
ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2024, Vol. 63, No. 1, pp. 132–140. © Pleiades Publishing, Ltd., 2024.

COMPUTER
METHODS
Scheduling Calculations
for a Multiprocessor System in Real Time

M. G. Furugyana,*
aFederal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow, 119333 Russia

*e-mail: rtsccas@yandex.ru
Received June 20, 2023; revised August 19, 2023; accepted October 2, 2023

Abstract—The problem of scheduling computations in a multiprocessor system is considered for the
case when, at some time instants, requests for the execution of job packages with known characteristics
are received. Interrupts and switching from one processor to another are allowed. In the first formu-
lation, the composition of all complexes and the characteristics of tasks are known in advance. In the
second setting, this information becomes known only at the time of each request. It is required to
determine whether there is an admissible schedule for the total set of jobs and build it in the case of a
positive answer. A setting is studied in which, in addition to processors, there is a nonrenewable
resource. A polynomial algorithm for solving the problem is developed, based on the construction of
a network f low model and the search for the maximum flow.

Keywords: scheduling computations, multiprocessor real-time system, admissible schedule, network
model, maximum flow, nonrenewable resource
DOI: 10.1134/S1064230724700102

INTRODUCTION
The main distinguishing feature of real-time computing systems is that each application module must

be executed in a strictly specified time interval and completed no later than a predetermined deadline.
Such systems are widely used in various fields of human activity. For example, during the design, testing,
and operation of complex technical objects (airplanes, rockets, power plants), during development work,
in civil and military construction, when assessing mineral reserves in deposits, when processing large
amounts of information, during the design and operation of transport and conveyor systems, and in many
other areas. In this case, one of the main tasks is to distribute the computer system’s resources between
software modules and build the optimal schedule for their execution. A large number of publications study
algorithms for solving such problems. Here we note fundamental works such as [1–3], in which the
authors study various formulations (drawing schedules with interruptions and switching from one proces-
sor to another and without interruptions, tasks for performance and meeting deadlines, construction of
uniprocessor and multiprocessor schedules). In [3], NP-hard problems of performance and minimization
of the maximum time offset for one and several devices are studied. A new approach to find approximate
solutions is proposed. In [4, 5], a technique for constructing optimal schedules in problems with nonfixed
parameters (durations, consumed resources) is considered. The technique is based on the use of the
branch-and-bound method and the construction of polyhedra of the solution’s stability. In [6–8], a tech-
nique was developed for checking the fulfillment of real-time constraints, which consist in the fact that
each job must be performed within the given guideline interval. Research was carried out for a multicore
real-time computing system and was based on the construction of a simulation model using generalized
finite state machines with a timer stop. Using this model, a timing diagram of the system’s operation is
constructed, allowing for direct verification of compliance with real-time constraints. In [8], a pseudo-
polynomial algorithm for solving the problem was proposed, which constructs a schedule that is optimal
in terms of performance for executing tasks with logical precedence conditions. In this problem, each job
is given a list of its immediate predecessors and the number of completed immediate predecessors required
to begin executing it. The problem is reduced to a cyclic game. In [9, 10], some work scheduling problems
are reduced to minimax problems.

The publications mentioned above study the distribution of renewable resources (processors,
machines, actuators, devices, workers), i.e., resources that can be used repeatedly. A number of publica-
132

SCHEDULING CALCULATIONS FOR A MULTIPROCESSOR SYSTEM 133

Fig. 1. Streaming network G to find an admissible schedule.

I1 w1

Ij wi

wn

t

Ip

S

tions examine issues of the distribution of nonrenewable resources (finance, fuel, electricity, various
materials, computer RAM assigned to certain software modules). Unlike renewable resources, nonrenew-
able resources cannot be reused. In relation to this, we note the works [11, 12], in which it is assumed that
the duration of tasks linearly depends on the size of the resource allocated to them. In [13], a problem with
mixed types of resources—renewable and nonrenewable—was studied. We consider the problem of creat-
ing an admissible schedule with interruptions in a multiprocessor system in the case where policy intervals
are specified, processors can have arbitrary performance, there are several types of nonrenewable
resources, and the duration of work execution linearly depends on the amount of the resources allocated
to them. Polynomial algorithms are constructed based on reducing the original problem to a f low problem
in a network of a special type.

