
ISSN 1064�5624, Doklady Mathematics, 2015, Vol. 92, No. 2, pp. 585–589. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © A.V. Vasil’ev, V.B. Vasil’ev, 2015, published in Doklady Akademii Nauk, 2015, Vol. 464, No. 6, pp. 651–655.

585

1. A function K(x, y) defined on Rm × (Rm\{0}) is
called a Calderón–Zygmund kernel [10, 11] if it satis�
fies the following conditions:

(i) K(x, tx) = t–mK(x, y) for any x ∈ Rm and any
t > 0;

(ii)  = 0 for any x ∈ Rm;

(iii) |K(x, y)| ≤ C and K(x, ω) is differentiable on
Sm ⎯ 1 for any x ∈ Rm, where Sm ⎯ 1 is the unit sphere of
m�space and C is a constant.

Let Zm be the integer lattice in m�space Rm. We set
K(0) = 0 and denote the restriction of a kernel K(x) to
hZm, h > 0, by Kd. Let ud be a function of a discrete

argument defined on the lattice .

For the multidimensional singular integral opera�
tor (v.p. means “valeur principale,” i.e., principal
value)

we consider the discrete analogue

 

K

S
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the sum of the series is understood as the limit

 

of partial sums, where

 

We use the symbol  to denote the Hilbert space
L2(hZm) of functions of a discrete argument with inner
product

 

and norm

 

Theorem 1. The estimate

holds, where the constant c does not depend on h.
The symbol of the operator K is defined as the Fou�

rier transform of the kernel K(x) in the sense of princi�
pal value [10, 11], that is, as

With the discrete operator Kd we associate a symbol
σd(ξ), too, where ξ ∈ [–πh–1, πh–1]m; this symbol is
determined by the multidimensional Fourier series
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where the partial sums are over the discrete cubes QN ∩
hZm, and is a periodic function on Rm with main cube
of periods [–πh–1, π/h–1]m.

Accordingly, by the symbol of the discrete singular
equation

 (1)

we understand the function a + σd(ξ), ξ ∈ [–πh–1,
πh⎯1]m.

Let D = Rm. We define a discrete space  as

the space of functions ud( ) of a discrete argument
with weight ω( ) = (1 + | |)α and norm

 

where

 

Theorem 2. The operator  boundedly acts on the

space (hZm), and its norm does not depend on h.

Now, we set D = ,  = {x ∈ Rm: (x1, …, xm),
xm > 0}, introduce the notation x' = (x1, …, xm – 1), and
consider a weight function of the form

 

by  we denote the discrete half�space {  ∈ Zm:  > 0}.

We define a discrete space (h ) as the space

of functions ud( ) of a discrete argument with norm

 

Theorem 3. The operator  boundedly acts on the

space (h ), and its norm does not depend on h.

Let Ph denote the operator of restriction to the lat�
tice hZm; to each function defined on Rm this operator
assigns the set of its discrete values at the points of the
lattice hZm.

The measure of approximation [4] of the operators
K and Kd in a linear normed space X of functions on Rm

is defined as the operator norm
 

where Xd is the normed space of functions on the lat�
tice hZm with norm induced by that on the space X.

As the space Xd we shall use, in addition to , the

space Ch of functions ud of a discrete argument  ∈
hZm with norm

In other words, Ch is the space of the restrictions of
functions u ∈ C(Rm) to the lattice hZm. It is worth
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mentioning here that the operator K is not bounded on
the space C(Rm) but is bounded on L2(Rm); it is well
known that, if the right�hand side υ of the equation

 (2)

has certain smoothness properties (e.g., satisfies the
Höder condition), then a solution of Eq. (2) (if it exists
in L2(Rm)) has the same smoothness properties [10].
Equations of type (2) often arise in applied problems,
and it is required to substantiate a numerical solution
method for these equations (see, e.g., [5, 9, 10]).

We define a discrete space Ch(α, β) as the space of
functions of a discrete argument  ∈ hZm which have
finite norm

 

and satisfy the conditions

A continuous analogue of these spaces is the space

(Rm) of functions which are continuous on Rm and
satisfy the Hölder condition with exponent 0 < α < 1
and weight (1 + |x|)β (see [1]). Results of [1] imply, in
particular, that the operator K is a linear bounded

operator K: (Rm) → (Rm), where m < β < α + m.

For the spaces Ch(α, β), the following theorem is
valid.

Theorem 4. The following estimate holds:

where m < β < α + m and the constant c does not depend
on h.

