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Abstract—The article discusses the information technology of a robust intelligent control system
design based on quantum fuzzy inference. The application of the developed design methodology is
based on the quantum self-organization of fuzzy controller’s imperfect knowledge bases and leads to
an increase in the robustness of intelligent control systems in unpredicted situations. The results of
mathematical modeling and physical experiment are compared using the example of an autonomous
robot in the form of a “cart – pole” system. Experimental confirmation of the synergetic effect exis-
tence in the robust self-organized fuzzy controller formation from a finite number of non-robust fuzzy
controllers in on-line has been demonstrated. The resulting effect is based on the existence of hidden
quantum information extracted from the classical states of the controller’s time-varying gain coeffi-
cients processes schedule. The derived law of quantum information thermodynamics establishes the
possibility to forming a thermodynamic control force due to the extracted amount of hidden quantum
information and performing additional useful work, that guarantees the achievement of the control
goal based on increasing the robustness of a self-organized quantum controller. At the same time, the
amount of useful work performed by the control object (at the macro level) exceeds the amount of
work spent (at the micro level) by a quantum self-organized controller to extract the quantum infor-
mation hidden in the responses of imperfect knowledge bases without violating the second thermody-
namics information law for open quantum systems with information exchange of entangled super cor-
related states. A concrete example of an autonomous robot is given, demonstrating the existence of a
quantum self-organization synergetic effect to imperfect knowledge bases.

DOI: 10.1134/S1064230723050131

INTRODUCTION
The methodology of intelligent control systems (ICS) design, based on soft computing technology,

considers the structure of fuzzy controller (FC) as one of the options for effective design of conven-
tional automatic control systems (ACS) [1, 2]. Since its appearance (1974), FC models have demon-
strated an increased ability to dynamic objects control (CO), which have a poorly formalized structure
or functioning under conditions of uncertainty or inaccuracy of initial information, contingencies or
information risk.

The article considers the issues of ICS designing on the example of dynamically unstable CO of the
“Cart – Pole (Inverted pendulum)” type using the knowledge base optimizers (KBO) on soft and quan-
tum computations – SCOptKBTM & QCOPtKBTM respectively [2–4]. Description of the technology
for designing a robust ICS based on quantum fuzzy inference (QFI) is introduced. The control of
“Cart-Pole” type CO is one of typical problems in the control theory because the solution of this prob-
lem clearly demonstrates the ICS’s quality. More in detail’s description of the CO and verification of
its mathematical model are considered in [5].
884
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The main work’s result is an experimental proof of the synergetic information effect’s existence by
quantum self-organization for imprecise FC knowledge bases due to extraction of hidden quantum
information, predicted and proved by simulations in [6–9].

Industrial applications – first experimental result was obtained on a real physical object in [10]
for the superconducting magnet cooling ICS’s of the Mega-Science NICA collider’s development
project [11].

Particularly, the HW-SW platform was developed to control liquid nitrogen pressure in the super-
conducting magnet cryogenic system based on quantum FCs embedded in the control loop with imple-
mentation on the conventional processor’s architecture. The multilevel control system includes the
existed lower executive level, based on the Tango Controls system, and a new level, where the control
actions are generated applying quantum FC. This provides optimal control parameters quality, such as
temperature, nitrogen f low rate, speed, required pressure level and minimum control implementation
complexity with proportional – integral-differential (PID) – regulators.

The operability and efficiency of the created intelligent remote-control system for the technological
process of superconducting magnet cooling with guaranteed achievement of a stable superconductivity
zone has been experimentally demonstrated [10]. The design of quantum FCs is based on quantum
information technologies and realized using QSCIT (quantum soft computational intelligence toolkit)
software developed by M.G. Mescheryakov LIT employees [11]. The possibility of the real CO knowl-
edge base (KB) remote tuning with using remote connection of real CO with KBO on quantum com-
puting is considered. A class of contingencies is extended to test the robustness of the developed ICS
and proving the achievements of global robustness as compared to KBO based on soft computing.

The considered problem’s relevance. Creating a correct algorithm for the required design level of ICS
robustness is one of the actual problems of modern control systems theory. At the same time, this prob-
lem refers to a complex and poorly research area of ICS development, capable an effective and reliable
functioning in conditions of risk and control contingencies. The application of intelligent computing
technology in the tasks of robust control design has shown in practice an increase in the reliability of
CO functioning in contingency control situations by increasing the intelligence of the lower executive
level in the form of conventional ACS’s structures based on conventional PID regulators, sliding mode
regulators, PID2 (2-ratio PID), fractional order regulators and many others. [12, 13].