We note some interesting articles on planning in industrial production. In [14], the authors explored a
methodology for the joint planning of production capacity development and scheduling taking into
account market opportunities, and also detailed an integrated production capacity planning model with
several discrete and continuous variants for changing short-term and medium-term capacity and devel-
oped a heuristic algorithm based on the reduction of the initial problems to a nonlinear mixed integer
problem. In [15], some issues in the field of production planning and control are presented, and a hierar-
chical architecture for production planning and control is developed. In [16] a two-tier single-product
storage system in which a regional center replenishes orders from several independent local distribution
centers over a set period of time is presented. The developed model determines the values of the product’s
price, required replenishment time, and required delivery time that maximize the expected system-wide
profit for the given period, taking into account product storage costs and fixed equipment costs.

In [17] a problem in which scheduling is carried out in two stages is studied: first, the sequence of activ-
ities is determined, then idle time is inserted into the schedule to minimize the sum of early and late costs.
The sequence of activities is determined using a heuristic method, and the task of inserting idle time is
solved using linear programming to set the start and end times of activities. In [18] the task of planning
lead times is presented and the trade-offs that should be taken into account when setting these deadlines
are also identified. A model is proposed to show how the scheduled execution time of an operation
depends on the stochastic variability of the resource requirements for that operation, as well as the
resource utilization related to that operation. In [19] the task of scheduling and routing two robots that
deliver products to specific locations is described. The problem of minimizing the time required to com-
plete all operations and return the robots to their original position is solved. The problem is proved to be
NP-hard. The solution is based on the use of integer linear programming and genetic algorithm, as well
as dynamic programming to evaluate the quality of the solutions.

This paper studies the computation scheduling problem on a multiprocessor system under the follow-
ing assumptions. At the given points in time, requests are received to perform sets of work with known
durations and target intervals. Interrupts and switches from one processor to another are allowed. Two for-
mulations of the problem are considered. In each of them, the moments at which requests arrive are
known in advance. However, in the first setting, the composition of all complexes and the characteristics
of the work are also known in advance, and therefore, in this case, the execution of all tasks can be planned
before the first request arrives. In the second formulation, the composition of task sets and their charac-
teristics become known only at the time of receipt of each request. Then it is possible to plan the execution
of the work only after receiving the corresponding request, i.e., in real time. In both settings, it is necessary
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

134 FURUGYAN
to determine whether there is an acceptable schedule for the entire set of work packages and construct it
in the case of a positive answer. The problem is also considered for the case when, in addition to proces-
sors, the jobs use a nonrenewable resource. In this case, the duration of a task is a decreasing function of
the amount of the nonrenewable resource allocated to it. Unlike [13], this function is not expected to be
linear. The solution to the problem is based on constructing a network f low model and searching for the
maximum flow.

1. PROBLEM STATEMENT

At moments in time requests to complete K packages of work (tasks) are received: Wk =

, , . To do this, in each interval , mk processors are avail-
able (is the point in time after which these processors cannot be used). All the processors are identi-
cal. Every task has the following characteristics: is the guideline interval (work can only be
executed in this interval), , is its duration, and , i . When executing the tasks,
interruptions and switching from one processor to another are allowed, which, by assumption, do not
require time. In addition, parallel execution of one task by several processors and simultaneous execution
of several jobs by one processor are not allowed.

Two formulations of the problem are considered. In each of them, moments are known in advance.
However, in the first formulation, the composition of all complexes Wk and the characteristics of the
works included in them are also known in advance. Therefore, in this case, it is possible to schedule the
work of all tasks up to the point in time . In the second setting, the composition of the set of tasks Wk

and their characteristics become known only at the moment . Then, the work Wk can only be planned
after receiving the corresponding request, which arrives at the moment , i.e., in real time.

