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Abstract—In the class of discrete enumeration problems, an important place belongs to the problems
of searching for frequently and infrequently occurring elements in integer data. Questions on the effec-
tiveness of such a search are directly related to the study of the metric (quantitative) properties of sets
of frequent and infrequent elements. It is assumed that the initial data are presented in the form of an
integer matrix, whose rows are descriptions of the studied objects in the given system of the numerical
characteristics of these objects, called attributes. The case is considered when each attribute takes val-
ues from the set { . Asymptotic estimates for the typical number of special, fre-
quent fragments of object descriptions, called correct fragments, and estimates for the typical length
of such a fragment are given. We also present new results concerning the study of the metric properties
of the minimal infrequent fragments of descriptions of objects.

DOI: 10.1134/S1064230723050052

INTRODUCTION
The considered problems of the analysis of integer data arise at the stage of training logical classifica-

tion procedures by precedents. The metric (quantitative) properties of the sets of solutions to these prob-
lems need to be studied in order to obtain theoretical estimates of the complexity of the synthesis of logical
classifiers and forecast the time costs.

We introduce the basic concepts. The set of M objects are explored. It is known that each object of the
set M can be represented as a numerical vector obtained based on the observation or measurement of a
number of its characteristics. Such characteristics are called attributes. It is assumed that each attribute
has a limited set of valid values, which are encoded as integers.

Assume  is the given set of attributes; H is the set from r attributes of the form
 and  the set in which σi is an admissible value of attribute

. The pair (σ, H) is called an elementary fragment (EF) of rank r. The set of all EFs generated
by the set of attributes X is denoted through W(X).

We assume  is an object from M (here aj, , is the value of attribute xj for
object S). We will consider that S contains EF  if  at .

The set of objects D from M and number p, 1 , where |D| is the number of objects in D, are
given. The objects in D are not necessarily different.

EF  is called (p, D)-frequent if at least p objects from D contain (σ, H). EF
, of rank  is called correct in D if (σ, H) is -frequent. EF
, is called infrequent in D if no object from D contains (σ, H), and it is called

minimal infrequent in D if from the condition  it follows that EF  is not infrequent
in D.

The logical classification of integer data assumes the presence of several nonoverlapping samples
, , of objects from M, each of which represents a certain class of objects. The objects con-

tained in these samples are called precedents, and the attributes from X are called features. At the training
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stage in each sample , we search for those frequent EFs that are infrequent in Dj for any
. The found EFs make it possible to distinguish precedents from different classes and are called log-

ical patterns or representative elementary classifiers [1–6].
Some additional conditions may be imposed on the type of the desired EF (depending on the classifier

model under consideration). For example, the so-called irredundant representative elementary classifiers
are sought. An elementary classifier (σ, H) is called a irredundant representative for  if
two conditions are met: (1) (σ, H) is an -frequent EF; and (2) (σ, H) is minimal infrequent in Dj for
any . In this case, when searching minimal infrequent EFs we need to consider the intractable dis-
crete problem of constructing the irredundant covers of an integer matrix [3], whose rows are descriptions
of precedents that do not belong to Di.

In [6], a model of a logical classifier is proposed, based on the initial search in each sample
, of the correct EFs and the subsequent selection among them of those that are not con-

tained in the descriptions of precedents from other classes. This model demonstrates a significant advan-
tage in terms of counting speed over the classical model based on the construction of irredundant repre-
sentative elementary classifiers, which are not inferior to the latter in terms of classification.

It is of interest to obtain asymptotic estimates (for n → ∞) of the typical number of correct EFs and
estimates of the typical length of the correct EF. In [7], the required estimates are obtained for the case
when the number of objects in D is significantly less than the number of attributes and each attribute takes
values from the set { .

The new results obtained in this paper mainly concern research on the metric properties of the set of
correct EFs in the case . It should be noted that similar properties of the set of minimal infrequent
EFs were previously studied in a number of publications (for example, [3, 8, 9]), in which, among other
things, the case  is considered. The estimates of the number of minimal infrequent EFs given in the
article have a form that allows us to compare them with the corresponding estimates of the correct EFs.
The result of the comparison indicates the expediency (in terms of reducing the time costs) of using meth-
ods for searching for frequent EFs for the synthesis of logical classifiers and agrees with the experimental
results obtained in [6] on random model data.