Research Methodology. The effectiveness of the developed ICS design technology is considered on
the example of ICS design issues, traditional for the control systems theory of unstable CO “Cart-Pole”
type, using KBO on quantum computing.

The possibilities of dynamically unstable nonlinear control objects robust control with implementa-
tion on convenient embedded processors with the classical architecture are investigated. A design strat-
egy for intelligent control systems based on quantum and soft computing technologies is described. In
this approach mathematical formalism of quantum mechanics is used to build new algorithms of quan-
tum control, successfully simulated on convenient computers. Algorithms applying QFI scheme—hid-
den quantum information is extracted from KB (including parameters of membership functions and
sets of fuzzy production rules) belonging to individual FCs on which basis the new robust KB’s is cre-
ated. This process demonstrates a synergistic effect of quantum self-organization—a robust KB of
quantum fuzzy controller is created (in on-line mode) from two unreliable KBs. This effect has a purely
quantum nature and uses hidden quantum information extracted from classical states. The developed
technology improves the reliability of intelligent cognitive systems that can functioning in unexpected
control situations, such as the interaction of an ensemble of different robot types. An effectiveness of
QFI scheme implementation on a ready programmable algorithmic solution for lower executive level
control systems has been demonstrated on multiple examples of different systems [14]. The algorithms
and design strategy were successfully, as noted, applied to the development of a superconducting mag-
net cooling ICS within the NICA project.

Technology evolution. The presented methodology of quantum self-organizing FC design and reali-
zation allows scaling and replication of this product to other types of physical CO.

An autonomous robot’s simulation and physical experiment. The mathematical CO’s model used in this
work is described and investigated in detail in [15, 16]. In the experiment, the KBs for FC found by sim-
ulation in [7, 8, 15] were applied, and explanations are given as needed to understand the physical rigor
and mathematical correctness of the obtained results interpretation.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023



886 RESHETNIKOV et al.

Fig. 1. Simulation model structure: 1—QFI block; 2—PID; 3—CO; 4—noise generator.
1.  THE CO “CART-POLE” COMPUTER MODEL

The system has a global dynamic instability, in the absence of a control force there an unbounded
growing of the def lection angle is happens, i.e. the pendulum falls.

The structure of the “Cart-Pole” computer model, man-made in the simulation environment
MatLab / Simulink is shown in Fig. 1.

The model includes the PID regulator, noises in the control and measurement system, and the block
that forms the regulator’s signal. This computer model is used to obtain the teaching signal and to tune
the KB by the soft computing means KBO – SCOptKBTM [2] and laws KB forming for PID – regulator
coefficient gain schedule changes according to the methodology developed in [17]. As a control model
for this system, the following expression to determine the control action is used:

(1.1)

In accordance with the control scheme, a PID controller (1.1) with a global negative feedback loop
is used.

1.1. System model. This type of CO is a typical (Benchmark) for testing of the robust intelligent con-
trol software toolkit. Let’s consider in detail the structure of such CO model.

In Fig. 2, a model, used for testing of ICS design technologies by means of KBO, and the bench
(Fig. 2, b) for experiments are represented.

The bench is equipped with various coatings for conducting experiments with the model, including
contingency control situations. The stand also has a possibility to set a certain initial angle for model’s
launching.

As a measuring system (Fig. 2, Sensor), the model uses a board with a combination of sensors - gyro-
scope and accelerometer – 5 DoF (five degrees of freedom) IDG500/ADXL335.
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Fig. 2. “Cart-Pole” model system (a); experimental stand (b).
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The core of the system is a Microchip® Chirkit microcontroller based on the PIC32MX320F128
processor. The board is equipped with a USB connector for transferring data from the processor to the
computer. The USB interface is used in experiments to send and receive data (def lection angle and con-
trol value) as well as for remote tuning, which will be discussed below. Sensors are connected using ana-
log inputs of the microcontroller.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023
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Fig. 3. Microcontroller program algorithm.
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The basic functions of the model programs are shown on Fig. 3. Generally, they can be described by
the following steps: measurement, filtering, control, time counting (delay).

Noting that the model’s algorithm of the system shown in Fig. 3, is a particular example of ACS with
feedback and is reproduced in laboratory conditions.

2. QFI DESIGN BASED ON SW TOOLKIT – QUANTUM OPTIMIZER QCOptKBTM

Control system creation on the basis of QFI is realized by use of “Quantum optimizer” software
toolkit. The working window of this product is shown on Fig. 4.