In both settings, it is necessary to determine whether there is an acceptable schedule for the entire set
of works

(i.e., a schedule in which each task is executed in its own guideline interval) and build it in the case of a
positive answer. It is assumed that the operating time of the scheduling algorithm itself can be neglected
in both cases.

The solution to the problem is based on constructing a network f low model and searching for the max-
imum flow. Therefore, the next section describes one of the most effective streaming algorithms, whose
modification will be used to construct the schedule.

2. BRIEF DESCRIPTION OF A POLYNOMIAL ALGORITHM
FOR FINDING THE MAXIMUM FLOW IN A NETWORK

Given the network , V is the set of peaks, u is the source, is the drain, , A is the set
of oriented arcs, and is the throughput of arc . The following polynomial algorithm for
finding the maximum flow in the network G is proposed in [20].

Step 1. Select f as the initial zero thread , i.e., put for all

Step 2. Build the residual network :

if , then include arc with bandwidth in ; and if
, then include arc with bandwidth in .

Step 3. If in the network there is no direct path from u to , then f is the maximum flow; and the
algorithm is completed. Otherwise, go to step 4.

Step 4. Build a layered network . It contains all the shortest oriented paths
from u to .

Step 5. Find a dead-end flow g in the network . (A dead-end flow is a f low with respect to which
there is no direct increasing path.)

τk

…1 2{ , , , }kr
k k kw w w = 1, k K τ < τ < … < τ1 2 K []+τ τ 1, k k

+τ 1K
i
kw [,]i i

k kb c i
kw

≥i
kb τk

i
kt ≤ −i i i

k k kt c b = 1, kr

τk

τ1

τk

τk

=
= ∪

1

K

k
k

W W

()= , G V A v ∈v, u V
(),U a b () ∈,a b A

() =, 0f a b () ∈, .a b A

() ()()= , G f V A f

() ()<, , f a b U a b (), a b () ()−, , U a b f a b ()A f
() >, 0f a b (), b a (), f a b ()A f

()G f v

() () ()()=* * , *G f V f A f
v

()*G f
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

SCHEDULING CALCULATIONS FOR A MULTIPROCESSOR SYSTEM 135
Step 5.1. Define node with the minimal throughput. (The capacity of a node is the mini-
mum of the maximum amount of the f low that can enter that node and the maximum amount of the f low
that can leave it.)

Step 5.2. “Push” out maximum possible f low from node to the left up to source u and to the right
all the way to drain . The resulting f lows along the arcs determine f low g.

Step 5.3. Remove from network node and all other nodes with zero residual capacity, arcs
incident to these nodes, all fully saturated arcs, the resulting “hanging” nodes (if any), and all arcs inci-
dent to them.

Step 5.4. If there is a path from u and in the rest of the network , then go to step 5.1. Otherwise
a dead-end flow g is built in the network .

Step 6. Correct the f low f in the network G:

if arc corresponds to arc , then put ; if arc
corresponds to arc , then put . Go to step 2.

The computational complexity of the described algorithm is .

3. BRIEF DESCRIPTION OF THE ALGORITHM BY V.S. TANAEV
FOR CONSTRUCTING AN ADMISSIBLE SCHEDULE

The further study of the problem is based on the use of the algorithm of V.S. Tanaev for constructing
an admissible multiprocessor schedule with interruptions and switchings [1]. Let us give a brief description
of this algorithm for the task formulated in Section 1 at K = 1. We will assume that in this case the set of
jobs , their duration is , guideline intervals are , and m is the number of identical
processors.

Assume are all different quantities , ,
. A streaming network (see figure) is being built, where is the set of

peaks, u is the source, v is the drain, and (is the set of oriented arcs. Arc
is entered in the network if . Note that for all j and i either or . Band-
widths U of the arcs are defined as follows: , , and (.

It was proved in [1] that an admissible schedule exists if and only if the maximum flow f of network G
saturates all output arcs (, i.e., when for all . Magnitude is equal to the
CPU time allocated to job in the interval Ij. To construct an admissible schedule, in each interval Ij,
apply the packing algorithm [1], whose computational complexity is . To find the maximum flow in
network G, we can use the polynomial algorithm described in Section 2. Since , the computational
complexity of Tanaev’s algorithm in this case is .

