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The goal of this paper is to give upper bounds for
the total variation and entropy distances between
probability solutions (x, t) and (x, t) to two Fok�

ker–Planck–Kolmogorov equations

(1)

with different diffusion matrices and drifts on �d × [0, T]
with fixed T > 0. In case of equal initial distributions
and identity diffusion matrices, for the entropy of 
with respect to  we obtain the estimate

and for the total variation norm we obtain the estimate
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In the general case we obtain similar estimates under
rather broad assumptions about our coefficients. The
principal novelty concerns the case of different diffu�
sion matrices (see Remark 2), but also the simpler case
of the same diffusion matrix is new. The main result is
applied to nonlinear Fokker–Planck–Kolmogorov
equations.

Let us consider a time�dependent second order
elliptic operator

where A(x, t) = (aij(x, t))i, j ≤ d is a positive symmetric
matrix (called the diffusion matrix) with Borel mea�

surable entries and b(x, t) = (bi(x, t) : �d × [0, T] →
�d is a Borel measurable mapping (called the drift
coefficient). Suppose that b is locally bounded and A
is locally Lipschitzian in x and locally strictly posi�
tive, i.e.,

(H) for every ball U ⊂ �d, there exist numbers λ =
λ(U) ≥ 0, α = α(U) > 0 and m = m(U) > 0 such that

for all x, y ∈ U and t ∈ [0, T].

We study solutions to the Cauchy problem

(2)

where ν is a Borel probability measure on �d. A model
example is given by the transition probabilities of a dif�
fusion process. We shall consider measures μ(dxdt) =
μt(dx)dt on �d × [0, T] given by families of probability
measures (μt)t ∈ [0, T] (or with t ∈ (0, T), which does not
matter for our purposes) on �d, i.e., t � μt(B) is mea�
surable for every Borel set B ⊂ �d and
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for every bounded Borel function f on �d × [0, T].
Such a measure is called a solution to the Cauchy

problem (2) if, for every function ϕ of class (�d),
the equality

(3)

holds for almost all t ∈ (0, T).
It is known (see [1]) that the measure μ possesses a

continuous positive density  on �d × (0, T) with
respect to Lebesgue measure, moreover, for each ball
U in �d, for almost every t ∈ (0, T) one has (·, t) ∈
Wp, 1(U) for all p ∈ [1, +∞) and the function

|| (·, t)  + ||∇ (·, t)  is integrable on every

compact interval in (0, T). Recall that Wp, 1(U) con�
sists of all functions that belong to Lp(U) along with
their first order Sobolev derivatives. We shall deal with
this version of  (in this case (·, t) is a probability den�
sity for almost every t and is integrable for all t ∈ (0, T).
Such a version satisfies the classical equation (1)
understood in the weak sense.

Suppose now that μ = (μt)t ∈ (0, T) and σ = (σt)t ∈ (0, T)
are two solutions to the Cauchy problem (2) with coef�
ficients A1, b1 and A2, b2, respectively, and the same ini�
tial condition ν (the case of different initial conditions
is considered similarly). The corresponding operators
will be denoted by L1 and L2 for brevity. Suppose
throughout that A1 and A2 satisfy Condition (H) and b1
and b2 are locally bounded Borel measurable.

Let μ = (x, t)dxdt and σ = (x, t)dxdt. Set

Let us introduce vector mappings

The distances between μt and σt will be estimated

through the L2(σ)�norm of Φ. In case of equal
diffusion matrices we obtain the difference of the
drifts: Φ = b1 – b2. In case of equal drifts and constant
diffusion matrices, only the first term of Φ appears.

The total variation norm || · ||TV of a measure with a
density equals the L1�norm of the density. Given two
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probability measures μ1 and μ2 on �d such that
μ2 = w · μ1, the entropy H(μ2|μ1) is defined by

provided that w lnw ∈ L1(μ1). If μ1 and μ2 are given by

positive densities  and  such that ln  ∈

L1(�d), then H(μ2|μ1) is the integral of ln . Let

us formulate our main result.

