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Consider a branching random walk (BRW) with
continuous time on a lattice �d, d ≥ 1, assuming that
there is a single particle in the system at the initial
moment of time, which is located at some point x, and
branching, i.e., birth and death of particles, occur at N
lattice points x1, x2, …, xN, called branching sources.

Apparently, a BRW model with one source was first
considered in [1] for a simple random walk with pure
birth, i.e., without death of particles at the source. The
more general case of a symmetric or symmetrizable
BRW with finite variance of jumps and a single source
has subsequently been studied by many authors (see,
e.g., [2, 3]). A general model of a BRW with finitely
many branching sources at which the walk symmetry
can be both preserved and violated was introduced and
studied in [4].

The presence of a positive eigenvalue in the spec�
trum of the BRW evolution operator ensures the expo�
nential growth of the number of particles at each lat�
tice point and on the entire lattice (i.e., the BRW is
supercritical) [5]. For this reason, the authors of the
works mentioned above usually restricted themselves
to determining only the highest eigenvalue. At the
same time, in a number of situations, the information
on whether a positive eigenvalue is unique or nonu�
nique and, in the latter case, on the location of the
other eigenvalues of the evolution operator may be
important for analyzing the behavior of the corre�
sponding BRW.

For example, the uniqueness of a positive eigen�
value substantially facilitates the study of the propaga�

tion of particle fronts [6]. However, in the presence of
two and more sources on �d, the behavior of solutions
of differential equations for the moments of numbers
of BRW particles is determined not only by the value
of the leading positive eigenvalue but also by the
mutual arrangement of the positive eigenvalues of the
evolution operator [4].

In this connection, here we study conditions for the
emergence of a simple isolated positive eigenvalue in
the spectrum of the evolution operator with increasing
the intensity of the branching sources. We also study
the process of the appearance of positive eigenvalues
with further increasing the intensity of sources. We
show that the appearance of eigenvalues and their
multiplicity are determined not only by the intensities
of sources but also by their spatial configuration. This
study makes it possible to reveal the difference in the
behaviors of processes on lattice and continuous (see,
e.g., [7]) structures.

PROBLEM STATEMENT

Let A = (a(x, y)  be the matrix of transition

intensities in the random walk, where a(x, y) ≥ 0 for
x ≠ y, a(x, x) < 0, 

a(x, y) = a(y, x) = a(0, y – x) = a(y – x)

and (z) = 0. Suppose that the matrix A is irreduc�

ible, i.e., for each z ∈ �d, there exists a set of vectors z1,

z2, …, zk ∈ �d such that z =  and a(zi) ≠ 0 for i = 1,

2, …, k. The mechanism of branching at the sources
does not depend on the walk and is determined by an
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infinitesimal generating function f(u) := un,

where bn ≥ 0 for n ≠ 1, b1 < 0, and  = 0. As usual,

it is assumed that each particle evolves independently
of the other particles. We also assume that there exist
all derivatives βr := f (r)(1), r ∈ �, i.e., all moments of
the number of direct offsprings of each particle are
finite; for brevity, we use the notation β := β1. The
finiteness of all moments is used in the proof of limit
theorems on the behavior of the number of particles by
the method of moments [8]. In what follows, it suffices
to assume only the existence of β.

In BRW models, there arise multipoint perturba�
tions of the generator � of a symmetric random walk
[4]; in the case where the intensities of the sources are
identical, the corresponding evolution operators have
the form

where xi ∈ �d, �: l p(�d) → l p(�d), p ∈ [1, ∞], is the
symmetric operator generated by the matrix A and act�

ing by the rule (�u)(z) := (z – z')u(z'), Δx = δx ,

and δx = δx(·) denotes the column vector on the lattice
taking the value 1 at x and vanishing at the other

points. The perturbation β  of the linear opera�

tor � may lead to the appearance of positive eigenval�
ues of �β; the multiplicity of every such eigenvalue
does not exceed the number N of summands in the last
sum [4].

Let p(t, x, y) denote the transition probability of the
random walk; naturally, the function p(t, x, y) is deter�
mined by the transition intensities a(x, y) (see, e.g.,
[9, 10]). The Green function of the operator � can be
represented in the form of the Laplace transform of
the transition probability p(t, x, y):

The BRW analysis substantially depends on
whether the quantity G0 = G0(0, 0) is finite or infinite.
If the variance of jumps (here and in what follows, |z|
denotes the Euclidean norm of z) is finite, 

(1)

then G0 = ∞ at d = 1, 2 and G0 < ∞ at d ≥ 3 (see, e.g.,
[2]). If, for all z ∈ �d with sufficiently large norm, the
asymptotic relation
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holds, where H(·) is a continuous positive function
symmetric on the sphere �d – 1 = {z ∈ �d: |z| = 1}, then
G0 = ∞ for d = 1 and α ∈ [1, 2) and G0 is finite if d = 1
and α ∈ (0, 1) or d ≥ 2 and α ∈ (0, 2) [11]. Condition (2),
unlike (1), leads to the divergence of the series

a(z) and, thereby, to the infinity of the variance

of jumps.

THE DISCRETE SPECTRUM 
OF THE EVOLUTION OPERATOR

Let βc denote the least intensity of the source with
the property that, for β > βc, the spectrum of �β con�
tains positive eigenvalues.

Theorem 1. Suppose that a BRW is based on a sym�
metric spatially homogeneous irreducible random walk
and one of conditions (1) or (2) holds. If G0 = ∞, then

βc = 0 for N ≥ 1. If G0 < ∞, then βc =  for N = 1 and

0 < βc <  for N ≥ 2.