4. CONSTRUCTION OF A SCHEDULE FOR THE CASE WHEN INFORMATION
ABOUT SETS Wk, k = , ARRIVES UNTIL τ1

Let us consider the case when the composition of all sets Wk and characteristics of the works included
in them are known in advance (i.e., before the moment of time). In this case, we can create a schedule
for the entire set of tasks W even before requests for work Wk are received at moments in time (i.e., until
the point in time).

Assume are all different quantities , , and , . Further, as in Section 3, intervals
 and streaming network are determined, where is the set of

()∈0 *a V f

0a
v

()*G f 0a

v ()*G f
()*G f

() ∈, a b A () ()∈, *a b A f () () ()= +, , , f a b f a b g a b () ∈, a b A
() ()∈, *b a A f () () ()= −, , , f a b f a b g b a

()3O V

{ }= …1 2, , , nW w w w it [], i ib c

< < … <0 1 py y y , i ib c = 1, i n []−= 1, ,j j jI y y −δ = − 1,j j jy y
= 1, j p ()= , G V A { }= , , , j iV u I w v

() ()= { , , , , j j iA u I I w ,)}iw v (), j iI w
[]⊆ , j i iI b c []⊆ , j i iI b c []∩ = ∅, j i iI b c

() = δ, j jU u I m () = δ, j i jU I w U =,)i iw tv

,)iw v () =, i if w tv = 1, i n (), j if I w
iw

()O n
≤ 2p n

3()O n

1,K

τ1

τk

τ1

j
ky τk

i
kb i

kc = 1, ,k K = 1, ki r
j

kI ()= , k k kG V A { }= =, , , , 1, j i
k k k kV u I w j pv
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

136 FURUGYAN
nodes, u is the source, is the drain, and is the set of oriented arcs. Arc
 is introduced into the network if , .

Further, to solve the question of the existence and construction of an admissible schedule, an algo-
rithm similar to the one described in Section 3 can be used. The computational complexity of the algo-
rithm is

5. CONSTRUCTION OF A SCHEDULE FOR THE CASE WHEN INFORMATION
ABOUT THE SET Wk ARRIVES AT THE MOMENT τk, k =

The case is considered when the moments of the receipt of requests for work Wk are known in
advance, and the composition of each set Wk and the characteristics of the tasks included in it become
known only at the moment . First, we consider the problem of constructing a schedule for .

5.1. Constructing a Network Model and Making an Admissible Schedule for W1

Assume are all the different quantities among , , , , belonging to the
interval . We define the intervals , , and network , where

 and the set of oriented arcs A1 and their throughputs are determined analogously
to how it was done in Section 3 at , .

When finding the maximum flow f1 in the network , the following modification of the algorithm

described in Section 2 is used. When pushing the f low from the peak to the right (step 5.2, Section 2),
the arcs should be used first for works for which . This is because such jobs can only be
executed within the interval , and for works with a deadline longer than , the CPU time can be
allocated even after the moment .

The quantity of the f low is equal to the amount of the CPU time allocated to job in interval
. The schedule in interval is built using a packing algorithm.

If for at least one job with deadline , it turned out that (i.e., arc is not
completely saturated), then the admissible schedule for W1, and, therefore, for the entire set of tasks W

does not exist. In the case for all works with deadline , the construction of an
admissible schedule will continue at moment for unfinished works from (if any) and newly received
works from .

