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Abstract—The longitudinal vibrations of an elastic rod controlled by a distributed force, which is
applied to individual sections of the rod, are studied. It is assumed that the force varies in space in a
piecewise constant manner. Such a mechanical system can be implemented using piezoactuators
attached along the rod. The dynamics of the system is determined from the solution of the variational
problem following the method of integrodifferential relations. The variational problem is solved ana-
lytically. To do this, traveling waves of the d’Alembert type are introduced on the space-time mesh,
which determine continuous displacements and a dynamic potential. The latter relates the momentum
density and stresses. A control problem is posed under the condition of the weighted minimization of
the vibrational energy stored by the rod at the terminal time instant, and the mean potential energy
generated by the control actions. The extremal motion and the corresponding control law are found
explicitly by solving the Euler–Lagrange equations. As an example, the control capabilities for certain
configurations of piezoelectric elements are studied.
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INTRODUCTION
The control problems for systems with distributed parameters arise usually in applications where the

description of a mechanical system utilizing one independent variable (for example, time) is not suffi-
cient. Often this leads to the necessity of controlling  partial differential equations (PDEs). In this case,
the control functions can be included both in the boundary conditions and in the equations themselves
[1, 2]. For oscillatory systems, the appearance of control in the boundary conditions means the control by
means of of a force, torque, or other quantity given on a part of the boundary (for example, on the edge of
a membrane or the end of a rod). This type of actuation seems convenient for engineering applications,
but the search for optimal control in this case is difficult, in particular, due to natural limitations on the
speed of the control signal [3]. If the control function enters directly into the PDE, then ideally it is pos-
sible to control each oscillation mode separately [2, 4], which facilitates the construction of the optimal
solution [5]. However, such a distributed control is often difficult to implement directly in applications
(for example, due to the need to apply the given force at each point of the membrane/rod). As a conse-
quence, the control function may need to be spatially discretized so that the force acts only on part of the
system, or the force is constant over part of the spatial domain.

This paper concerns with a mechanical system in which the control function are discrete and are
applied only to certain parts of the object. As a model problem, we study the longitudinal vibrations of a
rod, along which length piezoelectric actuators are periodically located. In the intervals between them,
control is not applied, and the generated force is considered constant along each actuator, changing only
in time and from one actuator to another.

Often, such systems are described by PDEs in which generalized inputs appear on the right-hand sides
of the equations due to jumps in forces in space during the transition from the actuator to the load-free
section [6]. Thus, the solution can only be constructed in terms of generalized functions. In this paper, the
authors use the method of integrodifferential relations (MIDR) [7], which makes it possible to pose a vari-
ational problem for system dynamics and find an analytical solution to the optimization problem in the
form of continuous functions for continuous initial conditions. A solution is understood as a pair of func-
tions: displacements of the points of the rod and the so-called dynamic potential related by differential
relations with momentum and stresses. The dynamics problem is solved using traveling waves of the
800
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Fig. 1. Diagram of a rod with three control elements.
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d’Alembert type, defined on a space-time mesh formed by the characteristics. The optimization problem
(weighted minimization of the terminal mechanical energy and energy costs for control) is solved using
the Euler–Lagrange equations. In both cases, the unknown variables are found explicitly by resolving the
linear relation between the traveling waves and the components of the control vector that arise due to the
continuity conditions on the mesh.

Previously, the authors used this approach to construct the optimal control of the longitudinal vibra-
tions of a rod controlled only at the ends, under the terminal conditions while minimizing both the mean
mechanical energy [8] and control [9], and also when there are no gaps between distributed control ele-
ments. Configurations in which there was no boundary control [10], the general case of using both bound-
ary and distributed control [11], and also the condition of additional control minimization were consid-
ered [12]. A particular case of the control horizon, which is a multiple of the dimensionless length of the
control element, was studied in [13].

The papers [10, 14] touch upon the issue of the controllability of individual vibrational modes and the
separation of modes into groups, each of which is controlled by a certain combination of inputs. The main
difference of this article is the presence of gaps between the control elements. For certain configurations,
this always leads to the loss of controllability of individual groups of modes, which is an example of uncon-
trollability of the wave equation when only a part of the length is affected [15]. In addition, the authors
show by example that the geometric relationships between the lengths of elements and gaps also determine
the efficiency of the control, both in terms of the capability of minimizing mechanical energy and in terms
of the  energy costs required for the control. The choice of the optimal arrangement of actuators is an
extremely important task for engineering applications [16–18], when the relative sizes of the actuators and
the controlled system are fixed due to technical limitations. The approach used here can further help in
setting and solving similar optimization problems. An example of a study of the control capabilities for var-
ious configurations with a fixed minimum size of the actuator relative to the rod length is given.