Theorem 1. Let | Φ| ∈ L2(�d × [0, T], σ). Sup�
pose also that at least one of the following two conditions
is fulfilled:

(a) (1 + |x|)–2| |, (1 + |x|)–1|b1| ∈ L1(�d × [0, T], σ), 

(1 + |x|)–1|Φ| ∈ L1(�d × [0, T], σ);
(b) there exist a nonnegative function V ∈ C2(�d)

and a number M ≥ 0 such that

Then

(4)

Corollary 1. Under the assumptions of the theorem,
for every nonnegative measurable function ϕ on �d ×
[0, T], we have

where

In particular, if A1 = A2 = A, then

and if A1 = A2 = I, then
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If b1 = b2 = b and the matrices A1, A2 do not depend on x,
then

The Kantorovich distance Wp(μ1, μ2) of order p ∈
[1, +∞) is defined as the infimum of

over all probability measures π on �d × �d with projec�
tions μ1 and μ2 on the factors. For p = 1 this gives the
classical Kantorovich distance, see [2]. In the case ϕ = 1,
in Corollary 1, we obtain the usual total variation dis�
tance, hence the classical Pinsker–Csiszár–Kullback
inequality (see, e.g., [3, Theorem 2.12.24])

can be applied. The estimate in the theorem can be
combined with the estimate

established in [4], where C is a number that depends
on the integral of exp(κ|x|p) against μ2 for any fixed
number κ (so that if we fix κ and consider only mea�
sures μ2 such that the integral of exp(κ|x|p) against μ2
does not exceed a fixed number M, then C depends
only on κ and M).

Remark 1. The theorem and the corollary involve
(through Φ) the logarithmic gradient ∇ /  of the
measure μσ (in the case where A1 and A2 are different).

If the norms of A1 – A2 and  are uniformly
bounded, then, up to a constant factor, the right�hand
side of (4) is estimated by the L2(σ)�norms of |b1 – b2|,

|∇  – ∇ |, and . Some estimates of the L2(σ)�

norm of  were obtained in [5], so there are effi�

cient conditions in terms of the coefficients to verify
that the right�hand side of our estimate is finite. In
particular, in the previous situation we arrive at the fol�
lowing bound:

where C(t) depends also on d, λ, α, , ,

and .

Remark 2. Let us observe that if d = 1, A = 1, ϕ = 1,
and there exist diffusion processes ξ1 and ξ2 with drifts
b1 and b2 and initial distribution ν (which is the case,
e.g., for bounded drifts), our estimates agree with the
estimates obtained in [6, 7] for the total variation dis�
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tance between the distributions of ξ1 and ξ2 in the
space C[0, T]. However, the method of [6, 7] is based
on the Girsanov theorem and does not extend to the
case of different diffusion matrices, because the corre�
sponding distributions in functional spaces can be
mutually singular (as in the case A1 = I and A2 = 2I).

Various estimates for transition probabilities of dif�
fusions involving the total variation distance or Kan�
torovich�type distances have become popular in the
last decade. There are many works on this topic, see,
e.g., [8, 9]. The principal novelty of our estimates is
that they compare diffusions with different drifts or
even with different diffusion matrices, not just with
different initial distributions.

Informally, our proof is this: we multiply the equa�
tion by f = v lnv – v, integrate by parts, apply the
Cauchy inequality and discard certain terms in the
obtained inequality. However, a rigorous justification
involves some technicalities, which will be presented
in a more detailed paper. We just mention that we esti�
mate the entropy and employ the next inequality
established in [4]: given two probability measures μ
and σ = v · μ on �d and a Borel function ϕ ≥ 0, we have

Let us give effective conditions to verify our
assumptions (a) or (b).

Corollary 2. A1 = A2 = A be uniformly bounded (and
satisfy (H)). Suppose that for some numbers γ1 > 0 and
γ2 > 0 we have

Then

Moreover, for any p ≥ 1 and K > 0 the following estimate
holds:

Example 1. In case A1 = A2 is uniformly bounded,
condition (a) is fulfilled if |b1(x)| ≤ C + C |x | or if |b1(x)| ≤
C + C |x|m and |x |m – 1 is integrable with respect to σ.
The latter can be verified by using Lyapunov functions
(see, e.g., [1, 10]). Also the assumption that |b1 – b2|

2 is
σ�integrable can be verified in these terms. Certainly,
the case of bounded b1 and b2 is covered by both con�
ditions.
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Example 2. Let L1 be the Ornstein–Uhlenbeck
operator Δu(x) – 〈x, ∇u(x)〉 and let L2 be its perturba�
tion by a first order term generated by a bounded Borel
vector field b0 on �d. Then

In particular, for ϕ = 1 we obtain that

Corollary 3. Let A1 and A2 satisfy (H). Suppose that
there are numbers λ1, λ2 > 0 such that

Assume also that |x |m ∈ L1(ν), ν = dx, ln  ∈
L1(�d) and

for some numbers m, γi ≥ 0. Then

where  –  =  –  – (  – ) and the num�

ber C(T) on the right depends on T, m, λi, γi, dν,

|| ln .