5.2. Constructing a Network Model and Making Admissible Schedules for

We assume that we have built a streaming network , and the maximum flow is found
in it. If for at least one job , for which , after finding the maximum flow in the
network , it turned out that , i.e., arc is not completely saturated, then the
admissible schedule for , and, therefore, for the entire complex W does not exist. If

 for all arcs , , for which , then constructing an admissible sched-

v = v(,),(,),(, }){ j j i i
k k k k kA u I I w w

(), j i
k kI w kG ⊆ [j i

k kI b]i
kc

=

3

1

.
K

k
k

O r

1,K

τk

τk 1W

< < … < 10 1
1 1 1

py y y τ1, τ2 1
ib 1

ic = 11, i r

[]τ τ1 2, −= 1
1 1 1[,]j j jI y y = 11, j p ()=1 1 1, G V A

{ }= v1 1 1, , , ,j iV u I w ()1 , U i j
= 1m m = 1n r

1G

1
jI

1 1(,)j iI w 1
iw ≤ τ1 2

ic
[]τ τ1 2, τ2

τ2

1 1 1(,)j if I w 1
iw

1
jI 1

jI

1
iw ≤ τ1 2

ic () <v1 1 1,i if w t ()v1,iw

() =v1 1 1,i if w t 1
iw ≤ τ1 2

ic
τ2 1W

2W

∪ … ∪ =1 , 2, kW W k K

− =1, 2, kG k K −1kf
= −, 2, 1i

rw r k ≤ τi
r kc −1kf

−1kG ()− <v1 , i i
k r rf w t ()v, i

rw

−∪ … ∪1 1 kW W

()− =v1 , i i
k r rf w t ()v, i

rw = −1, 1r k −≤ τ 1
i
r kc
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

SCHEDULING CALCULATIONS FOR A MULTIPROCESSOR SYSTEM 137
ule for W continues at the moment for unfinished works from the set (if any) and newly
received tasks from .

Assume are all different quantities , , , . We define the intervals
 and assume . From the network , we remove the following elements:

—nodes , , and all the arcs incident to them , , , ;

—nodes for which

(5.1)

and the corresponding arcs , , (since the fulfillment of condition (5.1) means the

completion of work).

Next, the duration of each remaining job decreases by the amount of the f low along the

arc . Network is built from the remaining nonremote part of the network by adding to it

nodes , and arcs , , , , , , analogously to how it is
described in Section 3 at , + (the number of remaining vertices Gk – 1). The maximum flow

 is found in the network . By analogy with Section 5.1 when pushing the f low from the vertex to
the right (step 5.2, Section 2) arcs should be used first for works for which . The quan-

tity of the f low is equal to the amount of CPU time allocated to the job in the interval .

Schedule of work execution in the interval is found using the packing algorithm [1].
The computational complexity of the proposed algorithm is

6. DISTRIBUTION OF A HETEROGENEOUS SET OF RESOURCES

It is assumed that when performing work, in addition to processors, a nonrenewable resource is used,
the amount of which in the interval amounts to , . The work of a nonrenewable

resource can only be allocated at the point in time . If its volume is , then the duration of the task is

(6.1)

where

(6.2)

(6.3)

Here, is a strictly decreasing function in the interval that takes positive values and are the

specified values, .
Under these assumptions, to solve the problem posed in Section 1, we will need a generalization of

Tanaev’s algorithm.

τk −∪ … ∪1 1 kW W
kW

< < … <0 1 kp
k k ky y y τ ,k +τ 1k

i
kb i

kc = 1, ki r
− =

1, j j j
k k kI y y −δ = − 1 j j j

k k ky y −1kG

−1
j

kI −= 11, kj p ()−1, j
ku I ()− −1 1, j i

k kI w = 1, kj p −= 11, ki r

i
zw

()− =v1 , i i
k z zf w t

()v, i
zw = −1, 1z k = 1, zi r

i
zw

i
zw ()− v1 , i

k zf w

()v,i
zw kG −1kG

j
kI i

kw (), j i
k zI w = 1, kj p = 1, zi r = 1, z k ()v, i

kw = 1, ki r
= km m = kn n

kf kG j
kI

(), j i
k kI w i

kw +≤ τ 1
j

k kc

(), j i
k k kf I w i

kw j
kI

j
kI

=

3

1

.
K

k
k

O K r

[]+τ τ 1, k k kS = 1, k K i
kw

τk
i
ks i

kw

()= ϕ ,i i i
k k kt s

 ∈ 0, ,i i
k ks s

=
≤

1

 .
kr

i
k k

i

s S

ϕi
k

 0, i
ks i

ks

= 1, ki r
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

138 FURUGYAN
6.1. Generalization of Tanaev’s Algorithm in the Case a Nonrenewable Resource is Available

We will use the notation introduced in Section 3. In addition, the characters , , , , , , and
 are replace by , , , , , W, and , respectively. In this case, restrictions (6.1)–(6.3) are written

as follows:

