= **MATHEMATICS** =

Trace and Integrable Operators Affiliated with a Semifinite von Neumann Algebra

A. M. Bikchentaev

Presented by Academician I.A. Ibragimov July 1, 2015

Received July 24, 2015

Abstract—New properties of the space of integrable (with respect to the faithful normal semifinite trace) operators affiliated with a semifinite von Neumann algebra are found. A trace inequality for a pair of projec tions in the von Neumann algebra is obtained, which characterizes trace in the class of all positive normal functionals on this algebra. A new property of a measurable idempotent are determined. A useful factoriza tion of such an operator is obtained; it is used to prove the nonnegativity of the trace of an integrable idem potent. It is shown that if the difference of two measurable idempotents is a positive operator, then this dif ference is a projection. It is proved that a semihyponormal measurable idempotent is a projection. It is also shown that a hyponormal measurable tripotent is the difference of two orthogonal projections.

DOI: 10.1134/S1064562416010075

This paper continues the author's study initiated in papers $[1-3]$; we use the notation and terminology of these papers. In Section 2, we establish new properties of the space $L_1(\mathcal{M}, \tau)$ of integrable (with respect to the trace τ) operators affiliated with the semifinite von Neumann algebra M. We show that if *A* and *B* are a hyponormal and a cohyponormal τ-measurable oper ator, respectively, and $AB \in L_1(\mathcal{M}, \tau)$, then $BA \in$ $L_1(\mathcal{M}, \tau)$ and $||BA||_1 \le ||AB||_1$; moreover, $\tau(AB) = \tau(BA)$, and for self-adjoint *A* and *B*, we have $\tau(AB) = \tau(BA) \in \mathbb{R}$. We prove that if $A \in L_1(\mathcal{M}, \tau)$, then $\tau(A^*) = \overline{\tau(A)}$. We obtain a trace inequality for a pair of projections in $\mathcal{M},$ which characterizes trace in the class of all positive normal functionals on M .

In Section 3, we establish new properties of a τ measurable idempotent $(A = A^2)$. We obtain a useful factorization of such an operator; using it, we prove that $\tau(A) \in \mathbb{R}^+$ for an idempotent $A \in L_1(\mathcal{M}, \tau)$. Therefore, if $A, A^2 \in L_1(\mathcal{M}, \tau)$ and $A = A^3$, then $\tau(A) \in \mathbb{R}$. We show that if the difference of two τ-measurable idem potents is a positive operator, then this difference is a projection. We prove that a semihyponormal τ-mea surable idempotent is a projection. We also show that a hyponormal τ -measurable tripotent $(A = A^3)$ is the difference of two orthogonal projections.

Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University,

Kremlevskaya ul. 18, Kazan, 420008 Tatarstan, Russia e-mail: airat.bikchentaev@kpfu.ru

1. NOTATION AND DEFINITIONS

Suppose that M is a von Neumann algebra of operators on a Hilbert space $\mathscr{H},$ \mathscr{M}^pr is the lattice of projections on \mathcal{M} , *I* is the identity of \mathcal{M} , $P^{\perp} = I - P$ for $P \in \mathcal{M}$ ^{pr}, and \mathcal{M}^+ is the cone of positive elements in M. If $P, Q \in M^{\text{pr}}$, then the projection $P \wedge Q$ is defined by $(P \wedge Q)$ $\mathcal{H} = P\mathcal{H} \cap Q\mathcal{H}$ and $P \vee Q = (P^{\perp} \wedge$ Q^{\perp})[⊥] is the projection onto $\text{Lin}(P\mathcal{H} \cup Q\mathcal{H})$.

