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This paper continues the author’s study initiated in
papers [1–3]; we use the notation and terminology of
these papers. In Section 2, we establish new properties
of the space L1(�, τ) of integrable (with respect to the
trace τ) operators affiliated with the semifinite von
Neumann algebra �. We show that if A and B are a
hyponormal and a cohyponormal τ�measurable oper�
ator, respectively, and AB ∈ L1(�, τ), then BA ∈
L1(�, τ) and ||BA||1 ≤ ||AB||1; moreover, τ(AB) = τ(BA),
and for self�adjoint A and B, we have τ(AB) = τ(BA) ∈ �.

We prove that if A ∈ L1(�, τ), then τ(A*) = . We
obtain a trace inequality for a pair of projections in �,
which characterizes trace in the class of all positive
normal functionals on �.

In Section 3, we establish new properties of a τ�
measurable idempotent (A = A2). We obtain a useful
factorization of such an operator; using it, we prove
that τ(A) ∈ �+ for an idempotent A ∈ L1(�, τ). There�
fore, if A, A2 ∈ L1(�, τ) and A = A3, then τ(A) ∈ �. We
show that if the difference of two τ�measurable idem�
potents is a positive operator, then this difference is a
projection. We prove that a semihyponormal τ�mea�
surable idempotent is a projection. We also show that a
hyponormal τ�measurable tripotent (A = A3) is the dif�
ference of two orthogonal projections.

τ A( )

1. NOTATION AND DEFINITIONS

Suppose that � is a von Neumann algebra of oper�
ators on a Hilbert space �, �pr is the lattice of projec�
tions on �, I is the identity of �, P⊥ = I – P for
P ∈ �pr, and �+ is the cone of positive elements
in �. If P, Q ∈ �pr, then the projection P ∧ Q is
defined by (P ∧ Q)� = P� ∩ Q� and P ∨ Q = (P ⊥ ∧

Q ⊥)⊥ is the projection onto .

A mapping ϕ: �+ → [0, +∞] is called a trace if
ϕ(X + Y) = ϕ(X) + ϕ(Y), ϕ(λX) = λϕ(X) for all X, Y ∈
�+, λ ≥ 0 (it is assumed that 0 · (+∞) ≡ 0), and ϕ(Z*Z) =
ϕ(ZZ*) for all Z ∈ �. A trace ϕ is said to be faithful if
ϕ(X) > 0 for all X ∈ �+, X ≠ 0; it is semifinite if ϕ(X) =
sup{ϕ(Y): Y ∈ �+, Y ≤ X, ϕ(Y) < +∞} for each X ∈ �+;
and it is normal if Xi  X (Xi, X ∈ �+) ⇒ ϕ(X) =

sup ϕ(Xi). For a trace ϕ, we set  = {X ∈ �+: ϕ(X) <

+∞} and �ϕ = lin� . The restriction ϕ |
admits a well�defined extension by linearity to a func�
tional on �ϕ, which we denote by the same letter ϕ.

An operator on � (not necessarily bounded or
densely defined) is said to be affiliated with a von Neu�
mann algebra � if it commutes with any unitary oper�
ator in the commutator subalgebra �' of �. A self�
adjoint operator is affiliated with � if and only if all
projections in its spectral decomposition of unity
belong to �.

In what follows, τ is a faithful normal semifinite
trace on �. A closed operator X affiliated with �
whose domain �(X) is dense in � is said to be τ�mea�
surable if, for any ε > 0, there exists a P ∈ �pr such that
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P� ⊂ �(X) and τ(P ⊥) < ε. The set  of all τ�measur�
able operators is a *�algebra under the passage to the
dual operator, multiplication by a scalar, and the
strong addition and multiplication operations
obtained as the closures of the usual operations [4, 5].

Given a family � ⊂ , we denote its positive, Hermi�
tian, and idempotent (X = X 2) parts by �+, �sa, and

�id, respectively. We denote the partial order on 

generated by the proper cone  by ≤.

If X is a closed densely defined linear operator affil�

iated with � and |X| = , then the spectral

decomposition P|X|(·) is contained in � and X ∈  if
and only if there exists a λ ∈ � such that τ(P|X|((λ,

+∞))) < +∞. If X ∈  and X = U|X| is the polar

decomposition of X, then U ∈ � and |X| ∈ +. More�

over, if |X| = P|X|(dλ) is the spectral decomposition,

then τ(P|X|((λ, +∞))) → 0 as λ → +∞.
By μt(X) we denote the rearrangement of an opera�

tor X ∈ , i.e., the nonincreasing right continuous
function μ(X): (0, ∞) → [0, ∞) defined by

The set of τ�compact operators  = {X ∈ : μ∞(X) ≡

(X) = 0} is an ideal in  [6].