(6.4)

(6.5)

(6.6)

Let us prove the following statements.
Lemma 1. An acceptable schedule for executing a set of jobs W in a problem without a nonrenewable

resource (without restrictions (6.4)–(6.6)), in which the task is given CPU time amounting to fi, exists if and
only if in the network G there is a flow such that the equalities

(6.7)

are satisfied in front of all .

The proof follows from [1]. Assume is a function inverse to .
Lemma 2. An acceptable schedule for executing a set of jobs W in a problem with a nonrenewable resource

(taking into account restrictions (6.4)–(6.6)), in which the task is given CPU time amounting to fi, exists if
and only if in the network G there is a flow such that equalities (6.7) and the following
inequalities are valid:

(6.8)

(6.9)

Proof. 1. Assume that in the network G there is a f low f for which relations (6.7)–(6.9) are valid. In this
case, from (6.8) it follows that each work can be allocated a nonrenewable resource in the amount of

. In this case, inequality (6.6) will be true, and due to (6.4), the duration of work (i.e.,

required CPU time) will be . Since , (6.5) follows from (6.9). Then Lemma 1
implies the existence of an admissible schedule for W taking into account restrictions (6.4)–(6.6).

2. Now assume there is an admissible work schedule W in a problem with a nonrenewable resource
(taking into account restrictions (6.4)–(6.6)), in which the task is allocated CPU time in the amount
of . Assume in this case work is allocated a nonrenewable resource in the amount . Then, by (6.4)

 or . In this case, inequalities (6.8) and (6.9) follow from (6.6) and (6.5), respec-
tively. The proof now follows from Lemma 1. The lemma is proved.

From (6.7), (6.9), it follows that when constructing an admissible schedule in a problem with a nonre-
newable resource, we must look for the f low f in the network G for which in front of
all . Considering that the functions are strictly decreasing, quantities need to be maxi-
mized. Therefore, the following algorithm is proposed to solve this problem.

In the network G, first the vertex is determined, for which the maximum value of f low g from u to
 is the largest among all vertices , . Next, number is included in the set N and the throughput

capacities of all arcs of network G decrease by the quantity . This procedure is then
repeated for vertices , , . Next, condition (6.8) is checked.

Algorithm 1.

Step 1. In the network G put , .

i
kt

i
ks i

ks kS ϕi
k kW

i
kw it is is S ϕi iw

()= ϕ ,i i it s

 ∈ 0, ,i is s

=
≤

1

.
n

i
i

s S

iw
() () ∈, , ,f a b a b A

() =v, i if w f

= 1, i n

()−ϕ 1
i is ()ϕi is

iw
() () ∈, , ,f a b a b A

−

=
ϕ ≤

1

1

() ,
n

i i
i

f S

()−ϕ ≤ =1 1, , .i i if s i n

iw

()−= ϕ 1
i i is f iw

−ϕ ϕ =1(())i i i if f ()−ϕ =1
i i if s

iw
if iw is

()= ϕi i if s ()−= ϕ 1
i i is f

= ≤ ϕ(,) ()i i if w f sv

= 1, i n ()−ϕ 1
i if if

1iw

iw iw = 1, i n 1i
() ∈, a b A (), g a b

iw = 1, i n ∉i N

() ()= ϕv,i i iU w s = ∅N
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

SCHEDULING CALCULATIONS FOR A MULTIPROCESSOR SYSTEM 139
Step 2. For , follow steps 3–5.

Step 3. Remove from network G all arcs , , .

Step 4. Find the maximum flow g in the network G and assume is its magnitude.
Step 5. Connect to network G the arcs removed in step 3.

Step 6. Let . Include in N. Put . Reduce the throughput

capacities of all arcs of network G by quantity .

Step 7. If , then go to step 2. If , then go to step 8.

