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We consider the following problem. Suppose that
E = �n, S is a compact Riemannian submanifold in E
and A is a Borel function on E taking values in the
space �(E) (given a Banach space X, �(X) denotes the
Banach space of all continuous linear operators on X).
By ΔA we denote the closed linear operator on the (real
or complex) space �p(E), 1 ≤ p < ∞, defined by
(ΔAϕ)(x) := trA(x)ϕ''(x) for functions ϕ (assumed to be
infinitely differentiable) which form a dense subspace

of �p(E). In what follows, we also define operators 
on �p(S) associated with ΔA.

Let G be a function on [0, a), a > 0, taking values in
the space of �(E)�valued Borel functions on E. We
shall obtain Feynman formulas for the evolution fam�
ilies of operators (a definition is given below) on �p(S)

generated by the families  and i  of operators
associated with the families ΔG(t) and iΔG(t).

The method which we use can be described as fol�
lows. If A(x) = � for each x, where � is the identity
self�mapping of E, then ΔA is the usual Laplacian act�
ing on functions defined on E, and the associated

operator , which acts on functions on S, is the
Laplace–Beltrami operator. In the situation under
consideration, it can be obtained as follows. For each
τ > 0, let F(τ) be the integral operator on �p(S) defined

ΔA
S

ΔG t( )
S ΔG t( )

S

ΔA
S

by (F(τ)ϕ)(x) := c(τ, x) ϕ(z)dz, where

(c(τ, x))–1 = dz and F(0) = �. Then the func�

tion F is continuous in the topology of pointwise con�
vergence on �(�p(S)), and F '(0) is the Laplace–Bel�

trami operator  on �p(S). It follows that if a func�
tion F(·) satisfies the estimate of Chernoff’s theorem,
then this function can be used to obtain Feynman

approximations for the semigroup . Our method is
based on the fact that a similar operator�valued func�
tion F(·) can be defined for any function A: E → �(E)

in such a way that F '(0)ϕ = ϕ for ϕ ∈ dom .

The paper is organized as follows. In the first sec�
tion, we give definitions used in what follows and state
a theorem similar to Chernoff’s theorem for evolution
families of operators (Chernoff’s classical theorem
deals with one�parameter semigroups of operators). In
the next section, we derive Feynman formulas for evo�
lution families of operators on �p(S) generated (a def�
inition is given below) by the families of operators

 and i . The last, third, section contains two
conjectures on a relationship between stochastic pro�
cesses in E (=�n) and in S that are generated by ΔG(t)

and .

Main attention is focused on the algebraic structure
of the problems, and assumptions of analytical charac�
ter are not considered.
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1. DEFINITIONS AND PRELIMINARY 
RESULTS

Let a > 0, and let �(t) be a linear (unbounded in
the general case) operator on a Banach space X for
each t ∈ [0, a); we assume that the domains of the
operators �(t) coincide and denote the common
domain by dom�.

Definition 1. The evolution family on [0, a) of con�
tinuous linear operators on a Banach space X gener�
ated by an operator�valued function � is a mapping
U� of the set Va defined by Va = {(τ, t) ∈ �2 | 0 ≤ τ <
t < a} to �(X) with the following properties:

(i) U�(τ, τ) = � for τ ∈ [0, a) (here and in what fol�
lows, � denotes the identity map of the corresponding
space);

(ii) for each τ ∈ [0, a), the function [τ, a) � t →
f
τ
(t) := U�(τ, t) is continuous with respect to the topol�

ogy of pointwise convergence (the strong operator

topology) on �(X), and (f
τ
(τ + δ)ϕ – ϕ) → �(τ)ϕ

in X as δ → 0 for all ϕ ∈ dom�;
(iii) for any 0 ≤ t1 < t2 < t3 < a, the relation U�(t2,

t3)U�(t1, t2) = U�(t1, t3) holds.
Remark 1. If U� is an evolution family in the sense

of the above definition, then, for any ϕ ∈ X and any
τ ∈ [0, a), the function [τ, a) � t → f

τ
(t)ϕ ∈ X is a solu�

tion of the Cauchy problem for the equation ψ'(t) =
�(t)ψ(t) with initial data (τ, ϕ).

