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Abstract—A new two-level ensemble regression method, as well as its modifications and application
in applied problems, are considered. The key feature of the method is its focus on constructing an
ensemble of predictors that approximate the target variable well and, at the same time, consist of algo-
rithms that, if possible, differ from each other in terms of the calculated predictions. The ensemble
with the indicated properties at the first stage is constructed through the optimization of a special
functional, whose choice is theoretically substantiated in this study. At the second stage, a collective
solution is calculated based on the forecasts formed by this ensemble. In addition, some heuristic
modifications are described that have a positive effect on the quality of the forecast in applied prob-
lems. The effectiveness of the method is confirmed by the results obtained for specific applied prob-
lems.

DOI: 10.1134/S1064230723040020

INTRODUCTION
Ensemble methods have a very long history and are an important part of machine learning technolo-

gies used in solving problems of learning by precedents: classification or prediction of numerical variables
[2, 3]. The ensemble method is usually understood as a method that calculates solutions in two stages: by
separate ensemble algorithms and by a collective algorithm.

Among ensemble technologies, the method of random forests [4] and the gradient boosting method
[5] are most widely used. These technologies have been successfully used earlier, including for the tasks of
evaluating real characteristics from indicative descriptions of objects.

The task of learning from precedents in the above sense is defined as follows. We consider a set of
objects that make it possible to measure or calculate  of their numerical characteristics (features)

. We assume that some of these objects also measure the target feature Y, which we will call prec-
edents. A training sample is a set of precedents , where yi, , are the values
of the target variable Y for the ith object and xi is the vector of the feature description of the ith object,

. It is required to build an algorithm A to determine (predict) the value Y for other objects:
. In the case when Y takes on categorical values, the task can be called a classification task, and

in the case when Y is a continuous numerical characteristic, it is called a regression.
In the random forest method [4], trees are generated independently using a combination of bagging

and the random subspace method [6, 7]. In other words, every new tree Tk, added to the ensemble at the

step k, is based on the sample , which is a sample with a return from the projection of the original train-
ing sample , where  is the vector projection xi to the feature subspace

. The tree generation process stops when the total number of trees in the ensemble
reaches a predetermined number. In the random forest method, simple collective solutions are used: when
solving classification problems, an object belongs to the class to which it was assigned by most of the trees
in the ensemble; when solving regression problems, the collective forecast is calculated as the average fore-
cast over the ensemble.
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620 DOKUKIN, SEN’KO
In methods based on gradient boosting, each new tree Tk, added to the ensemble at step k, performs
one step of gradient descent. We assume the function  describes the loss that occurs when used
as the forecast Y at the point xj of value , for example, the quadratic error  = (yj – A(xj))2.
For training, gradient l is calculated by  and , where rj =

, . Obviously, for the quadratic error . We assume that Ak is
an ensemble built by the kth step:

where T0 is some initial approximation, for example, identical zero. If now Tk is trained on the sample

, thereby approximating the gradient of the loss function at  and εk is the gradient descent
step at step k, then the ensemble constructed in this way will optimize the given functional increasingly
accurately with each step, and, therefore, approximate the target variable.

The method of random regression forests and the gradient boosting method are widely used to solve
various applied problems and do so highly efficiently in many cases. Moreover, neither of them is undis-
putedly better than the other; in practice, some tasks are performed better by one or the other method,
sometimes by a significant margin. At the same time, it can be assumed that ensemble solutions can be
highly efficiently solved by other methods, apart from the two mentioned above. There is even an inten-
tion to combine these approaches, which is realized to some extent in the proposed method.

1. OPTIMIZED FUNCTIONALITY

In the random forest method, ensembles are generated randomly, which obviously does not ensure
their optimality. At the same time, gradient boosting is not a full ensemble method—it is undoubtedly the
sum of algorithms, but each one separately approximates the derivatives of the loss function rather than
the target variable. Our method proposes to combine the best of the two approaches. We will build an
ensemble of various elements, each of which is random to a certain extent, and approximates the target
variable. In this case, the elements themselves will be built by optimizing a special functional, to the der-
ivation of which we turn.

We consider an iterative procedure for constructing an ensemble. We denote the arbitrary algorithm by
Bi(x): as a tree, for example, and a linear combination of trees obtained at the ith step. By step k the ensem-
ble will consist of all the algorithms built in the previous steps, and the ensemble’s solution  is the
average of these algorithms:

where O(x) is identical zero.

