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At present, the design of stabilizing control in non�
linear systems is an important problem in control the�
ory (see [1, 2]). The goal of this paper is to study the
class of nonlinear discrete�time control systems in
which a formal small parameter can be identified so
that the systems can be transformed into a quasilinear
form. A suitable quadratic functional with state�
dependent coefficients is constructed, and a stabiliz�
ing regulator is designed using the discrete�time state
dependent Riccati equation (D�SDRE) technique
[3–5].

Consider the nonlinear discrete�time control
system

(1)

Assume that (1) can be transformed into a linear
control system with coefficients that are nonlinear
with respect to the state and depend on a positive
parameter μ:

(2)
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where μ0 is a given number that is not necessarily
small; A0 and В0 are constant matrices; А0, A1(x) ∈
Rn × n, B0, B1(x) ∈ Rn × r, and X ⊂ Rn is a given bounded
subset of the state space.

The task is to find a sufficiently smooth control u(х,
μ) with 0 < μ ≤ μ0 such that the equilibrium in the
closed�loop system corresponding to (2) is uniformly
asymptotically stable in the sense of Lyapunov, i.e.,
x(t) → 0 for t → ∞ as uniformly in t ≥ t0, μ ∈ (0, μ0].

A control function is sought in the form of the non�
linear state feedback

(3)

where K0 and K1(x) are a constant and a varying square
matrix, respectively.

The matrix K1(х) is used to take into account the
disturbances А1(х) and В1(х) in the coefficients of sys�
tem (2). The closed�loop system for (2) along the non�
linear control u(х, μ) (see (3)) has the form

(4)

The matrices K0 and K1(x) are chosen using the cri�
terion

(5)

where Q0 and R0 are constant matrices such that Q0 ≥ 0
and R0 > 0 and Q1(x) ≥ 0, so that the resulting regulator
(3) is stabilizing in (2).
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An algorithm for designing nonlinear stabilizing
regulators for (2), (5) is based on the formal solution of
the discrete�time matrix algebraic Riccati equation

(6)
and relies on the scheme proposed for the continuous
time case in [6].

Equation (6) is related to the optimality conditions
in the time�invariant linear quadratic optimal control
problem, but we use (6) as a baseline heuristic con�
struction. Obviously, the solution of Riccati equation
(6) now depends on the state х. Р is sought in the form
of a linear function of μ, i.e.,

(7)

Substituting (7) into (6) and formally assuming that μ
is small, we expand the left�hand side of the resulting
equation in a series for every х. Equating coefficients
of like powers of μ in the resulting expansion yields a
system of matrix equations for determining the terms
in (7).

Define the matrix  = R0 + P0B0. Now, com�

bining the coefficients of μ0 and μ1 separately, we
obtain corresponding algebraic matrix equations for
Р0 and Р1(х):

(8)

(9)

where Acl, 0 = A0 – B0 P0A0 and

By taking into account the form of the optimal reg�
ulator in the time�invariant linear quadratic optimal
control problem formally obtained from (2), (5) by
setting μ = 0, the desired regulator for problem (2),
despite the state�dependent coefficients, is sought in
the same form, taking into account (7):

(10)

Now, formally assuming that μ is small, we represent
(10) in the form
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where

(12)

(13)

Combining (11) with (12) and (13) yields

(14)

To analyze the stability of the closed�loop system
(4), in view of (7)–(9), we introduce the Lyapunov
function

Define the matrix D(x(t), μ) = P(x(t), μ) – Acl(x,
μ)TP(x(t + 1), μ)Acl(x, μ).

Theorem. Let the following conditions be satisfied:
(I) The coefficients of the matrices A1(х), В1(х),

Q1(x) are continuous bounded functions on X.

(II) The triplet of matrices (A0, B0, ) is stabiliz�
able and detectable.

(III) There exists Q1(x) > 0 such that С(х) is a posi�
tive definite matrix ∀x ∈ X.

(IV) There are G ⊆ X, μ0 > 0, and a constant positive
definite matrix D– > 0 such that D(x, μ) > D– holds uni�
formly in x ∈ G, and μ ∈ (0, μ0].

Then there are {0} ∈ G1 ⊆ G and μ0 > 0 such that the
equilibrium x(t) ≡ 0 of system (2), (14) is uniformly
asymptotically stable in the sense of Lyapunov for x0 ∈ G1
and μ ∈ (0, μ0]; i.e., regulator (14) is stabilizing in sys�
tem (2) for any x0 ∈ G1 and μ ∈ (0, μ0].

Thus, the algorithm for designing a stabilizing reg�
ulator for system (1) can be described as follows:

1. Transform system (1) into (2), where A0, B0, and
Q0 satisfy condition (I).

2. Find Р0 by solving Eq. (8).
3. Choose Q1(x) > 0 such that С(х) is a positive def�

inite matrix for any х ∈ X.
4. Determine. P1(x) as the solution of the discrete�

time Lyapunov equation (9) with the help of the well�
known formula 

P1(x) = C(x)(Acl, 0)
i [7].

5. Find the desired stabilizing regulator by using
formula (14).

The class of problems for which the conditions of
the theorem are satisfied is nonempty. Consider an
illustrative example, namely, the problem of stabilizing
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a discrete�time inverted pendulum [4] governed by the
dynamic equation

(the first and second coordinates correspond to the
deflection angle of the pendulum and the angular
velocity, respectively, while u(t) is the scalar control).

The model parameters are Ts = 0.05, М = 0.1, L =
0.1, g = 9.8, and γ = 0.05. The parameter Тs is used
as μ. The matrices А0, А1, В0, and В1 are specified as

The matrices Q0, Q1(x), and R0 in the cost func�
tional are defined as

R0 = 1.

Then P0 = , C(x) = P0A1(x) +

A1(x)TP0Acl + Q1(x) is a positive definite matrixwith
this choice of Q1(x). Moreover, D– can be defined as

D– = , and t0 = 0. With u(x, μ) and u0(x), for

N = 40 I(u(x, μ)) = 1.748 × 103, and I(u0(х)) = 2.912 ×
103; i.e., the regulator constructed is roughly 1.6 times
more efficient than the linear one. A gain of the same
order is observed if the regulators are compared in
terms of the standard cost functional in the time�
invariant control problem with matrices Q0 and R0.
The best efficiency of the nonlinear regulator is
achieved by tuning the parameters related to choosing
the coefficients of the matrices А0, А1(х), В0, В1(х), Q0,
Q1(х), and R0.
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