Theorem 1 (generalization of Chernoff’s theorem
[2, 4, 5]). Let X be a Banach space with norm ||·||, and let
�s(X) be the space �(X) with the topology of pointwise
convergence; suppose that, for a > 0, F: Va → �s(X) is a
continuous mapping with the following properties:

(i) F(τ, τ) = �;
(ii) there exists an α > 0 such that if τ ∈ [0, a), δ > 0,

and (τ, τ + δ) ⊂ Va, then ||F(τ, τ + δ)|| ≤ exp(αδ);
(iii) there exists a vector subspace D of X such that
(a) for any x ∈ D and any τ ∈ [0, a), the limit

exists in X; this means that D is contained in the domain
of the derived function [τ, a) � t � F(τ, τ + t) ∈ �s(X)
at zero;

(b) the operator (τ, τ) with domain D defined by

D � x � (τ, τ)x ∈ X has a closure, which coincides
with �(τ).

Then, for any τ ∈ [0, a) and t > 0 such that (τ, t) ∈

Va, the sequence of operators ,

∈ �s(X) converges to U�(τ, τ + t) uniformly

with respect to admissible t ∈ [0, T] for any T > 0. 

1
δ
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The proof of this theorem is similar to that of Cher�
noff’s classical theorem [2, 4, 5].

2. FEYNMAN FORMULAS FOR EVOLUTION 
FAMILIES OF OPERATORS IN FUNCTION 

SPACES ON RIEMANNIAN MANIFOLDS

If X is a function space on a measure space and the
values of the mapping F specified in Theorem 1 are
integral operators on X, then the formula

is called the Feynman formula in X for the evolution
family U� on [0, a) and the mapping F. Moreover, if
the assumptions of Theorem 1 hold, then the Feyn�
man formula in X for the evolution family U� on [0, a)
and the mapping F is valid.

Let S be a compact Riemannian submanifold of the
space E = �n; for x ∈ S, by TxS we denote the tangent
space to S at x and by : �n → TxS, the orthogonal

projection. We use the symbol ∇ to denote the covari�
ant derivative generated by the Riemannian (Levi�
Civita) connection. Note that, given any function ψ ∈
C∞(S), its second covariant derivative ∇2ψ: S →
�(TS) defines a linear map on each fiber TxS of TS
(we denote it by the same symbol).

Definition 2. The operator  on �p(S), 1 ≤ l < ∞,
associated with ΔA is defined by

Remark 2. In the space �(TxS) A(x) ∇2ψ(x) =

( A(x))( ∇2ψ(x)).

Let a > 0, and let F j,  j = 1, 2, be mappings of Va to
�(�p(S)), 1 ≤ p < ∞, defined by the following relations
(throughout the paper, we assume that all operators
G(t)(x) are invertible):

where ϕ ∈ �p(S), and

F τ k 1–( )t
n

��������������� τ kn
n
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Theorem 2. If ϕ ∈ dom , then

Let X = �p(S), 1 ≤ p < ∞; consider the operators

�(t), t ∈ [0, a), on X defined by �(t) := .

Theorem 3. The Feynman formula is valid in �p(S),
1 ≤ p < ∞, for the evolution family U� on [0, a) and each
of the functions F 1 and F 2.

The proof of Theorem 3 uses Theorems 1 and 2.
Let a > 0, and let F Q j, j = 1, 2, be mappings of Va to

�(�2(S)) defined by

where ϕ ∈ �2(S), and

Here, we use the natural regularizations of integrals
of complex exponentials.

Let X = �2(S), and let �Q(t), t ∈ [0, a) be the oper�

ators on X defined by �Q(t) := i .

Theorem 4. The Feynman formula is valid in �2(S)

for the evolution family  on [0, a) and each of the

functions  and .