In Section 1 the problem statement is given. The initial data are presented as an integer matrix, whose
rows are descriptions of the objects from D. Statements of the two main theorems on the number of correct
EFs are given. The proofs of these theorems are contained in Section 2. The previously obtained and new
estimates of the typical values for the number of minimal infrequent EFs and the length of the minimum
infrequent EF are shown in Section 3.

1. STATEMENT OF THE PROBLEM AND FORMULATION OF THE MAIN RESULTS

We assume , is a matrix with elements from { ,

, is the set of sets , is the set of

all sets of the form , where  at  and , is the set of all
ordered sets of the form , where  at .

We put . We will call number  the length of set w.

We will call the set w σ-admissible for L if we can specify a set  such that  
at . We will consider that the σ-admissible set w is generated by the set σ.

It is easy to see that in the case when the matrix L takes descriptions of objects from the sample D as its
rows, the set , is σ-admissible for L if and only if the EF 
is correct in D.

Let us introduce the following notation:  is the set of all matrices of size m × n with elements from
{ ; , is the set of all σ-admissible sets for matrices L;

 is the set of all sets in  of length r; , is the aggregate of all admissible sets
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for matrices L in which each set occurs as many times as the number of sets it generates from ; |N| is the
cardinality of the set N;

; hear and further, [q] is the integer part of the number
q; ; hear and further, ]q[ is the smallest integer greater
than  is the interval  is the interval  n → ∞ means
that  and  means that .

Below we present the asymptotic estimates for the typical value of |U(L)| and an estimate of the typical
length admissible set for  for different values of  and .

The identification of the typical situation is connected with a statement of the type “for almost all
matrices L from  at n → ∞  is satisfied” (here  and  are two functionals

defined on matrices from ). This statement means that there are two positive infinitely decreasing
functions α(n) and β(n) such that for all sufficiently large n

where  is the set of such matrices L in  for which

is fulfilled.
Theorems 1 and 2 below are valid.

Theorem 1. If , then at n → ∞ for almost all matrices L from ,

are fulfilled and the lengths of almost all sets from U(L) belong to the interval φ1.

Theorem 2. If , then at n → ∞ for almost all matrices L from ,

are valid and the lengths of almost all sets from U(L) belong to the interval φ2.
The proofs of Theorems 1 and 2 are based on a number of lemmas given in Section 2.

2. PROOFS OF THEOREMS 1 AND 2

Assume  and . Matrix L = (aij),

, is called -matrix if   at . We denote by  the set of
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-matrices in ; and through , the set of all matrices L in  such that  at

.

Lemma 1. If , then

Proof. We estimate in how many ways it is possible to construct the matrix L from . Those ele-
ments of matrix L that are located at the intersection of rows with numbers from  and columns with num-
bers from w are uniquely determined. The remaining elements of this matrix can be chosen arbitrarily

(  ways). From this we obtain the required estimate. Lemma 1 is proved.

Lemma 2. If , , then

Proof. We estimate in how many ways it is possible to construct the matrix L from . The ele-
ments of this matrix, located in columns with numbers not included in w, can be chosen arbitrarily (in

 ways). Hence, given that the rows in the submatrix of matrix L formed by columns with numbers
from w, can be chosen by  methods, we obtain the required estimate. Lemma 2 is proved.

Lemma 3. We assume ; sets  and  intersect
along  elements; and sets w1 and w2 intersect along  elements. Then

The proof of Lemma 3 is not given due to its obviousness.
Lemmas 4–6 below are proved using the expression , which means that  for all suffi-

ciently large n.
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2. The following relation is valid:
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3. At , we get

Thus, , in case 1 and , in each of cases 2 and 3. Lemma 4 is
proved.

Lemma 5. If  and , then

where δ(n) → 0 at n → ∞.