1. STATEMENT OF THE INITIAL-BOUNDARY VALUE PROBLEM

The longitudinal motions of a thin elastic rod, shown schematically in Fig. 1, are considered. Its length
along the x axis is 2L, the coordinate origin is located in the geometric center of the rod, whose longitu-
dinal stiffness  and linear density  do not change along the x axis.

In addition to the elastic force in the cross section of the rod, there is a time-varying  controlling
force , which is piecewise constantly distributed along the length. In a simplified model, such a force
can be generated, for example, by groups of piezoelectric actuators (control elements), which create com-
pressive or tensile stresses in individual sections of the rod, highlighted in Fig. 1 in gray for the case of three
elements.

In this paper, we restrict ourselves to the periodic arrangement of control elements with the period ,
, . The length of the only active element on the period is . The leftmost element

of the rod is spaced at a distance of  from the boundary point with coordinate . Within each con-
trol interval  with number , the force  f  is distributed uniformly. Here, for convenience
of notation, a set of indices  is introduced with step 2. Outside the control ele-
ments, the force  f  is zero. The coordinates of the ends of the interval  are defined as

κ > 0 ρ > 0

≥ 0t
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802 GAVRIKOV, KOSTIN
Outside of these control elements, the force  f  is zero. Thus, the distributed force  f  is given in the form

(1.1)

As the domain  for the variables defining the mechanical state of the rod, we introduce the Cartesian
product of the time ( ) and spatial ( ) intervals:

where T is the control time. For the proposed generalization of the constitutive relations of the system
under consideration, the absolute displacements of the rod points , the linear momentum den-
sity , and the total normal force in the cross section  are chosen as the unknown vari-
ables.

The law of the change of momentum (Newton’s second law) connects the two unknown functions p
and s:

(1.2)

Here subscripts t and x denote the partial derivatives with respect to time and space, respectively. In turn,
momentum and force are related to the first derivatives of the displacement function, according to the
local constitutive laws:

(1.3)

If the function f is differentiable, the classical equation of motion [19] is obtained after
substituting (1.3) into (1.2):

(1.4)

In terms of the introduced variables, the position and momentum of the rod points are subject to the
initial conditions at the time instant t = 0:

(1.5)

where  and p0 are known sufficiently smooth distributions [20]. The rod ends  are unloaded:

(1.6)

It should be taken into account that although the function  f  is piecewise continuous, the rod must remain
a solid body, and the force in the section, according to Newton’s third law, cannot have jumps. This
imposes additional continuity conditions on the functions  and s at the points .

According to the MIDRs [7], in order to pass to the generalized formulation of the initial-boundary
value problem (1.2)–(1.6), we introduce on the domains  a new function (dynamic potential)

 such that

(1.7)

By directly substituting (1.7) into (1.2), we verify that Newton’s second law is satisfied automatically with
such a substitution.

To eliminate variables p and s, it is possible to rewrite the equations of state (1.3) as

(1.8)

Both the initial state (1.5) and the boundary conditions (1.6) are expressed via the kinematic and dynamic
variables  and r:

(1.9)
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We note a feature of such a representation of the mechanical state of the system: the dynamic variable
r is specified up to an arbitrary constant c0, whose value does not affect the motion of the elastic body. The
nonzero right parts  appear in the boundary conditions specified in (1.9) to ensure the continuity
of the solution, as will be shown below. This provides the compatibility of the initial and boundary condi-
tions for t = 0 and .

2. GENERALIZED FORMULATION OF THE PROBLEM
The local representation of the constitutive laws (1.8) requires a certain smoothness of the initial dis-

tribution (1.9) and the applied load f [20]. To consider a wider class of solutions, taking into account the
discontinuous nature of the function f, two differential equations (1.8) can be combined, according to the
MIDR [7] into one integral relation. Finding a solution in this case is reduced to the conditional minimi-
zation of the functional quadratic in the kinematic and dynamic variables  and r.

We formulate the corresponding generalized initial-boundary value problem.

