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Abstract—This paper presents a nonlinear discontinuous control law that allows stabilizing the output
voltage of a step-down voltage converter in conditions when the input voltage and load current are
unknown. The main idea is based on the use of the so-called vortex algorithms, which ensure invari-
ance with respect to external unmatched disturbances. The efficiency of the developed algorithms is
shown by numerical simulation.
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INTRODUCTION

Voltage converters are widely used in technology as power supplies and voltage stabilizers [1–5]. With
the development of modern technologies for generating electricity based on wind generators, solar panels,
and tidal power plants, their evolution has received a new direction. The design of the voltage converter
consists of a reactive energy storage device (inductive and capacitive elements) and a switching device.
With the development of semiconductor technology, it is possible to eliminate mechanical switching
devices and use semiconductor diodes, transistors, and thyristors with switching frequencies of up to sev-
eral hundred kilohertz [1, 6].

The main problem related to the control of semiconductor voltage converters is the stabilization of the
output voltage depending on the input voltage and variable load power consumption [1].

This article presents the problem of controlling the output voltage of a step-down converter under the
specified conditions. It should be noted that the control input of the converter can only take two discrete
values, which corresponds to the on/off state of the switching element. In addition, the movements of cur-
rents in different circuits in such devices have a multitemporal character. For these reasons, when synthe-
sizing control algorithms, the theory of discontinuous control and the principles of motion separation can
be used [7, 8].

The synthesis of a nonlinear discontinuous control law is considered. The developed control algorithm
ensures stabilization of the output voltage when exposed to an unknown input voltage and output load cur-
rent. The main idea is based on the so-called vortex algorithm, which ensures the property of invariance
with respect to external unmatched disturbances. The theoretical results can be realized using modern
pulse width modulation converters. The simulation results show the effectiveness of the presented algo-
rithms.

The article is organized as follows. In Section 1, a mathematical model of the control object is intro-
duced and the formulation of the problem is formalized. In Section 2 a nonlinear control law, which
makes it possible to stabilize the output voltage under conditions of an unknown input voltage and output
load current, is synthesized. In Section 3, the results of numerical simulation in the MATLAB/Simulink
environment, demonstrating the performance of the proposed algorithms, are described.
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Fig. 1. Simplified step-down converter circuit.
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1. MATHEMATICAL MODEL 
OF THE CONTROL OBJECT: PROBLEM STATEMENT

The main structural elements of a step-down converter are shown in Fig. 1, where L is the inductance
of the converter, C is the capacitor, r is the electrical resistance of the inductance winding, U(t) is the input
voltage (in general, a function of time), x1 is the current in the inductance winding, x2 is the output voltage,
R(t) is the unknown variable value of the electrical resistance of the load, and VD is a snap-on diode,
which prevents the capacitor from discharging through the inductor and ensures current only in the direc-
tion shown in Fig. 1.

The mathematical model of the converter is described by the following system of differential equa-
tions [9]:

(1.1)

where the control u(t) can take values from the discrete set {0, 1}.
In the article, the following assumptions are made for the control object.
1. For the unknown load resistance function and its first two derivatives, the following restrictions

apply:

(1.2)

where hereinafter |⋅| means the absolute value of a number, and R1 and R2 are known positive constants.
2. For the input and desired output voltages, the following inequalities are satisfied:

(1.3)

where , , and  are known positive constants.
3. In addition to reverse current protection, there is a protection circuit that forcibly limits the value of

the current in the converter coil, and for the variable , we can write the inequality:

(1.4)

Assuming that the variable  is available for measurement, the article sets the task of stabilizing the
discrepancy (mismatch) in the output voltage:

(1.5)

where  is the voltage mismatch and  is the desired output voltage value.

2. SYNTHESIS OF CONTROL ALGORITHM

The parameters of the semiconductor converter are chosen in such a way that in system (1.1) the move-
ments are separated according to the convergence rates. Thus, the current in the inductor can be quickly
changed to the desired values, in contrast to the output voltage of the capacitor, which is a fairly inert ele-
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ment designed to filter output voltage ripples. Due to these features, the problem posed can be solved by
correspondingly changing the current in the inductance winding. It should be noted that this approach is
used in connection with the problem of inconsistent disturbances [10].

According to (1.1) and (1.5), we can write the system equations with respect to errors:

To further synthesize the control law, we consider new coordinates in which it is convenient to study

the process at the maximum load. We introduce a new variable 

Substituting it into the last system, we obtain the following equations:

(2.1)

where

To implement one of the variants of the vortex algorithm [11, 12], we select the control input in the
form of a discontinuous function:

(2.2)

The equations of the closed system, according to (2.1), (2.2), have the form

(2.3)

Theorem. Let the parameters of the converter, load, and input and output voltage be chosen so that the fol-
lowing inequalities are satisfied:
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Fig. 2. Phase portrait of a closed system.
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Then the variables of the closed-loop system (2.3) asymptotically tend to zero, which guarantees the
solution of the posed problem (1.5).