Proof. We denote . Since

and on the condition  0.5, then

Therefore, the estimated amount does not exceed , where δ(n) → 0 at n → ∞. Hence,
using the inequality , we obtain the assertion of the lemma. Lemma 5 is proved.

Lemma 6. If , and  , then

where δ(n) → 0 at n → ∞.

The proof of Lemma 6 is similar to the proof of Lemma 5 (in this case  and ).

We consider  to be the space of elementary events in which each event L happens with prob-

ability . The mathematical expectation of a random variable X(L) defined on the set  will be
denoted by ; and dispersion, through .

Lemma 7 [10]. We assume that for random variables  and  defined on ,
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However, by Lemma 2 we have

(2.2)

The following lemma immediately follows from (2.1) and Lemma 4.

Lemma 8. If  , then the following relations are valid:

Lemma 9. If  , then

Proof. We have

Since , then . From this, using (2.2), we obtain

Lemma 9 is proved.
Lemmas 8 and 9 immediately imply the following lemma.
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The proofs of Lemmas 11–13 presented below are not given, since they are completely analogous to
the proof of Lemma 10.
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It is easy to see that

where . Hence, using Lemmas 3 and 5, we obtain

(2.4)

where  at n → ∞.

However, by Lemma 13
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Lemmas 15–17 below are proved similarly to Lemma 14.

Lemma 15. If  , then

Lemma 16. If  , then

Lemma 17. If  , then

We assume . On , we consider a random variable  equal
to 1 if , and equal to 0 otherwise. We put

Lemma 18. If  , then at n → ∞, the following relation is fulfilled for almost all matrices

L from :

Proof. We estimate the probability of an event , denoted below
by . By Lemma 1

( )( )
∈φ ∈ ∈ ∈

∈ ∈ ∈

≤  
1 1 2

1 2

2
1

, ,   σ'

,   σ''

ζ   / ,
m m r

r l k
n n l

r l k

mn

r l V V E

w W w W E

L N kM
v v

( ) ( )= ∩
1 1 2 2,σ, ,σ'', w wN N N
v v

( )( ) + − − + −
−

∈φ =
≤  

2 2

1

min( , )
2

1
, 0

ζ
r l

r l r l lb r b l b r l
n r n r m m

r l b

L k k C C C C CM

+ − −

∈φ
≤ +

2 2

1,

(1 δ( )), r l r l r l r l
n n m m

r l

C C C C k k n

→δ( ) 0n

( )( ) + − −

∈φ
≈ → ∞

2 2

1

2
1

,

ζ , . r l r l r l r l
n n m m

r l

L C C C C k k nM

β

≤ ≤ > <, 1, β 1a mm n k a

( ) ( )( )μ → → ∞
1 1

2μ / 0,   .r rL L nD M

≤ >, 1am n a

→ → ∞
2 2

2μ ( )/( μ ( ))  0 , .r rL L nD M

≤n m

→ → ∞
3 3

2μ ( )/( μ ( ))   0, .r rL L nD M

∈ ∈ ∈,  σ ,m r n
r k rV E w Wv { }=k

mn LM ( )v,σ,ξ ( ), w L

( )∈
v,σ,wL N

( )
( )

( ) ( )
= ∈ ∈ ∈

=    v

v

min ,

,σ,
1 ,  σ

ξ  ξ ,
m n r

r r k

m n

w
r V w W E

L L

( ) ( ) ( )
∈φ ∈ ∈ ∈

=    v

v2

1 ,σ,

,  σ

ξ  ξ . 
m n r

r r k

w
r V w W E

L L

≤ ≤ <
β

  , β 1/2nn m k
k
mnM

( ) ( ) −

∈φ
ξ ≈ ≈ 

2

2

1ξ .r r r r
n m

r

L L C C k

( ) ( ) = ∈ ∈ ∈,σ,ξ   1, , σ ,m r n
w r k rL V E w W

v
v

( ) ( ) =
v,σ,(ξ 1)wP L

( ) ( ) ( )
−= = =

v v

2

,σ, ,σ,(ξ 1)  | |/| | .k r
w w mnP L N kM
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 5  2023