Step 8. If inequality (6.8) is satisfied, then an admissible schedule exists. In this case, work is allo-
cated a nonrenewable resource amounting to , . The duration of work amounts to fi. The
schedule is constructed as described in Section 3. If inequality (6.8) is not satisfied, then an admissible
schedule does not exist. The algorithm is completed.

The computational complexity of Algorithm 1 is .

6.2. Generalization of the Original Problem in the Case of the Presence of a Nonrenewable Resource
Let us now turn to the problem formulated in Section 1, with additional restrictions (6.1)–(6.3) related

to the distribution of the nonrenewable resource. We return to the notations , , , , , , and ,
which were previously replaced by , , , , , , and , respectively.

Taking into account the research carried out in Sections 5.1, 5.2, and 6.1, the following algorithm is
proposed for solving the original problem formulated in Section 1, for the case of the presence of a non-
renewable resource.

Algorithm 2.
Step 1. Put .
Step 2. Build network (see Sections 5.1, 5.2).

Step 3. From network remove nodes , corresponding to works with deadline , and the
arcs incident to them.

Step 4. Apply Algorithm 1 to the resulting network. If at step 8 of Algorithm 1 it turns out that an admis-
sible schedule does not exist, then Algorithm 2 is completed and there is no solution. Otherwise, go to
step 5.

Step 5. Connect to network the nodes and arcs removed in step 3. Put . If , then go
to step 2. If , then the solution is constructed. The algorithm is completed.

The computational complexity of Algorithm 2 is

CONCLUSIONS
The problem of creating a multiprocessor admissible schedule for a set of work complexes, for which

execution requests arrive at the given points in time, has been studied. The composition of each complex
and the characteristics of the works included in it become known at the time the request is received. When
executing the tasks, interruptions and switching from one processor to another are allowed. Setups with
and without a nonrenewable resource were studied. A polynomial algorithm for solving the problem,
based on constructing a network f low model and searching for the maximum flow, has been developed.

FUNDING

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this partic-
ular research were obtained.

∉=0 01, , i n i N

()v, iw = 1, i n ≠ 0i i

0ig

()
∉

−

=
ϕ =

0 0 1
0 0

1

1, ,
min i i i

i n i N
g g 1i ()= =v

1 1 1, i i if g w g

(), U a b () ∈, a b A (), g a b

<N n =N n

iw

()−ϕ 1
i if = 1, i n iw

5()O n

i
kt

i
ks i

ks kS ϕi
k kW i

kw

it is is S ϕi W iw

= 1k

kG

kG i
mw +> τ 1

i
m kc

kG = + 1k k ≤k K
>k K

=

5

1

.
K

k
k

O K r
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

140 FURUGYAN
CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

REFERENCES

1. V. S. Tanaev, V. S. Gordon, and Ya. M. Shafranskii, Scheduling Theory. Single-Stage Systems (Nauka, Moscow,
1984) [in Russian].

2. P. Brucker, Scheduling Algorithms (Springer, Heidelberg, 2007).

3. A. A. Lazarev, Scheduling Theory. Absolute Error Estimation and Scheme for Approximate Solution of Scheduling
Theory Problems (MFTI, Moscow, 2008) [in Russian].

4. M. A. Gorskii, A. V. Mishchenko, L. G. Nesterovich, and M. A. Khalikov, “Some modifications of integer op-
timization problems with uncertainty and risk,” J. Comput. Syst. Sci. Int. 61 (5), 813–823 (2022).

5. P. S. Koshelev and A. V. Mishchenko, “Optimizing management of jobs in a logistic project under conditions
of uncertainty,” J. Comput. Syst. Sci. Int. 60 (4), 595–609 (2021).

6. A. B. Glonina and V. V. Balashov, “On the correctness of the simulation of modular real-time computing sys-
tems using networks of timed automata,” Model. Anal. Inf. Sist. 25 (2), 174–192 (2018).

7. A. B. Glonina, “A generalized model of modular real-time computing systems for checking the admissibility of
configurations of these systems,” Vestn. Yuzho-Ural. Gos. Univ., Ser.: Vychisl. Mat. Inf. 6 (4), 43–59 (2017).