Let m be the linear Lebesgue measure on �. The
noncommutative Lebesgue Lp�space (0 < p < ∞) asso�
ciated with (�, τ) can be defined as the space Lp(�, τ) =

{X ∈ : μ(X) ∈ Lp(�
+, m)} with F�norm (norm if 1 ≤

p < ∞)) ||X||p = ||μ(X)||p, X ∈ Lp(�, τ). The restriction

τ|  can be extended to a linear bounded functional
on L1(�, τ), which we denote by the same letter τ. We

have �τ = � ∩ L1(�, τ) and Lp(�, τ) ⊂  for all 0 <
p < ∞.

An operator X ∈  is said to be semihyponormal if
|X| ≥ |X*|, hyponormal if X*X ≥ XX*, and cohyponor�
mal if X* is hyponormal.

If � = �(�) is the *�algebra of all bounded linear
operators on � and τ = tr is the canonical trace, then

 coincides with �(�) and  is the ideal of com�
pact operators on �. We have

�̃
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where  is the sequence of s�numbers of X

and χA is the indicator function of A ⊂ �. In this case,
the space Lp(�, τ) is the Schatten–von Neumann
ideal �p, 0 < p < ∞.

2. ON INTEGRABLE OPERATORS

Theorem 1. If X, Y ∈  and XY ∈ L1(�, τ), then
YX ∈ L1(�, τ) and τ(XY) = τ(YX) ∈ �.

Corollary 1. If X, Y ∈ �(�)sa and XY ∈ �1, then YX
∈ �1 and tr(XY) = tr(YX) ∈ �.

Theorem 2. If X ∈ L1(�, τ), then τ(X*) = .

Theorem 3. Let 0 < p < ∞, and let A, B ∈  be oper�
ators such that A is hyponormal and B is cohyponormal.
If AB ∈ Lp(�, τ), then BA ∈ Lp(�, τ) and ||BA||p ≤
||AB||p; for p = 1, τ(AB) = τ(BA).

Theorem 4. Let A ∈ , and let V ∈ � wiith
||V|| ≤ 1. If V*AV = A, then VA = AV.

Theorem 5. Let ϕ be a trace on the von Neumann
algebra �. Then ϕ(P + Q + |P – Q}) ≤ 2ϕ(P ∨ Q) for
all P, Q ∈ �pr.

Corollary 2. For all P, Q ∈ �pr, ϕ(P + Q + |P – Q| +
2(P⊥ ∧ Q⊥)) ≤ 2ϕ(I).

Corollary 3. If ϕ(I) < ∞, then ϕ(|P – Q| + 2(P ∧ Q)) ≤
ϕ(P + Q) for all P, Q ∈ �pr.

The inequalities of Theorem 5 and Corollaries 2 and
3 become equalities in the cases (i) Q = P⊥, (ii) P ≤ Q, and
(iii) Q ≤ P. Under the conditions of Corollary 3, we have

ϕ(P ∧ Q) ≤ ϕ(P + Q – |P – Q|) for all P, Q ∈ �pr.

Theorem 6. For a positive normal functional ϕ on the
von Neumann algebra �, the following conditions are
equivalent:

(i) ϕ is a trace;
(ii) ϕ (P + Q + |P – Q |) ≤ 2ϕ(P ∨ Q) for all P, Q ∈ �pr;
(iii) ϕ ( |P – Q | + 2(P ∧ Q)) ≤ ϕ(P + Q) for all P,

Q ∈ �pr.
Proof. We have (i) ⇒ (ii) ⇔ (iii); let us prove the

implication (iii) ⇒ (i). By virtue of the monotonicity
of the functional ϕ, condition (iii) implies the weaker
inequality

 for all P, Q ∈ �pr,
and ϕ is a trace by virtue of Theorem 3.4(v) in [7].

For other characterizations of trace, see [7–9] and
the references therein.

3. ON IDEMPOTENT OPERATORS

Example 1. Suppose that 0 < p, q < ∞ and an =
2n + 1n–q, n ∈ �. Let us endow the von Neumann alge�

bra � = (�) with the faithful normal finite

sn X( ){ }n 1=
∞

�̃
sa

τ X( )
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∞
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trace τ = tr2 and set A = . We have

A = A2, A ∈ Lp(�, τ) if pq > 1, and A ∉ Lp(�, τ) if pq ≤ 1.

Proposition 1. Suppose that 0 < p, q, r ≤ ∞,  +  =

, and A ∈ . If A ∈ Lp(�, τ) ∩ Lq(�, τ), then A ∈

Lr(�, τ) and ||A ||r ≤ ||A ||p ||A ||q.
If A ∈ �id, then μt(A) ∈ {0} ∪ [1, ||A ||] for all t > 0

(see Lemma 3.8, (1) in [10]).