A mapping φ : $\mathcal{M}^+ \to [0, +\infty]$ is called a trace if $\varphi(X+Y) = \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all X, $Y \in$ \mathcal{M}^+ , $\lambda \ge 0$ (it is assumed that $0 \cdot (+\infty) \equiv 0$), and $\varphi(Z^*Z) =$ $\varphi(ZZ^*)$ for all $Z \in \mathcal{M}$. A trace φ is said to be faithful if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+, X \neq 0$; it is semifinite if $\varphi(X) =$ $\sup{\{\varphi(Y): Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty\}}$ for each $X \in \mathcal{M}^+;$ and it is normal if $X_i \nearrow X$ (X_i , $X \in \mathcal{M}^+$) $\Rightarrow \varphi(X) =$ sup φ(*X_i*). For a trace φ, we set $\mathfrak{M}^+_\varphi = \{X \in \mathcal{M}^+ : \varphi(X) < \varphi\}$ $+\infty$ } and $\mathfrak{M}_{\varphi} = \lim_{\mathbb{C}} \mathfrak{M}_{\varphi}^+$. The restriction $\varphi \mid \mathfrak{M}_{\varphi}^+$ admits a well-defined extension by linearity to a func tional on \mathfrak{M}_{φ} , which we denote by the same letter φ .

An operator on $\mathcal H$ (not necessarily bounded or densely defined) is said to be affiliated with a von Neu mann algebra $\dot{\mathcal{M}}$ if it commutes with any unitary operator in the commutator subalgebra \mathcal{M}' of \mathcal{M} . A selfadjoint operator is affiliated with M if and only if all projections in its spectral decomposition of unity belong to \mathcal{M} .

In what follows, τ is a faithful normal semifinite trace on M . A closed operator X affiliated with M whose domain $\mathfrak{D}(X)$ is dense in $\mathcal H$ is said to be τ -measurable if, for any $\varepsilon > 0$, there exists a $P \in \mathcal{M}^\mathrm{pr}$ such that

 $P\mathcal{H} \subset \mathfrak{D}(X)$ and $\tau(P^{\perp}) < \varepsilon$. The set $\tilde{\mathcal{M}}$ of all τ -measurable operators is a *-algebra under the passage to the dual operator, multiplication by a scalar, and the strong addition and multiplication operations obtained as the closures of the usual operations [4, 5]. Given a family $\mathscr{L}\subset\tilde{\mathscr{M}}$, we denote its positive, Hermitian, and idempotent $(X = X^2)$ parts by $\mathcal{L}^+, \mathcal{L}^{\text{sa}}$, and \mathcal{L}^{id} , respectively. We denote the partial order on $\tilde{\mathcal{M}}^{\text{sa}}$ generated by the proper cone $\tilde{\boldsymbol{M}}^{+}$ by \leq .

If *X* is a closed densely defined linear operator affil iated with M and $|X| = \sqrt{X^*X}$, then the spectral decomposition $P^{|X|}(\cdot)$ is contained in $\mathcal M$ and $X \in \tilde{\mathcal M}$ if and only if there exists a $\lambda \in \mathbb{R}$ such that $\tau(P^{|\lambda|})(\lambda, \lambda)$ $+(\infty)$)) < $+\infty$. If $X \in \tilde{M}$ and $X = U|X|$ is the polar decomposition of *X*, then $U \in \mathcal{M}$ and $|X| \in \tilde{\mathcal{M}}^+$. More-

over, if $|X| = \left(\lambda P^{X|}(d\lambda)\right)$ is the spectral decomposition, then $\tau(P^{|\mathcal{X}|}((\lambda, +\infty))) \to 0$ as $\lambda \to +\infty$. ∞ ∫

By $\mu_t(X)$ we denote the rearrangement of an operator $X \in \tilde{M}$, i.e., the nonincreasing right continuous function $\mu(X)$: $(0, \infty) \rightarrow [0, \infty)$ defined by

$$
\mu_t(X) = \inf \{ ||XP|| : P \in \mathcal{M}^{pr}, \tau(P^{\perp}) \le t \}, \quad t > 0.
$$

The set of τ-compact operators $\tilde{M}_0 = \{X \in \tilde{M} : \mu_\infty(X) = \emptyset\}$ $\lim_{t \to \infty} \mu_t(X) = 0$ is an ideal in \tilde{M} [6].