The initial distributions that are square-integrable with their first derivatives  and the
square-integrable force  are given. We find the kinematic and dynamic state functions 

and  in the space  that minimize the functional

(2.1)

when the initial and boundary constraints (1.9) are satisfied.
In (2.1) the integral relation , realized on the exact solution, replaces the local constitutive equa-

tions (1.8), while the conditional minimization Φ takes place under the strict fulfillment of equalities (1.9).
Specially scaled state functions  and , whose quadratic form  has the dimension of the linear energy
density, are introduced. In turn, the state functional Φ has the dimension of action. The positive value

 measures the deviation of the approximation  from the exact solution  on which the
absolute minimum of the functional is . The requirement of the square integrability of both state
functions and their first derivatives in the variational problem (1.9) and (2.1) follows from the fact that Φ
includes squares of derivatives with respect to t and x unknown functions  and .

3. OPTIMAL CONTROL PROBLEM

We introduce the vector function , , whose components are the forces 
defined in (1.1), created by the th control element. In terms of f, the following control problem is
solved.

We assume, according to (2.1) and taking into account the initial and boundary conditions (1.9), that
the functions  minimize the state functional Φ for the arbitrary control , which
determines the force  f according to (1.1). We find such an admissible vector function  that, on the
fixed time interval , minimizes the objective functional:

(3.1)

Problem (3.1) is the problem of finding an extremum under the condition that for an arbitrary vector func-
tion  variables  and  provide to the functional Φ from (2.1) the minimum zero values, strictly sutis-
fying the equality constraints, namely, conditions (1.9). Here  is the mean potential energy generated by
the force ,  is the mechanical energy of the rod at the end of the process,  is the linear energy
density, and  is the dimensionless weighting factor. The solution of the direct problem of dynamics (1.9)
and (2.1) is a pair of functions . The energy density representation  includes both variables. The first
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804 GAVRIKOV, KOSTIN
term in  determines the potential energy of the elastic deformations of the rod in displacements, and the
second determines the kinetic energy through the dynamic potential.

To simplify the description of the system, we proceed without loss of generality to dimensionless vari-
ables (hereinafter, the index  is omitted):

(3.2)

Such a replacement is equivalent to choosing a dynamic system with parameters .

4. SOLUTION OF THE INITIAL-BOUNDARY VALUE PROBLEM
The solution  to problem (1.9) and (2.1) is sought in the form of traveling waves in the d’Alembert

representation. In the general case of an arbitrary set of actuator parameters, the search for an analytical
solution is rather difficult. In [10], a particular case of the arrangement of actuators without gaps, i.e.,
when  and hence , was considered. For such a configuration, the system can be reduced in
dimensionless time  into a periodic terminal state with period . In terms of eigenfunc-
tions, all modes with wavenumbers that are multiples of K/2 are not controllable.

Further, we describe an algorithm for solving the problem for the case in which the length parameters
and the control time are multiples of the dimensionless length :

(4.1)

The arrangement of control elements is considered periodic when relation (4.1) is satisfied. In other
words, counting from the left end of the rod at , first there are  elementary intervals without
actuators each of length , then  intervals of the same length with actuators. The period can be closed
by  intervals again without the actuators. Counting from the right end of the current
period, the structure is repeated.

In this proportionate case, it is possible to form a finite mesh of characteristics on the space-time
domain , on which, as will be shown below, we can exactly solve the initial boundary value problem (1.9)
and (2.1). The multiplicity of the number  of the control time T  is not necessary for constructing a finite
mesh and obtaining an analytical solution [11], but this leads to more than doubling the number of mesh
elements and complicating the solution’s algorithm. In this paper, to simplify the presentation, we restrict
ourselves to the discrete set of time intervals defined in (4.1).

To build a mesh on the domain , we break the time interval  into M subintervals ; and the spatial
interval , into N subintervals . Thus,

(4.2)

Each interval  corresponds to an open subdomain  of domain  and three one-dimen-
sional functions:
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Fig. 2. Grid on the space-time domain  for N = 6, K = 2, , M = 6.
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We turn to Fig. 2 to see how one-dimensional functions determine solution (4.4) on a two-dimensional
domain . For compact notation, new coordinates are introduced , whose axes are related to two
characteristics of the solution (solid oblique lines). The two families of characteristics are the segments in
domain  on which the values of the functions  do not change. The new coordinates are related
to  by the bijective linear transformations:

(4.5)

The oblique mesh edges shown by the dotted line in Fig. 2 are the characteristics defined in the new
coordinates as

The spatial and temporal mesh edges are easier to define in the old coordinates in the form
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To satisfy the continuity conditions on these edges, we need to introduce the following functions on
each subdomain :

(4.6)

According to (4.4), the linear combination of functions , , and  with a valid index combination
, , , and  uniquely defines the state variables  and  on the corresponding triangular mesh element.