We are interested in the mean square of the deviation:

Note that this functional can be expressed in terms of the mean square of the deviation over all objects and
algorithms,
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NEW TWO-LEVEL MACHINE LEARNING METHOD 621
for which we will consider the latter:

From this it follows that the mean squared error for the algorithm Ak is calculated by the formula

The two terms  in the resulting formula have a simple interpretation. The first one describes
the deviation of forecasts from the true values Y, and the second one is the average variance of predictions
for objects from S. The last term is more difficult to interpret, but several observations can be made. First,
it tends to zero as the size of the ensemble k increases. Second, its appearance is caused by the desire to
simplify the algorithm and determine Ak as the sum of the terms of the previous steps without including
the desired algorithm; otherwise this term is strictly equal to zero. Finally, in the future, the method will
require several more nonstrict transitions and additional heuristics, so we will not include the last term in
the functional:

(1.1)

Thus, the optimality of the ensemble can be achieved due to two factors: a good approximation of the rela-
tionship of Y with variables  on the training sample and a strong variance in the forecasts of the
training objects.

These considerations allow us to choose the functional for optimizing the new ensemble term Bk,
. Rigorous calculation of quality gain  according to (1.1) leads

to a significant complication of the algorithm:

The contribution of one element to this functional decreases with an increase in the size of the ensemble;
hence, it is more logical to use , and this difference, in turn, with increasing k
approaches
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622 DOKUKIN, SEN’KO
which is much more convenient. Nevertheless,  does not reach the minimum  and
requires the introduction of parameter μ, where . Further constructions are based on the
assumption that the optimality of the ensemble in the sense of ensuring the maximum generalizing ability
with its help will be achieved for corrective trees, under which the functional  is minimal:

(1.2)

i.e., .

Further, functional (1.2) allows us to apply the gradient boosting procedure directly to construct the
elements of the ensemble. This approach was implemented in [8] and showed good results in practical
problems. However, it also has some shortcomings. First of all, it increases the complexity of the training.
In addition, it becomes necessary to select the gradient boosting step.

The direct construction of a tree optimizing functional (1.2) does not have these shortcomings. The
gradient boosting analogy remains, but B reaches the minimum of the functional in one step, which
reduces its complexity and does not require the selection of a parameter. However, this method is related
to some technical difficulties and will be the goal of further research. To test the concept itself, we consider
another approach implemented using the standard scikit-learn methods [9]. We assume that the mini-
mum of Q is reached at the point . The regression tree Tk, trained on the sample

, can be used as Bk. This approach is similar in complexity and the number
of parameters to the previous one; however, in this paper we will sacrifice simplicity to achieve additional
diversity in the ensemble using additional techniques such as bagging and the random subspace method.
We describe this approach in more detail.

We assume that we have obtained ensemble  for the first k – 1 steps. We generate bootstrap
replication  of samples S in the projection onto a random subspace, as described in the introduction.
We build a regression tree Tk by replication . The algorithm Bk is sought as the sum , where
tk is a correction tree that is built based on the minimization condition .

Let us rewrite functional (1.2) for this procedure:

(1.3)

At the first step, a real vector , whose components are the optimal prediction biases com-
puted by the tree Tk, i.e., , is sought. The minimum value of the functional 
according to tj is achieved at  or when

(1.4)

At the same time, the calculation of the optimal biases by formula (1.4) can lead to a decrease in the accu-
racy of the generated algorithm Bk towards Tk subject to the following sets of inequalities:

(1.5)

or

(1.6)

Such a decrease in accuracy can be avoided if, when one of the sets of inequalities (1.5) or (1.6) is satisfied,
we equate  to zero.

Thus, a recursive procedure for constructing an ensemble of algorithms is described. Starting with an
empty ensemble and identically zero as the collective solution, we fill it with the sums of pairs of trees,
where the first one approximates the target variable directly and the second one approximates the correc-
tion that minimizes the functional  (1.3). The construction of the ensemble is completed if k reaches
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NEW TWO-LEVEL MACHINE LEARNING METHOD 623
a user-defined threshold N. The ensembles that are constructed using this procedure will be called decor-
related below.

2. COLLECTIVE SOLUTION AND ADDITIONAL HEURISTICS

Together with the ensemble generation method, the procedure that calculates the collective solution
plays an important role in making the ensemble algorithm efficient. Although the ensemble was built
based on considerations of minimizing the error of the averaged response of the algorithms, the use of such
a collective decision scheme turned out to be insufficiently effective. In [8], several other methods were
considered, in addition to the average over the decorrelated ensemble, in particular, stacking [10], i.e.,
application of predictions calculated by individual trees of the ensemble as features for second-level algo-
rithms that calculate the output collective solution. The experiments presented in [8] show that higher
accuracy is achieved with random regression forest stacking than with simple averaging. For this reason,
several variants of the collective solution are implemented in the method: averaging and stacking with the
gradient boosting method and random forest, as well as their convex combination.