Let m be the linear Lebesgue measure on \mathbb{R} . The noncommutative Lebesgue L_p -space $(0 < p < \infty)$ associated with (\mathcal{M}, τ) can be defined as the space $L_p(\mathcal{M}, \tau) =$ $\{X \in \tilde{M} : \mu(X) \in L_p(\mathbb{R}^+, m)\}\$ with *F*-norm (norm if $1 \leq$ $p < \infty$)) $||X||_p = ||\mu(X)||_p, X \in L_p(\mathcal{M}, \tau)$. The restriction τ $|\mathfrak{M}_{\tau}^+|$ can be extended to a linear bounded functional on $L_1(\mathcal{M}, \tau)$, which we denote by the same letter τ. We have $\mathfrak{M}_\tau\! =\!\mathcal{M}\cap L_1(\mathcal{M},\tau)$ and $L_p(\mathcal{M},\tau)\! \subset\! \tilde{\mathcal{M}}_0\,$ for all $0\! <\!$ *p* < ∞.

An operator $X \in \tilde{M}$ is said to be semihyponormal if $|X| \ge |X^*|$, hyponormal if $X^*X \ge XX^*$, and cohyponormal if *X** is hyponormal.

If $M = \mathcal{B}(\mathcal{H})$ is the *-algebra of all bounded linear operators on \mathcal{H} and $\tau = \text{tr}$ is the canonical trace, then

 \tilde{M} coincides with $\mathfrak{B}(\mathcal{H})$ and \tilde{M}_0 is the ideal of compact operators on H . We have

$$
\mu_t(X) = \sum_{n=1}^{\infty} s_n(X) \chi_{[n-1,n)}(t), \quad t > 0,
$$

DOKLADY MATHEMATICS Vol. 93 No. 1 2016

where $\{s_n(X)\}_{n=1}^{\infty}$ is the sequence of *s*-numbers of *X* and χ_A is the indicator function of $A \subset \mathbb{R}$. In this case, the space $L_p(\mathcal{M}, \tau)$ is the Schatten–von Neumann ideal \mathfrak{G}_p , $0 < p < \infty$.

2. ON INTEGRABLE OPERATORS

Theorem 1. *If X*, $Y \in \tilde{M}^{sa}$ *and* $XY \in L_1(\mathcal{M}, \tau)$ *, then* $YX \in L_1(\mathcal{M}, \tau)$ and $\tau(XY) = \tau(YX) \in \mathbb{R}$.

Corollary 1. *If X*, $Y \in \mathcal{B}(\mathcal{H})^{\text{sa}}$ *and* $XY \in \mathcal{B}_1$ *, then YX* $\in \mathfrak{G}_1$ *and* tr(*XY*) = tr(*YX*) $\in \mathbb{R}$.

Theorem 2. *If* $X \in L_1(\mathcal{M}, \tau)$, *then* $\tau(X^*) = \overline{\tau(X)}$.

Theorem 3. Let $0 < p < \infty$, and let $A, B \in \tilde{M}$ be oper*ators such that A is hyponormal and B is cohyponormal.* $\text{If } AB \in L_p(\mathcal{M}, \tau), \text{ then } BA \in L_p(\mathcal{M}, \tau) \text{ and } ||BA||_p \leq$ $||AB||_p$; *for* $p = 1$, $\tau(AB) = \tau(BA)$.

Theorem 4. Let $A \in \tilde{M}_0$, and let $V \in M$ wiith $||V|| \leq 1$. *If* $V^*AV = A$, then $VA = AV$.

Theorem 5. *Let* ϕ *be a trace on the von Neumann* a *lgebra M. Then* φ $(P + Q + |P - Q)$) $\leq 2\varphi$ $(P \vee Q)$ for $a\overline{l}$ *l* $P, Q \in M$ ^{pr}.