Since , similar properties follow from the linear dependence for the one-dimensional
functions  and . By the Sobolev lemma [21], these functions must be continuous

and continuously extendable to the closure of their domain: , .
To construct a continuous solution to the initial-boundary value problem on the closure of the domain

, it is necessary to sutisfy the initial, boundary, and interelement conditions on the segments  and ,
. Taking into account (1.9), (4.4), (4.6), and the conditions following from (4.3) for the construc-

tion , the initial constraints on  for each subdomain  are presented in the form
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The boundary conditions from (1.9) for each mesh edge lying on the boundary segments  are
rewritten in the form
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First, the initial conditions (4.7) are resolved in pairs: each pair with respect to two variables  and
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at the previous steps of the algorithm with respect to the initial functions , , and unknown ,
, .

5. REDUCTION OF THE OPTIMAL CONTROL PROBLEM 
TO A CLASSICAL VARIATIONAL ONE

Solution to the linear system of equations (4.7)–(4.9) with respect to variables , where  and

, depends on the initial distributions , , , and functions , , with indi-
ces  and . In turn, according to (1.1), (4.3), and (4.6), depending on the location of the inter-
val  on the  axis, function  is either equal to zero if  or depends on one of the con-
trol forces fk if . To explicitly express this dependence, we introduce new independent control
functions:

(5.1)

In this representation,  provided that . We introduce the control vector function

 with components

(5.2)

In order for the kinematic and dynamic functions ,  to be continuous, the nodal values of the control
functions must be consistent on the segments , :

(5.3)

It is more convenient to represent these ratios in vector form:

(5.4)

We consider the structure of the objective functional Θ from (3.1), taking into account the d’Alembert
representation and the introduced control functions. Due to its additivity, the functional  is rewritten in
terms of the control vector function u as

Paying attention to the expressions for  and  in (4.4) and taking into account (4.3), the energy density
function  defined in (3.1) can be represented on the subdomain :

Given the coordinate values  at the final time , we obtain the expression for the terminal energy of
the rod:
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Here the last line follows from the fact that 2N functions  as a solution to system (4.7)–(4.9)
depend on the initial state and the linear combination of the control functions . This dependence is
expressed, respectively, in terms of the given vector function a and matrix A.

Thus, by presenting the desired  and  as a linear combination of traveling waves that are functions of
one variable z, the optimal control problem (1.9)–(3.1) after renormalization is reduced to the classical
boundary value problem of the calculus of variations with respect to the first derivative of the vector func-
tion . We need to find the control  on the interval  that minimizes the quadratic functional

(5.5)

subject to the boundary conditions (5.4). The square of the vector in (5.5) means the sum of the squares
of all its components.

To find the necessary extremality conditions for the solution of the variational problem (5.4) and (5.5),
we introduce the vector function adjoint to u, according to

(5.6)

where E is the identity matrix of the corresponding dimension. Since the Lagrangian , introduced in
(5.5), includes only the first derivative of u, the Euler equation has the form

(5.7)

We write the problem’s transversality condition as

(5.8)

where  and  are variations of function u on the boundary of the domain. Taking into account
the essential boundary conditions (5.4), we can derive the natural conditions imposed on the function p
from (5.8):

(5.9)

It is important to note that the control vector , satisfying the necessary stationarity conditions (5.4),
(5.7), and (5.9), provides the absolute minimum to the objective functional . This follows directly from
the squareness and non-negativity of .

6. ISSUES OF THE CONTROLLABILITY OF THE DYNAMIC SYSTEM

Although the control problem (1.9) and (3.1) does not require a strict translation of the rod to a prede-
termined state at the end of the process, the value of the minimized mechanical energy  at the instant

 will directly depend on the resources of the chosen contol structure. Some conclusions about con-
trollability can be drawn using the Fourier method.