Remark 1. In the bottom of Fig. 4 shows the time correlation matrix for the entangled state forma-
tion, on top – the histogram of the proportional coefficient’s input signal.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023



INTELLIGENT ROBUST CONTROL OF AUTONOMOUS ROBOT 889

Fig. 5. QFI design technology (where IACS—intelligent autonomous control system, TS—Teaching signal, SW—soft-
ware). 
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The technology of QFI application allows to combine several KBs into a single control system, and
thus, allowing to fuzzy neural networks working in parallel, providing ICS with additional robustness.

Consider the possibility of QFI application for KB combining, obtained on the basis of different
information resources. Such resources could be the measured signal on a system’s operation finite time
interval, which can be obtained from various sources. For example, using different mathematical mod-
els or physically measured signals of real control objects, functioning in different environments and
under different initial conditions [2, 3]. A key element of such ICS is a mechanism for combining the
strategies embedded in the KB. The theoretical background of QFI represented earlier were imple-
mented and tested on the basis of various mathematical models and real control objects [4, 5]. At the
same time, practice shown that to design a self-organized system, capable to functioning under extreme
conditions, it is necessary to apply additional software tools for QFI design based on new types of cal-
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023

Table 1. KB Comparison
KB, signal source, 

description, caption Rules Quantity Membership functions 
number Optimization method

KB1, MathModel, FC1 245 8 × 6 × 6 Simulation
KB4, Model CO FC4 288 9 × 9 × 6 CO’s TS approximation (genetic alg. - GA2)

Q-S FC1 × FC4 – Simulation
Q-T FC1 × FC4 – Simulation

Q-ST FC1 × FC4 – Simulation



890

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023

RESHETNIKOV et al.

Fig. 6. Quantum FC structure.
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Fig. 7. Input QFI coefficients histograms from fuzzy controllers FC1 and FC4.
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Fig. 8. QFI window. Normalization and denormalization of the physical model’s signal.
culations, such as quantum soft computing [3]. The general methodology of QFI design is presented in
Fig. 5.

In this context, we can identify three types of QFI based on different sources:
—KBs derived from mathematical models;
—KBs found using a physically measured control signal;
—joint application of different information resources.
The research has shown that the best quality of control belongs to quantum controllers (QC) based

on different information resources [2].
Furthermore, to QFI developing the KB1 & KB4 will uses, in accordance with the soft computing

KB optimizer’s technology [7, 8, 13] (Fig. 6).
A comparison of the given KBs is considered in Table 1.
Prior to creating QFI, it is necessary to obtain histograms of the FCs output signals distribution

(amplification factors) (Fig. 7).
For this purpose, a series of experiments and simulations in a typical control situation are carried

out. Using the obtained values of gain coefficients during simulation and model operation, an array of
data is formed to build histograms of fuzzy PID controllers gain coefficients. Histograms are con-
structed automatically when data are loaded into the quantum optimizer. Further these histograms are
used in the QFI algorithm to form virtual states (Fig. 7).

The histograms of gain coefficients obtained experimentally are used in the experimental models,
and the histograms of gain coefficients, founded by mathematical simulation are used in the QFI for-
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023
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Fig. 9. Simulation System Structure in MatLab/Simulink environment: 1—QFI unit; 2—PID controller; 3—Control
object (CO); 4—Noise generators.
mation to simulate the robot’s control. Figure 7 shows the histograms of the coefficients obtained from
FC1 and FC4.

After creating a new regulator’s model and loading data into the quantum optimizer, a type of quan-
tum correlation between gain coefficients is chosen. Formation of entangled states is performed on the
basis of selected correlation matrix, which is displayed in the optimizer working window (Fig. 4).
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023

Table 2. Control situations and mathematical models parameters

CO parameters Typical situation (C1) Contingent (C2)

Initial angle 0 0
Initial velocity 1 1

Cart weight 0.56 0.56
Pendulum weight 0.63 0.63
Pendulum length 0.05 0.07

Pin Friction 3.55 + normalized noise – int= 0.01, 
ampl=0.35

3.73 + normalized noise – int= 0.01, 
ampl=0.35

Wheel friction 3.63 + Gaussian noise 15% 3.63 + Gaussian noise 15%
Elasticity 5.54 5.54

Control noise Uniform [–2.15 2.15], intensity 0.48 Uniform [–2.15 2.15], intensity 0.48
Measurement system Noise Amplitude 0.22, 

Gaussian noise, intensity 0.01
Amplitude 0.32, 

Gaussian noise, intensity 0.01
Control delay 0.015 0.035
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Fig. 10. Mathematical model deviation angle. Typical control situation (C1). Simulation.
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At the next step the corresponding maximum and minimum values for QFI’s input and output sig-
nals are set up in a special program window (Fig. 8).