Corollary 2. *For all P*, $Q \in \mathcal{M}^{pr}$, $\varphi(P + Q + |P - Q| +$ $2(P^{\perp} \wedge Q^{\perp}) \leq 2\varphi(I).$

Corollary 3. *If* $\varphi(I) < \infty$, *then* $\varphi(|P - Q| + 2(P \wedge Q)) \le$ $\varphi(P+Q)$ for all $P, Q \in \mathcal{M}$ ^{pr}.

The inequalities of Theorem 5 and Corollaries 2 and 3 become equalities in the cases (i) $Q = P^{\perp}$, (ii) $P \leq Q$, and (iii) $Q \leq P$. Under the conditions of Corollary 3, we have

$$
\varphi(P \wedge Q) \le \frac{1}{2} \varphi(P + Q - |P - Q|) \text{ for all } P, Q \in \mathcal{M}^{\text{pr}}.
$$

Theorem 6. *For a positive normal functional* ϕ *on the von Neumann algebra* -, *the following conditions are equivalent:*

(i) ϕ *is a trace;* (ii) $\varphi(P+Q+|P-Q|) \leq 2\varphi(P \vee Q)$ for all $P, Q \in \mathcal{M}^{\text{pr}};$ (iii) φ ($|P - Q| + 2(P \wedge Q) \leq \varphi(P + Q)$ *for all P*, $Q \in \mathcal{M}^{\mathrm{pr}}.$

Proof. We have (i) \Rightarrow (ii) \Leftrightarrow (iii); let us prove the implication (iii) \Rightarrow (i). By virtue of the monotonicity of the functional φ, condition (iii) implies the weaker inequality

 $\varphi(|P-Q|) \leq \varphi(P+Q)$ for all $P, Q \in \mathcal{M}$ ^{pr}, and φ is a trace by virtue of Theorem 3.4(v) in [7].

For other characterizations of trace, see [7–9] and the references therein.

3. ON IDEMPOTENT OPERATORS

Example 1. Suppose that $0 < p$, $q < \infty$ and $a_n =$ $2^{n+1}n^{-q}$, $n \in \mathbb{N}$. Let us endow the von Neumann algebra $M = \bigoplus_{n=1}^{\infty} M_2(\mathbb{C})$ with the faithful normal finite ⊕

trace
$$
\tau = \bigoplus_{n=1}^{\infty} 2^{-n} \text{tr}_2
$$
 and set $A = \bigoplus_{n=1}^{\infty} \begin{pmatrix} 1 & a_n \\ 0 & 0 \end{pmatrix}$. We have

 $A = A^2$, $A \in L_p(\mathcal{M}, \tau)$ if $pq > 1$, and $A \notin L_p(\mathcal{M}, \tau)$ if $pq \leq 1$.

Proposition 1. *Suppose that* $0 < p, q, r \leq \infty$, $\frac{1}{r} + \frac{1}{r} =$ *p* $\frac{1}{2} + \frac{1}{2}$ *q* -

$$
\frac{1}{r}, \text{ and } A \in \tilde{\mathcal{M}}^{\text{id}} \cdot \text{ If } A \in L_p(\mathcal{M}, \tau) \cap L_q(\mathcal{M}, \tau), \text{ then } A \in L_r(\mathcal{M}, \tau) \text{ and } ||A||_r \le ||A||_p ||A||_q.
$$

If $A \in \mathcal{M}^{id}$, then $\mu_t(A) \in \{0\} \cup [1, \|A\|]$ for all $t > 0$ (see Lemma 3.8, (1) in [10]).

Theorem 7. *Suppose that* $0 < p < \infty$, $P \in \tilde{M}^{\text{id}}$, and $Q \in \mathcal{M}$ ^{id}. If $A \equiv P - Q \in L_p(\mathcal{M}, \tau)$, then $A^2 \in L_p(\mathcal{M}, \tau)$. $A^2 \in L_p(M, \tau)$
, and $A - A^2$

Corollary 4. *If* $A \in L_1(\mathcal{M}, \tau)$, $A = A^3$, and $A - A^2 \in$ $M,$ then $\tau(A) \in \mathbb{R}$.