We apply the method of the separation of variables for Eq. (1.4) and project it in the space  into
the basic functions , which are the solution of the corresponding eigenvalue problem 

(6.1)

With this approach, the solution to the original initial-boundary value problem can be represented as an
expansion in this orthogonal basis in the form

(6.2)
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Using integration by parts and taking into account the discontinuous nature of the force function f
from (1.1), we arrive at a linear system of ordinary differential equations:

(6.3)

Here , , and  are respectively the projections of the solution  and initial distributions  and
 on . Additionally, in (6.3) the functions of jumps of the integral of force f  are introduced:

(6.4)

Using the same symbol as for the integral values  and for the jumps  does not cause contradictions,
because the indices of these functions belong to respectively disjoint sets  and  (cf. (4.3)).

Thus, from (6.3) it follows that only the jumps of the integrals affect the motion of the rod. Moreover,
the ith mode is uncontrollable if for the arbitrary control u the right side of the corresponding equation
from (6.3) is identically equal to zero:

(6.5)

If the values of several eigenfunctions are such that  at  for all , we assume
that all these modes belong to the same group. In the case of a homogeneous rod at  in the
dimensionless form, the normalized eigenfunctions have the form

(6.6)

The value of the function

runs through only a finite number of quantities for each  at fixed N. Consequently, the number of
linear combinations  introduced in (6.5) is bounded. As a result, all oscillation modes are divided into
N + 1 countable subsystems (groups of modes) with one control input. The group with number

 combines modes with numbers , where .
Based on the mode expansion (6.3), we come to some a priori ideas about the possibilities of damping

oscillations for various configurations of the control elements. As was shown in [10], even in the presence of
 control elements located without gaps (see the upper left diagram of the rod for N = 6 in Fig. 3), we

cannot control the zero mode group, i.e., stop the motion of the rod as a whole and change the mode
amplitudes with numbers , . Indeed, substituting the values , where , from (6.6)
in (6.5) and taking into account (6.4), we obtain

These forces do not depend on the value of other functions , ; thus, for a fixed number of elemen-
tary intervals N for any other control system configurations (K < N), the zero mode group remains uncon-
trollable.

The reduction of the number of the control inputs K can only harm the situation and cause loss of
control in other groups. For example, if the control element in each period occupies two elementary inter-
vals ( , see the third and sixth diagrams from the top on the left in Fig. 3), for the Nth group, the
values of the corresponding eigenforms  at  and  at the ends

 of the interval  are . It directly follows from this that the constant force
acting, according to (1.1), on this interval  is included in the linear control combination

 of the mode with number  twice with a factor of +1 and twice with a factor of –1. Running
through all indices , we get . This means that modes with numbers  are uncontrol-
lable for those configurations where .
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Fig. 3. Possible periodic structures of the rod control at N = 6 and the corresponding sets of indices of uncontrolled modes
(gray indicates areas with applied forces).
Another interesting example of a structure with additional loss of controllability is the case with a
period length of  ( , ) and  (see, for example, the fifth diagram from the
top, on the left in Fig. 3). For this configuration, modes with a wavelength that is a multiple of  (group
number 2K) are uncontrollable. In the considered group of modes, the eigenfunctions  take the following
values on the boundaries of the intervals , :

At the nodal points  of the kth period at the boundary of the control interval  for , the values
of the eigenfunctions are the same: . Consequently, for these modes, the right-hand sides
of Eqs. (6.3) vanish ( ).

We can generalize the arguments of the previous paragraph to the case when the control interval  is
located symmetrically on the kth period of the structure, i.e., when . Taking into account the
symmetry with respect to the center of the period of the eigenfunctions  with a long wavelength multiple

, it can be argued that the linear combination  of the control force function  fk will include  times
both with the coefficient  and with the coefficient –c. This leads to the uncontrollability of the th mode.

7. AN EXAMPLE OF MOTION OPTIMIZATION
For clarity, we consider an example of the optimal control of the longitudinal displacements of an elas-

tic rod for the given time T = 3. The following parameters of the structure of control elements are selected:
K = 3, , , and  ( , M = 9). This means that three periods fit along the length
of the rod, each of which is divided into two identical sections: on the left with control; and on the right,
without control (see the diagram second from the top on the left in Fig. 3). The initial conditions are taken
as

(7.1)

Coefficient  is chosen so that the initial mechanical energy of the system is equal to 1. Despite that the
trigonometric function in the initial conditions are even, the momentum density function  is anti-
symmetric with respect to the origin, since, according to (1.9), it is equal to the derivative , which is odd
in coordinate x. From (7.1) it follows that the center of mass of the rod is at rest at the time instant t = 0.
For the system under consideration, the center of mass in the absence of external forces will remain
motionless over the entire time interval .
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Fig. 4. Optimal rod displacements  at .
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Fig. 5. Optimal control inputs  at  for  (solid line), k = 0 (dashed line), and k = 2 (dashed-dotted line).
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For the weighting factor , the optimal displacements of the rod points  is shown in Fig. 4.
When choosing such a parameter, more attention is paid to reduce the intensity of the control (the square
of the norm ), which leads to sufficiently large residual deformations (terminal energy

). As can be seen from the plot, the displacement function is continuous, but breaks are vis-
ible, located on the characteristics shown in Fig. 2 by the dashed lines for other system parameters.