Remark 3. Theorem 4 provides a solution of the
Cauchy problem for a Schrödinger�type equation in
which the Hamiltonian may be even asymmetric. Sim�
ilar formulas can also be obtained for symmetric
Hamiltonians.

Remark 4. The Feynman formulas obtained above
are approximations of integrals of so�called chrono�
logical exponentials. In fact, according to the usual
definition of such integrals, these integrals are equal to
the limits of integrals of Feynman formulas. We also
mention that, in the case under consideration, the
corresponding chronological exponential can be

1
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regarded as the generalized density of a probability
measure or a Feynman pseudomeasure on a space of
functions taking values in S.

Remark 5. Feynman formulas can also be obtained
for equations of the form 

(t) = f(t) + (∇(f(t)), h(t)) + V(t)f(t), 

where h(t) is a vector field on S and V(t) is a function
on S for each t. The multiple integrals in these formu�
las approximate integrals over spaces of functions tak�
ing values in S; the integrands contain exponentials of
stochastic integrals determined by the vector field h as
multipliers.

3. CONJECTURES

In this section, we formulate two conjectures
related to the results obtained above. The Green func�

tion of the Cauchy problem for the equation (t) =

f(t) (with respect to the unknown function f tak�

ing values in �p(S)) and the Green function of the

Cauchy problem for the equation (t) = ΔG(t)ϕ(t)

(with respect to the unknown function ϕ taking values
in �p(E)) generate probability measures μS and μE on
the space of functions on [0, a) taking values in S and
E, respectively (or, which is the same thing, random
processes in S and E). For each ε > 0, let S ε be the
ε�neighborhood of the manifold S in E, and let
Cb([0, a], S), Cb([0, a], S ε), and Cb([0, a], E ) be the
spaces of continuous functions on [0, a] taking values
in S, S ε, and E, respectively, and vanishing at b ∈ S.
We assume that μS and μE are countably additive on

Cb([0, a], S) and on Cb([0, a], E). Let  be the restric�
tion of the measure μE to Cb([0, a], Sε); we set νε :=

/μE(Cb([0, a], Sε) and define με to be the probability
measure on Cb([0, a], E) being the image of νε

under the canonical embedding of Cb([0, a], S) into
Cb([0, a], E).

Conjecture 1. For suitable G, there exists a proba�
bility measure νS on Cb([0, a], E) concentrated on
Cb([0, a], S) and such that με → νS in the weak topology
on the space �(Cb([0, a], E)) of measures on Cb([0, a],
E) determined by the duality between the space
�(Cb([0, a], E)) and an appropriate space consisting of
bounded infinitely differentiable cylindrical functions
on Cb([0, a], E) all of whose derivatives are bounded.
Moreover, the measure νS is equivalent to μS (it would
be useful to find the corresponding Radon–Nikodym
density). In the case where G(t)(x) is the identity map�
ping for each t ∈ [0, a] and each x ∈ E, this conjecture
was proved and the Radon–Nykodim density was
found in [7].
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Let ηε be the probability measure generated on
Cb([0, a], Sε) by the Green function of the Cauchy–

Neumann problem for the equation  = ΔG(t)ψ(t)

with respect to the unknown function ψ taking values
in �p(S ε), and let γε be the measure on Cb([0, a], E)
being the image of ηε under the canonical embedding
of Cb([0, a], S ε) into Cb([0, a], E).

Conjecture 2. In the space �(Cb([0, a], E))
endowed with the topology defined above, γε → μS.
This was proved in [6] in the case where G(t)(x) = � for
all t ∈ [0, a] and all x ∈ E.

Remark 6. The formulas given above are usually
referred to as Lagrangian formulas, because the func�
tional integrals approximated by these formulas con�
tain action in Lagrangian form. However, the corre�
sponding Hamiltonian formulas can be obtained as
well [3]. Such formulas are useful if the classical
Hamiltonian function is not the sum of the kinetic and
the potential energy.
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