Below we give an estimate of the measure of
approximation of the operators K and Kd in the space
Ch(α, β). This will allow us to estimate the error of the
solution under the change of the continual operator K
by its discrete analogue Kd.

Theorem 5. The measure of approximation of the
operators K and Kd satisfies the inequality

 

where the constant c does not depend on h,  < α, and

 > β.
By a discrete solution we mean the solution of

equation (1) with right�hand side Phυ.
Theorem 6. For the discrete solution, the following

estimate is valid:
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2. To study equations in a half�space, we need a
special periodic analogue of Riemann’s classical
boundary value problem, which naturally arises in
studying discrete convolutions by using the discrete
Fourier transform.

Let Π+ and Π– be the upper and the lower half�strip
in the complex plane C:

By the periodic Riemann problem we understand
the following problem: Find a pair Φ±(z) of analytic
functions on Π± whose boundary values satisfy the fol�
lowing linear relation on the interval [–π; π] as s → 0±:

 (3)

where G(t) and g(t) are functions on [–π; π] such that
G(–π) = G(π), and g(–π) = g(π).

To solve the problem under consideration, we
introduce the integral

which is similar to a Cauchy�type integral. For this
integral, we obtain corresponding analogues of
Sokhotskii’s formulas [2, 6].

Theorem 7. If ϕ(t) satisfies the Hölder condition on
the interval [–π; π], ϕ(–π) = ϕ(π), then the boundary
values Φ±(t) of Φ(z) (z = t + is) as s → 0± can be
expressed as

where the integral is understood in the sense of principal
value.

The index κ of problem (3) is defined as the incre�
ment of the argument of the function G on the interval
[–π, π] divided by 2π. In what follows, we assume that
the function G(t) satisfies the Hölder condition. We
introduce the following notation:
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Theorem 8. If the index κ of the problem for the strip
is nonnegative, then the homogeneous problem has κ + 1
linearly independent solutions:

The general solution contains κ + 1 arbitrary con�
stants. For a negative index, the problem is unsolvable.

Theorem 9. In the case of a nonnegative κ, the inho�
mogeneous problem for the strip is solvable for any right�
hand side, and its general solution is given by

In the case of κ < 0, the inhomogeneous problem is
generally unsolvable. It is solvable if and only if the
right�hand side satisfied –κ – 1 additional solvability
conditions. Under these conditions, the solution is

 

3. Here we consider discrete convolutions over a
half�space with Calderón–Zygmund kernels from the
point of view of their solvability, describe their rela�
tionship with Riemann’s periodic problem with a
parameter, and perform a comparison with the contin�
uous case.

Consider the equation
 (4)

where M1 and M2 are Calderón–Zygmund operators
(similar to K in Eq. (2)) with kernels M1(x) and M2(x);
by P+ and P– we understand the operators of restric�

tion to the half�space  = {x = (x1, …, xm), ±xm > 0}.

The solvability of Eq. (4) can be studied by means
of the theory of Riemann’s classical boundary value
problem [2, 6]. Denoting the Fourier transform by F,
we obtain the relations

 

 

Here, Hξ' denotes the Hilbert transform with respect to
the variable ξm and ξ' = (ξ1, …, ξm – 1):

 

Thus, Eq. (4) transforms into the following equa�
tion with parameter ξ':
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(5)

This equation corresponds to Riemann’s boundary
value problem (with parameter ξ') with coefficient

To ensure the unique solvability of Eq. (4), we must
require that the index G(ξ', ξm) with respect to the vari�
able ξm vanish.

The symbol of the Calderón–Zygmund operator is
very specific. This is a homogeneous function of
degree 0; thus, essentially, it is defined on the unit
sphere S m – 1. Let m ≥ 3. Fix ξ' ∈ S m – 2 and suppose
that G(0, –1) = G(0, +1). As ξm varies between –∞ and
+∞, the argument of G(ξ) takes values on an arc of the
great circle joining the points (0, –1) and (0, +1). At
the same time, the symbol takes values on a closed
curve in the complex plane. For different ξ', all these
curves are homotopic, i.e., all of them have the same
index κ. The condition κ = 0 ensures the existence and
uniqueness of a solution to equation (4).

We proceed to the discrete equation

 (6)

in the discrete space L2(hZm), assuming that the P± in

(6) are the operators of restriction to  and  and

 are the discrete Calderón–Zygmund operators
generated by the kernels M1(x) and M2(x), which are
bounded operators on the spaces L2(hZm).

The discrete Fourier transform for functions of a
discrete argument on the lattice hZm is given by

 

This Fourier transform has the same properties as the
classical transform [8].