8. A. B. Glonina, “Tool system for testing real-time constraints for modular computational system configura-
tions,” Moscow Univ. Comput. Math. Cybern. 44 (3), 120–132 (2020).

9. D. V. Alifanov, V. N. Lebedev, and V. I. Tsurkov, “Optimization of schedules with precedence logical condi-
tions,” J. Comput. Syst. Sci. Int. 48 (6), 932–936 (2009).

10. A. A. Mironov and V. I. Tsurkov, “Minimax in transportation models with integral constraints: I,” J. Comput.
Syst. Sci. Int. 42 (4), 562–574 (2003).

11. A. A. Mironov and V. I. Tsurkov, “Minimax under nonlinear transport constraints,” Dokl. Akad. Nauk 381 (3),
305–308 (2001).

12. D. Phillips and A. Garcia-Diaz, Fundamentals of Network Analysis (Prentice Hall, Englewood Cliffs, N.J., 1981;
Mir, Moscow, 1984).

13. E. G. Davydov, Operations Research (Vysshaya shkola, Moscow, 1990) [in Russian].

14. M. G. Furugyan, “Computation scheduling in multiprocessor systems with several types of additional resources
and arbitrary processors,” Moscow Univ. Comput. Math. Cybern. 41 (3), 145–151 (2017).

15. X. Yao, N. Almatooq, R. G. Askin, and G. Gruber, “Capacity planning and production scheduling integration:
Improving operational efficiency via detailed modelling,” Int. J. Prod. Res. 60 (1), 7239–7261 (2022).

16. H. Missbauer and R. Uzsoy, “Order release in production planning and control systems: Challenges and oppor-
tunities,” Int. J. Prod. Res. 60 (1), 256–276 (2022).

17. Y. Wang, J. Geunes, and X. Nie, “Optimising inventory placement in a two-echelon distribution system with
fulfillment-time-dependent demand,” Int. J. Prod. Res. 60 (1)), 48–72 (2022).

18. M. F. Gorman and D. G. Conway, “A tutorial of integrating duality and branch and bound in earliness–tardi-
ness scheduling with idle insertion time problems,” Int. J. Prod. Res. 56 (1–2) (2018).

19. S. C. Graves, “How to think about planned lead times,” Int. J. Prod. Res. 60 (1) (2022).

20. O. Thomasson, M. Battarra, G. Erdogan, and G. Laporte, “Scheduling twin robots in a palletising problem,”
Int. J. Prod. Res. 56 (1–2) (2018).

21. T. Cormen, Ch. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms (MIT Press, Cambridge, 2001;
Vil’yams, Moscow, 2005).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 63 No. 1 2024

	INTRODUCTION
	1. PROBLEM STATEMENT
	2. BRIEF DESCRIPTION OF A POLYNOMIAL ALGORITHM FOR FINDING THE MAXIMUM FLOW IN A NETWORK
	3. BRIEF DESCRIPTION OF THE ALGORITHM BY V.S. TANAEV FOR CONSTRUCTING AN ADMISSIBLE SCHEDULE
	4. CONSTRUCTION OF A SCHEDULE FOR THE CASE WHEN INFORMATION ABOUT SETS Wk, k = , ARRIVES UNTIL t1
	5. CONSTRUCTION OF A SCHEDULE FOR THE CASE WHEN INFORMATION ABOUT THE SET Wk ARRIVES AT THE MOMENT tk, k =
	5.1. Constructing a Network Model and Making an Admissible Schedule for W1
	5.2. Constructing a Network Model and Making Admissible Schedules for

	6. DISTRIBUTION OF A HETEROGENEOUS SET OF RESOURCES
	6.1. Generalization of Tanaev’s Algorithm in the Case a Nonrenewable Resource is Available
	6.2. Generalization of the Original Problem in the Case of the Presence of a Nonrenewable Resource

	CONCLUSIONS
	REFERENCES

		2024-08-03T23:36:20+0300
	Preflight Ticket Signature