The most accurate prediction is usually achieved with large ensemble sizes. However, an excessively
large number of signs leads to an increase in instability and a decrease in the accuracy of the forecast. Var-
ious approaches can be used to reduce the feature space. The proposed method uses two techniques: dec-
imation and reoptimization. In the first case, after calculating the complete decorrelated ensemble, all
regression trees included in it are ranked by the value of the functional , where for an arbitrary ele-
ment Bj, the ensemble is assumed to be equal to . Further, all insufficiently effective terms
are excluded from the ensemble in such a way as to leave the predetermined  elements. The experiments
on real problems did not reveal a noticeable increase in efficiency from using this procedure. Perhaps this
is not the case with a larger number of initial terms; however, in this case the computational complexity of
the procedure increases significantly. Reoptimization leaves the number of terms, but tries to further
spread them out. We consider the ensemble  and apply the procedure for constructing a new
algorithm B to this ensemble, and then replace Bj in the resulting algorithm, etc., for all terms in turn. The
effect of this procedure was also not spectacular; however, these two procedures were left in the method
for further research.

Somewhat better efficiency was shown by the use of a variant of the method of extreme grouping (EG)
of the parameters to reduce the dimension of the feature space [11]. At the initial stage, the features are
randomly divided into a certain predetermined number of groups, for each of which the corresponding
group factor is calculated as the average of all the features included in the group. In this case, some of the
features are multiplied by –1 to ensure the same direction of the links with the target variable. The proce-
dure used is similar to the standard k-average clustering method and consists of transferring each of the
features to the group for which the modulus of the correlation coefficient between the feature and the cor-
responding group factor is maximum. Next, the group factors are recalculated. The process ends if there
is no need to transfer features in any of the steps. In the implemented method, EG can be used both for
the initial features, which is especially important, for example, for chemical problems with a high correla-
tion of the features, and for the generated space.

This study does not use stacking or the preliminary clustering of features, since they are general proce-
dures applicable to any method.

Thus, the properties of the final algorithm are determined by the following set of parameters: N is the
number of elements of the ensemble (in the experiments N = 200 was fixed);  is the number of ensemble
elements after sifting (in the experiments,  was fixed); μ is the effect of the decorrelating compo-
nent of the functional (in the experiments, ); ν is the proportion of features used to build Tk;  is
the contribution parameter tk:  (in the experiments  was fixed); G is the number of EG
groups in the ensemble; and corrector = average|forest|boosting is the type of corrective procedure. The
parameters of the final corrective procedure are set separately. For boosting and bagging, the default
parameters are taken and no parameters are needed for averaging.

As is usually the case, there is no single set of hyperparameters that is effective for all applications. An
example of combinations that allow us to achieve advantages over the pure gradient boosting and random
forest methods for predicting the properties of chemical elements is presented in [12]. The next chapter
describes the application of the developed method to several other problems.
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624 DOKUKIN, SEN’KO
3. APPLICATION PROBLEMS

The following problems were used to assess the quality of the studied algorithm and the range of opti-
mal hyperparameters.

Houses: 'House Prices’ sample: Advanced Regression Techniques’1, containing data for estimating
real estate prices on various grounds, from the topography of the site and the length of the adjacent street
to the type and quality of the finish of the building and its proximity to the railroad. There are 1460 objects
in the problem, described by 79 features, most of which are categorical. To apply the method to these fea-
tures, the following coding procedure was applied: for the training subsample, the feature values were
replaced by the average target indicator for all objects with the same feature value; in the test subsample,
the value from the training subsample was used; if the test subsample included a value unknown in the
training subsample, it was replaced by the average value of the target feature over the entire sample; and
gaps in the quantitative features were replaced by zeros, since their nature is the area of the missing ele-
ment.

Prices and costs are another selection of real estate2 from the UCI repository [13]. The sample contains
372 objects described by 107 numerical features, which predict the price of real estate and the cost of its
construction. These two tasks were considered separately.

Systolic is the task of estimating systolic pressure using an electrocardiogram (ECG) signal [14].
The sample contains 836 objects described by 160 spectral indices.

The developed method is implemented using the standard methods from the scikit-learn library [9]
and the novelty is reduced to the use of a modified target variable. The tree Tk is sought using a
BaggingRegressor with the number of elements equal to one and . The correction tk is
implemented using a DecisionTreeRegressor. For the experiments, some of the hyperparameters were
fixed and several runs were made with different values of , , , and the corrector. They are presented
in this order in the description of the results.