The optimal control integrals , which act on the rod within the intervals , where
 and , are shown in Fig. 5 as solid, dashed, and dashed-dotted lines, respectively.

γ −= 1 v( , )t x

ϒ = 0.01794
Ψ = 0.08846

( )ku t =k jU X
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Fig. 6. Optimal rod displacements  at .
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These are continuous functions with the initial values equal to zero by construction. For the chosen initial
conditions (7.1), the control integrals are linear combinations of trigonometric and polynomial functions.

We choose the weight coefficient equal to γ = 1. In this case, to minimize the input signals, a larger
control resource is required ( ), while the residual energy decreases by more than 2 orders of
magnitude ( ) compared to the initial one. The corresponding optimal displacements are
shown in Fig. 6. As can be seen, although the terminal deformations have decreased, there are still uncon-
trolled vibrational modes with a period that is a multiple of . In Fig. 7, almost doubling of the
amplitude of the force integrals  can be seen (cf. Fig. 5).

The dependence of the optimal values of the mean square of the control vector  on the time param-
eter M and weighting factor γ are shown on a logarithmic scale in Fig. 8.  reaches its highest values at
M = 3 and large positive values γ. With a further increase in time T in the same range of values γ, the con-
trol functional  decreases monotonically.

The terminal energy of rod  shown in Fig. 9, also depending on  and M, decreases monotonically
with increasing time. At  and positive values of , this functional rapidly approaches the limiting
value , equal to the total energy of modes with numbers  (see Section 6). In a short
period of time T or for negative values of , the energy barely changes during the control process and
remains close to 1.

8. ANALYSIS OF THE OPTIMAL VALUES OF OBJECTIVE FUNCTIONALS

We study the behavior of the optimal values of the squared control norm  and the terminal mechan-
ical energy defined in (3.1) when changing the configuration of the piezoelectric elements (Table 1). For
example, we take the initial conditions (7.1), fix the number of elementary intervals , time param-
eter  ( ), and weighting factor . Sufficiently large values of M and  are chosen in order
to achieve extremely low energies  at the point in time T. As the calculations show, the further increase
either M or  does not lead to a noticeable decrease in the terminal energy.

Up to symmetry about the origin of coordinates x = 0, all possible periodic locations and sizes of con-
trol elements, indicated on each diagram with a gray background, are shown for the chosen parameter N
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Fig. 7. Optimal control inputs  at  for  (solid line), k = 0 (dashed line), and k = 2 (dashed-dotted line).
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Fig. 8. The dependence of the optimal value of functional  on the time parameter M and weighting factor γ.
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in Fig. 3. To the right of the diagram, the corresponding set of mode numbers is symbolically indicated,
to which no control actions are applied for the given configuration.

The first basic scheme on the left in Fig. 3 corresponds to the case with the maximum number of con-
trol inputs, . It includes the first six numbers in the second row from the top in
the table. Due to the greater control resource, at the end of the process, it is possible to reach a state with
a rather low energy  at the lowest control norm . In this case, every twelfth oscillation
mode, counting from zero, is uncontrollable.

= = = = 6p cK N N N

Ψ Ψ ≈= * 0.008 ϒ
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Fig. 9. The dependence of the optimal value of functional Ψ on the time parameter M and weighting factor γ.
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The same efficiency in suppressing vibrations can be achieved by using three control inputs of a short
length (K = 3, , see the second diagram on the top left in Fig. 3). However, this results in a more
intensive control: the functional  doubles (third row of the table, left half). It should be noted that for
this scheme, the critical time to reach the minimum energy value is doubled with  for K = 6 to

; see [10]. For the same dimension K = 3 of the control vector , increasing the length of the
control element up to  ( , the third scheme from the top in Fig. 3 on the left and the fourth
row in the left half of the table) leads to a loss of controllability of every sixth mode and to a noticeable
increase in the residual vibrations.