In the final designing step, the scaling factors of the QFI output signals are adjusted using the genetic
algorithm (GA) and the mathematical model to select the best solution.

3. THE AUTONOMOUS ICS’s SIMULATION AND EXPERIMENT BASED ON THE QFI
Proceed to the practical application of the developed QFI model for the formation of the PID control-

ler’s gain coefficients control processes. Let’s consider the classical problem of the “Cart-Pole” system
stabilization for the mathematical and real model’s which are given in [7, 13, 15, 16].

Description of the mathematical simulation and physical experiment results in two control situa-
tions:

—in the first (typical) situation (C1) the control signal delay is standard – 0.015 s;
—in the second contingency (C2) the control signal delay is 0.035 s. (increased about 3 times).
Table 2 shows the parameters of the mathematical simulation for C1 and C2.
Remark 2. The dimensions of physical quantities in Table 2 are given in the SI system and the form

of (m, s, m/s, N) for displacement, time, velocity and force, respectively. Noises are generated by the
forming filters and no additional information about the noise characteristics is required, since noises
are used only to forming of the FC’s robust KB.

Figure 9 shows the structure of the simulation system performed in the MatLab/Simulink environ-
ment.

The simulation results of regulators in a typical control situation are illustrated in Figs. 10 and 11.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023
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Fig. 11. Quadratic error integral. Typical control situation (C1). Simulation.
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Fig. 13. Simulated controllers phase portraits.
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Fig. 15. Quadratic error integral. Contingency and typical control situations. Simulation (where FC1-FC4 are fuzzy control-
lers, and abbreviations: Q—quantum, S(Space)—spatial, T(Time)—temporal, ST(SpaceTime)—spatiotemporal correlations.
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Fig. 18. Physical model deviation angle. Typical control situation (C1). Experiment.
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Fig. 19. Quadratic error integral. Typical control situation (C1). Experiment.
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Consider the relationship between the input and output values of the QFI on the example of the pro-
portional gain coefficient. Figure 12 shows the input values of the QFI (gain FC1 and FC4) and the out-
put value of the proportional QFI gain coefficient under temporal correlation.

Figure 13 shows the phase portraits of the simulated systems.

Next, Fig. 14 shows the results of the simulation in a contingency control situation.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023
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Fig. 20. Controllers phase portraits in a typical control situation (C1). Experiment.
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Fig. 23. Quadratic error integral. Contingency control (C2). Experiment.
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Figure 15 describes a general diagram of the quadratic modeling error integral.
In Fig. 14, it can be seen that the value of the QC integral error is located between the fuzzy control-

lers that formed the QFI.
A physical experiment was performed on a real CO in a typical control situation. Figures 16–20 show

the experimental results.
An experiment on a real CO in contingency control situation (C2) is conducted. Figures 21–25

shown these experimental results.
As the simulation and experiment modeling results show, the developed methodology of combining

control strategies allows to cope effectively with the control tasks even in extreme situations in which
the FCs, underlying of the QFI, does not coping. It is important to note that the QFI-based control
system is inherited the best of the control quality characteristics from the KB FC, adding the self-orga-
nization ability.

Remark 3. Shown results essentially differ from known in literary sources [18–33] there are not exists
the experimental results checking of quantum computations efficiency application on the real physical
CO’s.

Thus, the effectiveness and necessity of quantum computations application and control algorithms
not only for quantum systems, but for classical CO’s as well is shown. The effect of imprecise KB’s
quantum self-organization discovered in [6–9] due to extraction of hidden quantum information is
experimentally successful verified and established in experiments for many complex poorly formalized
and weakly structured physical CO’s.
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Fig. 24. Quantum controllers proportional gain based on KBs from mathematical and physical models. Experiment in
contingency situation.
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Fig. 25. Quantum fuzzy controller’s phase portraits in a contingency situation. Experiment.
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CONCLUSIONS

The technology of quantum KB optimizer application provides the system with additional robustness
property only with application of algorithmic software. The conducted experiments shown that the intel-
ligent control allows to perform adjustments even the complex control objects with several feedback loops.
It is demonstrated that quantum FC in real conditions and real physical CO’s copes with the task of a
complex CO controlling at a sufficiently high level, where the classical regulator and FC does not have the
required quality of control. The established effect confirms the realization of the KB’s quantum self-orga-
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nization principle by using the QFI algorithm developed in [3, 4, 6, 7]. The application of quantum com-
puting on a classical processor in on line is shown. The simulations and experiments results prove useful-
ness and efficiency of hidden quantum information extracted from classical states of gain coefficients in
control processes [34, 35].
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