The reference methods were also taken from scikit-learn: BoostingRegressor as an implementation of
gradient boosting and RandomForestRegressor as a random forest. All methods were run with an ensem-
ble size of 200 and the rest of the default settings. We consciously abandoned attempts to compare quality
with other researchers and conducted our own tests for several reasons, mainly in order to compare the
methods in relatively the same conditions and identify the effect of the decorrelation technique. Thus, the
Houses task requires feature preprocessing, and the results are improved by the leaders of the Kaggle com-
petition, including by improving this processing. The same is true for the Costs and Prices problems in
many respects: the most recent available study of these data is also largely focused on the specifics of the
sample [15], while we study the general approach. The Systolic problem in this form has not been studied
by anyone.

The results and launch parameters are presented in Table 1. To assess the quality of the prediction, two
characteristics were used: the coefficient of determination (R-square, R2) and the mean absolute error
(MAE). The tasks were solved in the sliding control mode with division into 10 parts. In addition, the
results were averaged over 10 runs to reflect their robustness; therefore, the table shows the mean and stan-
dard deviation (stdev) of the indicators.

The first thing we should pay attention to is the different ratios of the quality of the reference methods
themselves. It can be seen that in problems with real estate, boosting shows much better quality than ran-
dom forest. At the same time, boosting lags far behind in the problem of pressure estimation. In turn, the
proposed method always demonstrates superiority over the outsider. At the same time, in the Prices and
Costs tasks, it only managed to catch up with the leading method. In the Houses problem, the leadership
of the proposed method is clear, as it leads both in terms of R2 and the mean absolute error. The best result
of the method was demonstrated in the problem of estimating systolic pressure, in which the leader of the
pair of reference methods—this time the random forest—managed to significantly outperform in terms of
both criteria.

As for the choice of hyperparameters, their nonuniversality was once again confirmed. In some cases,
the advantage was given by a high ν, and in other cases, on the contrary. In problems with real estate, ran-
dom forest turned out to be a good corrector, and in pressure prediction, simple averaging turned out to
be a good corrector.

1 https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data.
2 https://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set.

ν_ =max features
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JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 4  2023



NEW TWO-LEVEL MACHINE LEARNING METHOD 625

Table 1. Experimental results

Task Model
R2 MAE

mean stdev mean stdev

Houses Boosting 0.882 0.006 17642 352.37
Forest 0.861 0.0051 17923 112.72
0.5, 0.4, 40 0.881 0.0134 16645 211.1
0.5, 0.4, 40 boost 0.879 0.01 17232 239.12
0.5, 0.4, 40, average 0.888 0.0035 16577 94.9

Costs Boosting 0.96 0.0027 16.6 0.342
Forest 0.95 0.0035 20.19 0.372
0.7, 40 boost 0.946 0.0056 20.59 0.659
0.7, 40, forest 0.932 0.0042 19.41 0.662
0.7, 40, average 0.933 0.0057 19.35 0.494
1, 40, forest 0.96 .0036 18.21 0.558
1, 80, forest 0.961 0.0015 17.09 0.26
1, 120, forest 0.96 0.0032 18.07 0.409

Prices Boosting 0.977 0.0017 81.76 3.014
Forest 0.961 0.003 121.21 3.073
0.7, 40 boost 0.929 0.0063 202.99 7.278
0.7, 40, forest 0.941 0.0056 184.44 9.078
0.7, 40, average 0.938 0.0064 191.83 8.133
1, 40, forest 0.971 0.0027 103.53 3.15
1, 80, forest 0.972 0.0021 102.17 3.41
1, 120, forest 0.97 0.0033 104.39 3.5

Systolic Boosting 0.432 0.0134 6.02 0.055
Forest 0.464 0.0073 5.81 0.043
0.3, 80 boost 0.475 0.0077 5.75 0.044
0.3, 80 0.482 0.0084 5.79 0.05
0.3, 80, average 0.486 0.0064 5.75 0.033
CONCLUSIONS

A new ensemble regression method is presented. An additional substantiation of the approach is given,
which refines the conclusion drawn in previous works. The results of testing the method and evaluating
the possibility of its use to solve applied problems in business and medicine are also considered. The
results of the experiments confirm the promise of the proposed approach.

Further research is expected to focus on increasing the speed of the method, which can be achieved,
first, by directly constructing the elements  as trees with a special quality functional, and second, by
optimizing the construction of these trees, including using the cython library.
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