The next four diagrams in Fig. 3 on the left (fourth to seventh from the top) show the possible locations
and lengths of the controls for the case  and . At  and , it is again possible to
reach the minimum energy value , although the control functional  increases by more than four

= 1cN
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* = 4/3T ( )tu
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Table 1. Optimal values of functionals  and  for various configurations of control elements with 
and 

1 1 0 0 0 0 0 1
2 1 0 6 2 0

2 2 0 6 2 1
3 1 0 6 2 2 0.5
3 1 1 6 3 0

3 2 0 6 3 1

3 3 0 6 4 0

6 1 0 6 4 1
6 1 1 6 5 0 0.00829
6 1 2 6 6 0 0.5

ϒ Ψ == 2 12M N

γ = 310

pN cN sN ϒ Ψ pN cN sN ϒ Ψ

0.01033 0.00829

0.02066 0.00829 0.04274 0.04205

0.01434 0.04205 0.02243 0.49284

0.04266 0.00829 0.01349

0.02256 0.16823 0.07285 0.16823
0.02197 0.04205 0.10309 0.16823

0.03643 0.16823 0.03756 0.49284

0.17171 0.00829 0.00273 0.95079
0.04512 0.16823 0.42874

0.07994 0.00829 0.03125
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times compared to the basic case at . The shortest time required to reach this energy also
increases up to . It is interesting to note the scheme with two control elements at 
(fifth row in Fig. 3). The terminal energy increases by a factor of more than 20 times with this symmet-
rical arrangement of the control element in the period. It can be shown that modes with numbers divisible
by 4 become uncontrollable for such a scheme. For the dual input configurations with  or ,
the oscillation amplitudes of either every fourth or every sixth mode, respectively, cannot be changed.

The rest of the diagrams in Fig. 3 (except the first one on the top right, without actuators) correspond
to the case of one control signal K = 1, otherwise . Among them, we would like to highlight three
configurations with parameters  and ;  and ; and  and . For
them for the time  we can achieve the lowest level of residual energy for all the considered
schemes . Of the first two configurations with a short control element , the second option
with a larger shift of the element to the center of the rod turns out to be more advantageous in terms of
control costs. The most disadvantageous of the three configurations is the configuration with a long ele-
ment, .

For the case with one control signal, it is worth noting two schemes with a symmetrical arrangement
of the element relative to the geometric center: these are the configurations with parameters 
and  ( ). Due to the aforementioned symmetry, all even modes turn out to be uncontrolla-
ble, and for the initial conditions (7.1), they contain exactly half of the energy stored by the rod (see the
left half of the table, the fifth row from the top and the last row). For the same initial conditions, the largest
vibrations remain for the symmetric case  and , when it is not possible to control not only
the even modes but also the modes with the indices divisible by 3.

The selected examples of the arrangement of control elements, due to their limitations, do not allow us
to draw unambiguous conclusions about the possibilities of the structural optimization of the investigated
dynamic system with distributed parameters. At the same time, it should be pointed out that a reasonable
reduction in the size of the piezoelectric elements in violation of both the geometric symmetry of their
arrangement and the proportionality of various parts of the configuration can have a positive affect on
increasing the control efficiency in terms of reducing the rate of the input signals and the energy of the
residual oscillations.

CONCLUSIONS
The longitudinal displacements of a thin homogeneous elastic rod with a periodic structure of piezo-

electric elements are considered. A generalized formulation of the initial-boundary value problem, whose
solution is sought with respect to the kinematic and dynamic variables in the energy space, is given. For
the case of a rod controlled by longitudinal forces discretely distributed in space, with the given control
law, an algorithm for constructing the optimal motion in the form of a combination of traveling waves is
proposed. For a fixed control time interval, a solution is found to the problem of minimizing the objective
functional, which is the weighted sum of the squared norm of the control vector and the terminal mechan-
ical energy of the rod. For this, a two-dimensional control problem in space and time is reduced to a one-
dimensional variational problem with fixed ends. The dependence of the optimal values of the norm of the
integral of the piezoelectric force and the terminal energy on the control time and the weight coefficient
is studied. The change in these values for a number of configurations of the control elements is demon-
strated. The proposed approach makes it possible to compare the effectiveness of different control struc-
tures and thus to pose in a certain sense the problem of finding the optimal configuration.
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