824 A. P. DJUKOVA, E. V. DJUKOVA
Therefore, according to Lemma 4,

(2.6)

From (2.6) and Lemma 6, using the scheme of the proof of Lemma 14, we obtain

(2.7)

From (2.6), (2.7), and Lemma 7, the assertion of the lemma to be proved follows. Lemma 18 is proved.
The assertions of Theorem 1 follow directly from Lemmas 7, 10, 11, 13, and 14–16, while the assertions

of Theorem 2 follow directly from Lemmas 7, 12, 17, 18, and the inequality .

3. ESTIMATES OF THE TYPICAL VALUES OF THE NUMBER OF MINIMAL
INFREQUENT EFS AND THE LENGTH OF THE MINIMUM INFREQUENT EFS

We put ; .

The set w is called a σ-covering for matric L of length r if for any  there are 
such that . We will consider that the σ-covering w is generated by the set σ.

The set w, which is a σ-covering for matric L is called an irredundant if for any  the set
 is not a γt-covering for matrix L, where . If w is an irredundant σ-cover-

ing for matric L, it is easy to see that the columns of matrix L with numbers from w contain a submatrix
that, up to row permutation, has the form

where  at  Such a submatrix is called a σ-submatrix.
Note that in the case when the descriptions of objects from the sample D are taken as the rows of matrix

L, then the set , is an irredundant σ-covering for matric L if and only if the EF (σ,
H), , is minimal infrequent in D.

We introduce the following notation: , is the set of all irredundant of the
σ-covering for matrix , is the set of all σ-matrix submatrices L; Br(L, σ),

, is the set of all sets in B(L, σ) of length , is the set of all

submatrices in  of order , is the set of all irredundant σ-covering for matric L,

in which each covering occurs as many times as the number of sets of  it generates; , is

the set of all σ-submatrices of matrix L for all σ from ;

 – interval [1, r3]; 
; φ3 – interval [r4, r5]; r6 = ]logkm + logklogkm +

; φ4 is the interval [1, r6].
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Fig. 1. Typical values for the lengths of sets from U(L) (see Section 1) and B(L) when .

1 r5r2r4r1

≤ ≤ > <
β

,   1,  β 1a mm n k a

Fig. 2. Typical values for the lengths of sets from U(L) (see Section 1) and B(L) when .

1 r6r3

≤ ≤ <
β

, β 1/2nn m k
Theorem 3 [3]. If , then the following relations are valid at n → ∞ for almost

all L matrices from :

and the lengths of almost all sets from B(L) belong to the interval φ3.

Theorem 4. If  , then the following relations are valid at n → ∞ for almost all

matrices L from :

and the lengths of almost all sets from B(L) belong to the interval φ4.
The scheme of the proof of Theorem 4 is similar to that of the proof of Theorem 2.
Thus, in each of the two cases considered, the typical length of a set of U(L) and the typical length of

a set of B(L) belong to the same interval. The results of Theorems 1, 3 and Theorems 2, 4 are illustrated,
respectively, in Figs. 1 and 2.

CONCLUSIONS
Topical issues of logical analysis of integer data concerning the research on the metric (quantitative)

properties of sets of frequent and infrequent elements of such data are considered. The technique for
obtaining estimates for the typical values of the main numerical characteristics of the specified sets has
been improved and new estimates for such characteristics have been found. A theoretical substantiation of
the expediency (in terms of reducing time costs) of using methods for searching for frequent elements at
the stage of training classifiers based on a logical analysis of the training sample is given.

The results of the study carried out in this paper are also important for a number of other applied areas,
among which it is worth highlighting the searching for associative rules in data. In this case D is called a
database, and each object of the database D is a transaction. The associative rule establishes a relationship
between two frequent EFs, according to which one frequent EF (premise) with some “certainty” entails
another frequent EF (consequence). In this case, the premise and the consequence are generated by one
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common frequent EF. Questions of the synthesis of associative rules arose in connection with the analysis
of the consumer basket [11].
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