Theorem 8. For an operator $A \in \tilde{M}$, the following *conditions are equivalent:*

 $(i) A = A^2;$

 $(iii) A = |A^*||A|.$

Corollary 5. *If* $A \in \tilde{M}^{id}$, then there exists a unitary *operator* $S \in \mathcal{M}^{\text{sa}}$ such that $4|\Re A| \leq |A|^2 + |A^*|^2 + S(|A|^2 + \Re A)$ $|A^*|^2$)*S*. *Therefore*, $2\tau(|\Re A|) \leq \tau(|A|^2 + |A^*|^2)$. *If, in* $addition, A \in L_1(\mathcal{M}, \tau), then \tau(A) \in \mathbb{R}^+.$

Proof. If *X*, $Y \in \tilde{M}^{sa}$, then $(X \pm Y)^2 \ge 0$; therefore, $-X^2 - Y^2 \le XY + YX \le X^2 + Y^2$ and, according to [11, Theorem 1 and Section 2], there exists a unitary oper ator $S \in \mathcal{M}^{\text{sa}}$ such that $2|XY + YX| \le X^2 + Y^2 + S(X^2 + Y^2)$ *Y*2)*S*. By Theorem 8, we can represent the operator $2\Re A$ in the form $2\Re A = A + A^* = |A^*||A| + |A||A^*|$; we set $X = |A^*|$ and $Y = |A|$.

If $A \in L_1(\mathcal{M}, \tau)$, then we have $\sqrt{|A|} |A^*| \sqrt{|A|} \in$ *L*₁(*M*, τ)⁺ and τ(*A*) = τ(|*A**||*A*|) = τ($\sqrt{|A|}$ |*A**| $\sqrt{|A|}$) ≥ 0 by virtue of Theorem 3 in [1].

Theorem 9. *If* $P, Q \in \tilde{M}^{\text{id}}$ and $A \equiv P - Q \in \tilde{M}^+$, then $A \in \mathcal{M}^{pr}$ and $QA = AQ = 0$.

Corollary 6. *If* P , $Q \in \tilde{M}^{id}$ and $A \equiv P - Q \le 0$, then $-A \in \mathcal{M}^{\text{pr}}$ and $PA = AP = 0$.

Corollary 7. *If P*, $R \in \tilde{M}^{\text{id}}$, $B = P + R \in \tilde{M}^+$, and *B* ≥ *I*, *then B* – *I* \in *M*^{pr}.

Corollary 8. *If S*, $T \in \tilde{M}$ *with* $S^2 = T^2 = I$, and $A \equiv$ $S - T \in \tilde{\mathcal{M}}^+$, then $\frac{1}{2}A \in \mathcal{M}^{\text{pr}}$. $\frac{1}{2}$

Lemma 1. *Suppose that* $A \in \tilde{M}$ and $A = A^n$ for some $n \in \mathbb{N}, n \ge 2$. If $A \notin \tilde{M}_0$, then $\mu_t(A) \ge 1$ for all $t > 0$.

Proof. Suppose that, on the contrary, $a = \mu_{\infty}(A)$ (0, 1). Choose a number $\varepsilon > 0$ for which $(a + \varepsilon)^n < a$ and let $t > 0$ be such that $\mu_{t/n}(A) \in [a, a + \varepsilon]$. Recall that $\mu_{s+t}(XY) \leq \mu_s(X)\mu_t(Y)$ for all $X, Y \in \tilde{M}$ and $s, t > 0$ (see [6, 12]). Therefore, $\mu_t(A) = \mu_t(A^n)$ ≤ $(\mu_{t/n}(A))^n$ ≤ $(a +$ ε)^{*n*} < *a*; we have arrived at a contradiction.

Theorem 10. If $A \in \tilde{M}^{\text{id}}$ and A (or A^*) is semihy*ponormal, then A* is normal and, thereby, $A \in \mathcal{M}^{\text{pr}}$.

Corollary 9. If $A \in \tilde{M}^{\text{id}}$ and A is hyponormal or $\mathit{cohyponormal}$, then A is normal and, thereby, $A \in \mathcal{M}^{\text{pr}}$.

