the set of measure zero on which the

derivative  either is not defined or equals to ∞.

Then a finite derivative  is defined in all points of

the complement D\ΣΨ. Let Jϕ, Q(x) = (x).

Lemma 4. Let D, D ' ⊂ M and a mapping ϕ: D → D '

belong to I , p ∈ [1, ∞). If u ∈ (D ') ∩ Liploc(D ')

and ||u | (D ')|| ≤ 1 then

(2)

almost everywhere in D ∩ ϕ–1(Q), where K is some con�
stant independent of Q.

From (2) we derive the following property.

Lemma 5. Let D, D ' ⊂ � and a mapping ϕ: D → D '

belong to I , p ∈ [1, ν]. Then ϕ is approximatively dif�
ferentiable almost everywhere along integral lines of
basis vector fields Xj, j = 1, 2, …, n.

The approximative differentiability of the mapping
ϕ almost everywhere along the integral lines of the
basis vector fields implies the total approximative dif�
ferentiability of ϕ almost everywhere in D [7]. Hence
[7], the set D can be represented as a countable union
D = S ∪  so that ϕ ∈ Lip(Ei), and the measure

of S equals zero.

Every set Ei is contained in a countable union of

sets Fki = z: d(ϕ(x), ϕ(z)) ≥ d(x, z), x ∈ Ei ∩

B , i.e., Ei ⊂ , (see [7]). Then the set D

can be represented as a union S ∪  so that the

mapping ϕ is bilipschitz on every Dj. We may assume
that the domain of the mapping ϕ is the set Dom2ϕ =

 ∩ Dom1ϕ, and ϕ is bilipschitz on Dj ∩ Dom1ϕ,

j ∈ �.

We denote by Dϕ the approximative differential of ϕ.

Notice, that J(x, ϕ) = detDϕ =  almost

everywhere in D. 
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Lemma 6. Let the mapping ϕ belong to I , p ∈ [1, ∞),

and ψ = ϕ–1: ϕ(Dom2ϕ) → Dom2ϕ (see Proposition 1).
Then

(1) the following estimates hold when p ∈ [1, ∞)\{n}:

(3)

(2) the following estimates hold when p = n:

(4)

for almost all x ∈ D and almost all y ∈ ϕ(Dom2ϕ) where
J(x, ϕ) = detDϕ(x) and J(y, ψ) = detDψ(y).

In addition, ϕ(Dom2ϕ) ⊂ D ' is a set of full measure
and the mapping ψ: ϕ(Dom2ϕ) → Dom2ϕ, inverse to ϕ,

induces the operator ψ*: (D) → (D ') by the com�
position rule, which is inverse to ϕ*.

Lemma 2 and (3) imply the assertion of Theorem 1.
9. The proof of Theorem 2 is based on the following

lemma, which is a modification of a statement in [3].
We fix an arbitrary closed set F ⊂ D of a positive

measure without isolated points, on which ϕ is contin�

uous,  = D '\ϕ(F). The capacity Cap(K; (D)) of

the compact K ⊂ DF in the space (D) equals the

value inf ||g | (D)||n where the infimum is taken over

all continuous functions g ∈ (D) such that g ≥ 1 on

K (here (D) = {u ∈ (D): u(x) = 0 for almost all
x ∈ F}). In a standard way, this capacity can be
extended to arbitrary sets in DF [10].

Definition 5. A function f, defined quasi�every�
where on DF, will be called a quasi�continuous if for
every ε > 0 there exists an open set Uε ⊂ DF such that

(Uε; (D)) < ε and the restriction of f to the
complement DF\Uε is continuous.

Lemma 7. Let D, D ' be domains on the Riemannian
manifold � of the topological dimension n. There are
exist some set Sϕ ⊂ DF of zero capacity and quasi�contin�

uous mapping ϕ0: DF\Sϕ →  such that ϕ0 coincides
with ϕ almost everywhere on DF. For the mapping ϕ0, the
estimate

(5)

is valid where Bj � DF is an arbitrary ball of some count�
able system constituting a base of open sets in U ⊂ DF .

By modifying further the circuit of arguments in
[11], we obtain a homeomorphic mapping ϕ0 on DF\Sϕ

belonging to (DF). Together with the inequali�
ties (4) we get a quasi�conformal mappings ϕ0 on
DF\Sϕ. The choice of F is arbitrary, so ϕ0 is quasicon�
formal on D\Sϕ.

Thus, the result of [12, Theorem 2.2] is proved
without additional restrictions. Theorems 1 and 2 can
be extended to sub�Riemannian manifolds, at least for
the compactly embedded domains.
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