Theorem 7. Suppose that 0 < p < ∞, P ∈ , and
Q ∈ �id. If A ≡ P – Q ∈ Lp(�, τ), then A2 ∈ Lp(�, τ).

Corollary 4. If A ∈ L1(�, τ), A = A3, and A ⎯ A2 ∈
�, then τ(A) ∈ �.

Theorem 8. For an operator A ∈ , the following
conditions are equivalent:

(i) A = A2;
(ii) A = |A*||A |.

Corollary 5. If A ∈ , then there exists a unitary
operator S ∈ �sa such that 4|	A| ≤ |A|2 + |A*|2 + S(|A|2 +
|A*|2)S. Therefore, 2τ( |	A |) ≤ τ( |A |2 + |A*|2). If, in
addition, A ∈ L1(�, τ), then τ(A) ∈ �+.

Proof. If X, Y ∈ , then (X ± Y)2 ≥ 0; therefore,
–X2 – Y2 ≤ XY + YX ≤ X2 + Y2 and, according to [11,
Theorem 1 and Section 2], there exists a unitary oper�
ator S ∈ �sa such that 2|XY + YX | ≤ X2 + Y2 + S(X2 +
Y2)S. By Theorem 8, we can represent the operator
2	A in the form 2	A = A + A* = |A*| | A | + |A | |A*|; we
set X = |A*| and Y = |A |.

If A ∈ L1(�, τ), then we have |A*|  ∈

L1(�, τ)+ and τ(A) = τ(|A*| |A |) = τ( |A*| ) ≥ 0
by virtue of Theorem 3 in [1].

Theorem 9. If P, Q ∈  and A ≡ P – Q ∈ , then
A ∈ �pr and QA = AQ = 0.

Corollary 6. If P, Q ∈  and A ≡ P – Q ≤ 0, then
–A ∈ �pr and PA = AP = 0.

Corollary 7. If P, R ∈ , B ≡ P + R ∈  , and
B ≥ I, then B – I ∈ �pr.

Corollary 8. If S, T ∈  with S2 = T2 = I, and A ≡

S – T∈ , then A ∈ �pr.

Lemma 1. Suppose that A ∈  and A = An for some

n ∈ �, n ≥ 2. If A ∉ , then μt(A) ≥ 1 for all t > 0.
Proof. Suppose that, on the contrary, a = μ∞(A) ∈

(0, 1). Choose a number ε > 0 for which (a + ε)n < a and

2 n–

n 1=
⊕
∞

1 an

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

n 1=
⊕
∞

1
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let t > 0 be such that μt/n(A) ∈ [a, a + ε]. Recall that

μs + t(XY) ≤ μs(X)μt(Y) for all X, Y ∈  and s, t > 0 (see
[6, 12]). Therefore, μt(A) = μt(An) ≤ (μt/n(A))n ≤ (a +
ε)n < a; we have arrived at a contradiction.

Theorem 10. If A ∈  and A (or A*) is semihy�
ponormal, then A is normal and, thereby, A ∈ �pr.

Corollary 9. If A ∈  and A is hyponormal or
cohyponormal, then A is normal and, thereby, A∈ �pr.

Proof. If X, Y ∈ , then it follows from X ≤ Y that

 ≤ . Therefore, each τ�measurable hyponormal
operator is semihyponormal.

Theorem 11. If A ∈ , A = A3, and A is hyponormal
or cohyponormal, then A is normal; thereby, A ∈ �sa

and A = P – Q for some P, Q ∈ �sa with PQ = 0.

Corollary 10. Let A ∈ . If, for some λ ∈ �, the
operator Aλ = λI + A is hyponormal (or cohyponormal)

and Aλ = , then A ∈ �.

Corollary 11. If A, A2 ∈ L1(�, τ) and A = A3, then
τ(A) ∈ �.

Proof. In the decomposition A = P – Q with P =

 and Q =  [13, Proposition 1], we have

P = P 2, Q = Q2, and P, Q ∈ L1(�, τ). Since τ(P),
τ(Q) ∈ �+ by virtue of Corollary 5, it follows that
τ(A) = τ(P) –  τ(Q) ∈ �.

Remark 1. For the von Neumann algebra � =
�(�) and the trace τ = tr, the assertions of Theorems 10
and 11 were proved by the author in [14] (Lemma 3
and Theorem 2, respectively). The assertion of Theo�
rem 4 in the special case of an operator A ∈ �2 and an
isometry V was proved in [15, Lemma 3.1].
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