Proof. If *X*, $Y \in \tilde{M}^+$, then it follows from $X \leq Y$ that $X \leq \sqrt{Y}$. Therefore, each τ-measurable hyponormal operator is semihyponormal.

Theorem 11. If $A \in \tilde{M}$, $A = A^3$, and A is hyponormal *or cohyponormal, then A is normal; thereby,* $A \in \mathcal{M}^{\text{sa}}$ α *and* $A = P - Q$ *for some* $P, Q \in M^{\text{sa}}$ *with* $PQ = 0$.

Corollary 10. *Let* $A \in \tilde{M}$. *If, for some* $\lambda \in \mathbb{C}$ *, the operator* $A_\lambda = \lambda I + A$ *is hyponormal* (*or cohyponormal*) and $A_\lambda = A_\lambda^3$, then $A \in \mathcal{M}$.

Corollary 11. *If A*, $A^2 \in L_1(\mathcal{M}, \tau)$ and $A = A^3$, then $\tau(A) \in \mathbb{R}$.

Proof. In the decomposition $A = P - Q$ with $P =$ $\frac{A+A^2}{2}$ and $Q = \frac{A^2-A}{2}$ [13, Proposition 1], we have *P* = *P*², *Q* = *Q*², and *P*, *Q* \in *L*₁(\mathcal{M} , τ). Since τ (*P*), $\tau(Q) \in \mathbb{R}^+$ by virtue of Corollary 5, it follows that $\tau(A) = \tau(P) - \tau(Q) \in \mathbb{R}.$ $\frac{A-A}{2}$

Remark 1. For the von Neumann algebra $M =$ $\mathcal{B}(\mathcal{H})$ and the trace $\tau = \text{tr}$, the assertions of Theorems 10 and 11 were proved by the author in [14] (Lemma 3 and Theorem 2, respectively). The assertion of Theo rem 4 in the special case of an operator $A \in \mathcal{B}_2$ and an isometry *V* was proved in [15, Lemma 3.1].

ACKNOWLEDGMENTS

This work was supported by the Russian Founda tion for Basic Research, project no. 15-41-02433.

REFERENCES

- 1. A. M. Bikchentaev, Math. Notes **64** (1–2), 159–163 (1998).
- 2. A. M. Bikchentaev, Int. J. Theor. Phys. **37** (1), 571–576 (1998).
- 3. A. M. Bikchentaev, Math. Notes **96** (3–4), 332–341 (2014).
- 4. I. E. Segal, Matematika **6** (1), 65–132 (1962).
- 5. E. Nelson, J. Funct. Anal. **15** (2), 103–116 (1974).

DOKLADY MATHEMATICS Vol. 93 No. 1 2016

- 6. F. J. Yeadon, Math. Proc. Cambridge Phil. Soc. **77** (1), 91–102 (1975).
- 7. A. M. Bikchentaev, Sib. Math. J. **51** (6), 971–977 (2010).
- 8. A. M. Bikchentaev, Math. Notes **89** (3–4), 461–471 (2011).
- 9. A. M. Bikchentaev, Dokl. Math. **87** (1), 79–82 (2013).
- 10. A. M. Bikchentaev, Proc. Steklov Inst. Math. **255**, 35– 48 (2006).
- 11. A. M. Bikchentaev, Russ. Math. (Izv. Vyssh. Uchebn. Zaved., Mat.) **56** (2), 75–79 (2012).
- 12. T. Fack and H. Kosaki, Pacific J. Math. **123** (2), 269– 300 (1986).
- 13. A. M. Bikchentaev and R. S. Yakushev, Linear Algebra Appl. **435** (9), 2156–2165 (2011).
- 14. A. M. Bikchentaev, Lobachevskii J. Math. **35** (3), 281– 285 (2014).
- 15. H. A. Dye, Trans. Am. Math. Soc. **118**, 123–130 (1965).

Translated by O. Sipacheva