Proof. Let us introduce a change of variables

(2.5)

with the help of which system (2.3) can be represented as

(2.6)

Using expressions (1.2), (2.1), we write down the restrictions for the disturbance  and its derivative:

According to the conditions of the theorem,  and . Considering the equations of the
closed system (2.6), we obtain the phase portrait shown in Fig. 2. Each half-plane of the graph (to the right
and left of the vertical axis) corresponds to a different sign of variable y1. It should be noted that the tra-
jectories of the system cannot belong to the set , since the conditions for the existence of a sliding
mode are not satisfied on this surface [13, 14]. Having designated t0 as the initial moment of time, without
loss of generality in the proof, we present the case when . Considering that the discontinuity
points of the right-hand side of the differential equations (2.6) belong to a set of zero measure, its solution
is understood in the sense of Carathéodory [15].

To analyze the convergence of variables of a closed-loop system, a method based on Lyapunov func-
tions is used together with an analysis of the phase portrait of system (2.6). Let us introduce moments of
time  such that , and denote the interval between them as .

Let us first consider the movement in the first and fourth quadrants of the phase portrait (see Fig. 2).
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For its derivative we can write the following inequalities:

(2.8)

where

and  is the minimal eigenvalue of the matrix Q(t).

The expression for the minimal eigenvalue of the matrix Q(t) is

and the lower bound of the minimal eigenvalue

(2.9)

According to the last of conditions (2.4) of the theorem and (2.9), the inequality

is guaranteed to be satisfied when system (2.6) moves in the first and fourth quadrants of the phase portrait
(see Fig. 2).
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By analogy, citing the case , we obtain the derivative of the function V2 due to the system taking
into account (1.3), (2.9):

(2.13)

where

According to (1.3), (2.12), for V2 we can write
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where

Using expressions (2.15), relation (2.14) can be written as
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where

Considering the phase portrait (see Fig. 2), using (2.10)–(2.11) and (2.14)–(2.15), we obtain the fol-
lowing estimates:

where , , , and .
After examining the phase portrait in the second quadrant using the function  from (2.12), (2.15),
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Assume this equality holds at moments of time  (see Fig. 2). Then for the value ,
taking into account (1.2), the following estimates are valid:

Thus, taking into account expression (2.16), the amplitude of oscillations (maxima) of the variable
 decay exponentially, and the variables of system (2.6) tend to zero as time tends to infinity:

From the last relations and expressions (2.5), it follows that

The theorem is proved.
Note that the transient process for a closed system (2.3) can occur, in the general case, at negative cur-

rent values of x1 through an inductor. The system’s model does not take into account the physical restric-
tions that were provided for in assumption (1.4). According to these limitations, during the transient pro-
cess, the current will be limited to a certain range, which is specified during the design. However, even if
the trajectories of the system reach the specified limits, after a certain period of time they will fall into the
region where the proof given above is valid. The transient curve in a real device in this case will be differ-
ent, and the phase portrait shown in Fig. 2, will be cut off by the values included in inequality (1.4).

3. NUMERICAL MODELING

We consider the simulation results for the following parameters of the semiconductor converter:
L = 2 × 10–5 Gn, C = 3 × 10–4 F, and r = 0.2 Ohm. The input voltage and limitations for it, according
to (1.3), are

The desired output voltage value x2d = 63 V. The unknown load is modeled by the periodic function

According to the formulation of the problem, for this unknown function only the restrictions specified
in (1.2) are known. By performing simple calculations, we can get
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rent were chosen: 0 ≤ x1 ≤ 35 A. By calculating the values given in the theorem in accordance with the con-
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Fig. 3. Simulation results of the first experiment.
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To demonstrate the slow component of the control law (2.2), corresponding to the duty cycle of the
switching element [1], a new variable is introduced, which is actually the output of a low-pass filter,

where μ is the filter’s time constant.
In Figs. 3, 4 the results of modeling the developed control law in the MATLAB/Simulink environment

are presented. In the first experiment, the Dorman–Prince method (ode5) with a fixed integration step is
used for numerical integration ts = 10–7 s.

In the second experiment, the results of which are shown in Figs. 5 and 6, several integration steps are
used:

A consequence of the proven theoretical result is that the switching frequency of the control input tends
to infinity over time. In practice, the switching frequency is limited, resulting in a steady-state control

μτ = −τ +� ( ),u t

= = =–6 –7 –810 s, 10 s, and 10 s.s s st t t
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Fig. 5. Steady-state error at various integration steps.
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Fig. 6. Current graphs at various integration steps.
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error. From Figs. 5 and 6 it is clear that this error depends on the switching frequency (integration step):
the higher the frequency the smaller the error and vice versa. Such limitations must be taken into account
when implementing the described approach in practice; however, this issue requires further study and this
case is not considered in this article.

CONCLUSIONS
A new control algorithm for a semiconductor step-down converter has been studied. Assuming that the

load function can be described by a continuous bounded function with two bounded first derivatives, the
problem of stabilizing the given output voltage was solved. For the practical implementation of the devel-
oped algorithm in further research, it is necessary to study the adaptation of the resulting control law for
working with converters with pulse-width modulation.

The performance of the proposed algorithm was confirmed both analytically and using simulation in
the MATLAB–Simulink environment.
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