In the case where G0 < ∞, N = 2, and condition (1)
holds, the quantity βc was evaluated in [4]:

(3)

where  = G0(x1, x2). Although, condition (1) is ines�
sential for the argument of [4], and relation (3)
remains valid under condition (2).

Additional information about the structure of the
discrete spectrum of �β is provided by the following
theorem.

Theorem 2. Let N ≥ 2. For β > βc, the operator �β

can have at most N positive eigenvalues

(4)

counting their multiplicity; here, the eigenvalue λ0(β) is
simple. Moreover, there exists a value  > βc such that,

for β ∈ (βc, ), the operator has a unique eigenvalue

λ0(β).

In the general case, finding eigenvalues (4) is a dif�
ficult problem; it can be solved by using the following
assertion proved in [4] in the more general case of dif�
ferent intensities of sources.

Theorem 3. An eigenvalue λ belongs to the discrete
spectrum of �β if and only if the system of linear equa�
tions

(5)
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has a nontrivial solution with respect to the variables

.

In the presence of a certain “symmetry” in the
arrangement of sources, some of the eigenvalues (4) of
the operator �β may coincide (i.e., they may be non�
simple).

Example 1. Let � = κΔ, κ > 0, be a lattice Lapla�
cian; suppose that N ≥ 2 and x1, x2, …, xN are points at
which sources of the same intensity β are located. We
assume that these points are vertices of a regular sim�
plex, i.e., a simplex with equal edge lengths. Such sim�
plices in �d are formed, e.g., by any combination of
points being the vertices of some of the basis vectors.
By virtue of Theorem 3, the existence of a nontrivial
solution for the linear equation (5) for some β is equiv�
alent to the vanishing of the determinant

(6)

It follows from the symmetry and homogeneity of the
random walk that, for each i = 1, 2, …, N, we have

Note that the Green function has the alternative rep�
resentation

(7)

where φ(θ) is the Fourier transform of the transition
intensities a(z). Note also that, in the case where Gλ(x, y)
is the Green function of a lattice Laplacian, i.e.,
� = κΔ, the values of the function φ(θ) do not change
under any permutation of the coordinates of the vector
θ = {θ1, θ2, …, θd}. This observation and (7) imply that
the values Gλ(xi, xj) do not depend on the choice of i
and j, provided that i ≠ j: all of them coincide with each
other, so that the following quantity is well defined:

Thus, the vanishing of determinant (6) can be writ�
ten in the form

which is equivalent to the equation
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In this case, the eigenvalue λ0(β) is found from the
equation

and the coinciding eigenvalues λ1(β) = … … = λN – 1(β),
from the equation

The critical values βc and  are calculated explicitly as

Remark 1. The value  depends on the distance ρ
between the sources and does not depend on the num�
ber N of sources; i.e.,  = (ρ) > 0. At the same

time, βc depends not only on the distance between
the sources but also on N, i.e., βc = βc(ρ, N), and
βc(ρ, N) → 0 as N → ∞ for fixed ρ. Moreover,
βc(ρ, N) ≡ 0 under condition (1) for d = 1, 2 and under
condition (2) for d = 1 and α ∈ [1, 2).

Remark 2. In Example 1, it is not necessary to take
a lattice Laplacian for �. It suffices to require that the
values φ(θ) of the Fourier transform of the intensity
function a(z) be invariant under any permutation of
the coordinates of the vector θ = {θ1, θ2, …, θd}. This
condition is satisfied if the values of the function a(z)
do not change under any permutation of the coordi�
nates of the vector z = {z1, z2, …, zd}.

WEAKLY SUPERCRITICAL BRANCHING 
RANDOM WALKS

Of special interest is the study of the asymptotic
behavior of a BRW as β ↓ βc, i.e., as β → βc, β > βc.

Definition 1. If there exists an ε0 > 0 such that, for
β ∈ (βc, βc + ε0), the operator �β has one (counting
multiplicity) positive eigenvalue λ(β) satisfying the
condition λ(β) → 0 as β ↓ βc, then we say that the super�
critical BRW is weakly supercritical at β close to βc.

This definition gives rise to the question of whether
any supercritical BRW is weakly supercritical. The fol�
lowing theorem, whose proof essentially uses the Per�
ron–Frobenius theorem on the spectrum of positive
operators, answers this question in the affirmative.

Theorem 4. Each supercritical BRW is weakly
supercritical as β ↓ βc.

For a weakly supercritical BRW with finite variance
of jumps, an asymptotic expansion of λ(β) as β ↓ βc
was obtained in [12]. In the case where the variance of
jumps is not finite, an analysis of the asymptotic
behavior of λ(β) is based on the following local limit
theorem.
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Theorem 5. Suppose that the BRW under consider�
ation is based on a symmetric spatially homogeneous
irreducible random walk satisfying the condition

(8)

where c > 0 is a constant, α ∈ (0, 2), and ||z|| denotes the
max norm of z. Then

where hα, d is a positive constant not depending on x and
y for any fixed α and d.

The proof of this theorem is based on an asymp�
totic representation of the Fourier transform of the
transition intensities of the random walk [11] and on
the multidimensional counterpart of Watson’s well�
known lemma [13]. Condition (8) is more restrictive
than (2); the question of to what extent this constraint
is essential requires further analysis.

Under the conditions of Theorem 5, the function
p(t, x, y) asymptotically (in t) behaves as the monotone
function hα, d t–d/α. This observation and the Tauberian
theorems [14] imply the assertion about the behavior
of Gλ at small λ.

Theorem 6. As λ ↓ 0, the following asymptotic rela�
tions hold:

where γi, α is a positive constant for any fixed d, i ∈ �,
and α.

By virtue of this theorem, the asymptotic behavior
of λ(β) as β ↓ βc has the form

where ci, α is a positive constant for any i ∈ � and α.
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