Suppose now that, for every measure μ on �d × (0, T)
given by a family (μt)t ∈ (0, T) of probability measures on
�d, we are given a locally bounded Borel measurable
mapping

Let us consider the Cauchy problem for the nonlinear
Fokker–Planck–Kolmogorov equation

(5)

By a solution we mean a measure μ given by a family of
probability measures (μt)t ∈ [0, T] such that the integral
identity (3) is fulfilled. The linear case corresponds to
a drift independent of measures. To solve this nonlin�
ear equation, we apply the fixed point principle: for
each drift b(σ, ·, ·), we can solve the linear equation
with this drift and obtain its solution μ(σ), which can
differ from σ. But in case of coincidence we obtain a
solution to the nonlinear equation. Below we use the
notation Lμu = Δu + 〈b(μ), ∇u〉.

Let C+[0, T] denote the set of nonnegative contin�
uous functions on [0, T]. Suppose that V ∈ C 2(�d) and
V ≥ 1. For α ∈ C+[0, τ0] and τ ∈ (0, T] we set
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Let ||μ||p, τ be the norm defined by

on the linear space of signed measures for which it is

finite. Note that  is a complete metric space with
respect to the metric generated by this norm.

Corollary 4. Let p ≥ 1, K > 0 and suppose that for
every function α ∈ C +[0, T] there exist numbers γ1(α) > 0
and γ2(α) > 2pK such that for every τ ∈ (0, T] and μ ∈

 one has

Suppose also that

Then, for every probability measure ν on �d such that

 ∈ L1(ν), there exist τ ∈ (0, T] and α ∈ C+[0, T]
such that a solution to the Cauchy problem (5) in the

class of measures  exists and is unique.

Note that under different assumptions solutions to
nonlinear Vlasov equations were constructed in [11]
by employing the contraction mapping theorem for
the Kantorovich norm. The existence of not necessar�
ily unique solutions has been proved in [12] by using
the Schauder fixed point theorem.

Example 3. Let

where β: �d × [0, T] → �d and K: �d × �d → �d are
Borel measurable locally bounded mappings such that
there exist numbers C > 0, 2p > q > 0, γ1 > 0, γ2 > 2pK
for which

Then all conditions of the above corollary are ful�
filled.

The estimate from Theorem 1 can also be used for
proving the differentiability of solutions to the Cauchy

�τ α, V( ) μ dxdt( ) μt dx( )dt: μt 0, μt �
d( ) 1,=≥=

⎩
⎨
⎧

=

V x( )μt dx( )

�
d

∫ α t( ), t 0 τ,[ ]∈≤
⎭
⎬
⎫

.

eK x
2p

�τ α,

K p,

μ p τ,

2
 := 1 x p+( )μs TV

2
sd

0

τ

∫

�τ α,

K p,

�τ α,

K p,

b μ x t, ,( ) x,〈 〉 γ1 α( ) γ2 α( ) x 2p–≤

x t,( )∀ �
d 0 τ,[ ].×∈

b μ x t, ,( ) b σ x t, ,( )– CeK x
2p

2⁄ 1 x p+( ) μt σt–( ) TV.≤

eK x
2p

�τ α,

K p,

b μ x t, ,( ) β x t,( ) K x y,( )μt dy( ),

�
d

∫+=

K x y,( ) C 1 x q+( ) 1 y p+( ),≤

β x t,( ) x,〈 〉 γ1 γ2 x 2p
.–≤



DOKLADY MATHEMATICS  Vol. 93  No. 2  2016

ESTIMATES OF DISTANCES BETWEEN TRANSITION PROBABILITIES OF DIFFUSIONS 139

problem for linear Fokker–Planck–Kolmogorov
equations with respect to a parameter. For a different
approach, see [13–15].

Corollary 5. Suppose that for every α ∈ [0, 1] there
exists a mapping

such that b is continuously differentiable in α and for
every ball U there exists a number C(U) such that

Suppose that for every α ∈ [0, 1] there exist numbers
γ1(α) and γ2(α) such that

Let μα be a probability solution to the Cauchy prob�
lem (2) with b(α, x, t) and A = I. Suppose that for every
α0 ∈ [0, 1]

Then the density (α, x, t) of the measure μα is differen�
tiable in α.
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