According to the above considerations, we define a
periodic analogue of the Hilbert transform with
respect to the variable ξm (ξ ∈ [–π, π]m, ξ' is fixed) by

The periodic analogues of the projections are

 

Finally, the periodic analogue of Eq. (5) is
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where σ1, h and σ2, h are the symbols of the discrete
operators M1 and M2.

Equation (7) is naturally related to a Riemann’s
periodic boundary value problem, and the condition
for the unique solvability of this problem is given by
Theorem 8. In the case under consideration, this is the
condition

 

Theorem 10. Equations (4) and (6) are solvable or
unsolvable simultaneously.

4. It follows from results of the preceding section
that, theoretically, we can expect the convergence of a
discrete solution to a continuous one with decreasing
the step size of the lattice. However, in practice, find�
ing a solution of the discrete equation (1), which is an
infinite system of linear algebraic equations, comes
across the problem of choice of a finite approximation.

On our view, more pragmatic is the following
scheme of finite approximation. Given a discrete ker�
nel Kd and a right�hand side vd, we construct their
periodic approximations by restricting them to QN ∩
hZm and periodically extending the restrictions to hZm.
We denote these approximations by Kd, N and υd, N,
respectively. Instead of Eq. (1), we consider the equa�
tion

(8)

in fact, this is a finite system of linear algebraic equa�
tions so�called cyclic convolution [7]. The apparatus
of the discrete Fourier transform and properties of the
symbol of a multidimensional singular integral make it
possible to substantiate the solvability of Eq. (8) at
large N, and applying the fast Fourier transform, we
can avoid solving systems of linear algebraic equations
and restrict ourselves to twice calculating Fourier
transforms (direct and inverse). Moreover, a compari�
son of the numerical results for the simplest types of
test equations (both regular and singular) obtained by
using projection methods [3] and fast Fourier trans�
form [7] demonstrated their close coincidence and a
serious gain in time when the latter was used even in
the one�dimensional case [12]. As the dimension
increases, the difference becomes more significant.

+
σ1,h ξ ' ξm,( ) σ2 h, ξ ' ξm,( )+

4πi
���������������������������������������������������
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∑ x̃ ỹ–( )ud N, x̃( )hm+

=  υd N, x̃( ), x̃ Zh
m

,∈



DOKLADY MATHEMATICS  Vol. 92  No. 2  2015

ON THE SOLVABILITY OF CERTAIN DISCRETE EQUATIONS 589

ACKNOWLEDGMENTS

This work was supported by the Russian Founda�
tion for Basic Research and the administration of
Lipetsk region (project no. 14�41�03595�r�tsentr�a).

REFERENCES
1. S. K. Abdullaev, Dokl. Akad. Nauk SSSR 292 (4), 777–

779 (1987).
2. Gakhov, F.D., Boundary Value Problems (Nauka, Mos�

cow, 1977) [in Russian].
3. I. Ts. Gokhberg and I. A. Fel’dman, Equations in Con�

volutions and Projection Methods of Their Solution
(Nauka, Moscow, 1971) [in Russian].

4. I. K. Daugavet, Theory of Approximate Methods: Linear
Equations (BKhV�Peterburg, St. Petersburg, 2006) [in
Russian].

5. S. G. Mikhlin, N. F. Morozov, and M. V. Paukshto,
Integral Equations of Elasticity Theory (Izd. S.�Peter�
burg. Gos. Univ., St. Petersburg, 1994) [in Russian].

6. N. I. Muskhelishvili, Singular Integral Equations (Nauka,
Moscow, 1968) [in Russian].

7. G. Nussbaumer, Fast Fourier Transform and Convolu�
tion Algorithms (Springer�Verlag, Berlin, 1982; Radio i
Svyaz’, Moscow, 1982) [in Russian].

8. S. L. Sobolev, Introduction to the Theory of Cubature
Formulas (Nauka, Moscow, 1974) [in Russian].

9. V. Z. Parton and P. I. Perlin, Methods of Mathematical
Elasticity Theory (Nauka, Moscow, 1981) [in Russian].

10. S. G. Mikhlin and S. Prössdorf, Singular Integral Oper�
ators (Akademie�Verlag, Berlin, 1986).

11. Selected Papers of Alberto P. Calderon, A. Bellow,
C. Kenig, and P. Malliavin, Eds. (Am. Math. Soc.,
Providence, R.I., 2008).

12. A. V. Vasilyev and V. B. Vasilyev, Neural Paral. Sci.
Comput. 20 (3/4), 313–326 (2012).

Translated by O. Sipacheva


		2015-10-27T15:48:20+0300
	Preflight Ticket Signature




