
ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2021, Vol. 60, No. 6, pp. 883–894. © Pleiades Publishing, Ltd., 2021.

OPTIMAL 
CONTROL
The Necessary Conditions for Optimal Hybrid Systems
of Variable Dimensions

A. S. Bortakovsky
Moscow Aviation Institute (National Research University), Moscow, Russia

e-mail: asbortakov@mail.ru
Received July 5, 2021; revised July 23, 2021; accepted July 26, 2021

Abstract—The problem of the optimal control of a hybrid system (HS), the continuous motion of
which alternates with discrete changes (switchings) in which the state space changes, is considered.
The change in the dimension of the state space occurs, for example, when the number of controlled
objects changes, which is typical, in particular, for the problems of controlling groups of moving
objects of variable compositions. The switching times are not predefined. They are determined as a
result of minimizing the functional, while processes with instantaneous multiple switchings are not
excluded. The necessary conditions for the optimality of the control of such systems are proved. Due
to the presence of instantaneous multiple switchings, these conditions differ from traditional ones, in
particular, by the equations for auxiliary variables. The application of optimality conditions is demon-
strated by an academic example.
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INTRODUCTION

The continuous motion of hybrid systems (HSs) of variable dimensions (HSVD) is described by differ-
ential equations, and instantaneous changes in state (switchings) are described by recurrent equations or
inclusions. At the moment of switching, the state space of the system changes, in particular, its dimension.
Control systems with a variable state space have been studied under different names: composite systems
[1, 2], systems with variable dimensions [3], systems with branching structures [4], step systems [5], com-
plex (multistage) processes [6], systems with a change in phase space [7], and HSs with intermediate con-
ditions [8, 9]. Most of the works are related to linear systems and deal with issues of stability, controllabil-
ity, and observability [2, 4]. In the optimal control problems [1, 5, 7–9], as a rule, the moments of chang-
ing the phase space are fixed or determined by intermediate conditions, and state switching is
uncontrollable. The number of switchings is given, and in the first works [1, 5, 7] on this topic there is only
one switching. The necessary conditions for HSs with intermediate conditions, generalizing the maxi-
mum principle [10], were obtained in [8, 9]. In these publications, the number of switchings is specified,
and the switchings themselves are not controlled.

This article deals with the problems in which the switching of the states of the system is controlled. The
number of switchings is set, but the switching times are not. They are determined as a result of minimizing
the functional, which takes into account the costs of each switching. In this case, processes with instanta-
neous multiple switchings are allowed [11]. Such processes, as a rule, are excluded in the problems of opti-
mization of HSs, despite the fact that they turn out to be optimal not only in academic examples but also
in applications, for example, in problems of the group control.

The necessary conditions for the optimality of the control of dynamical systems, as a rule, are related
to the calculation of variations of functionals defined on the trajectories of motion. For the HSVD, such
variations are generated by needle variations in the control of the continuous motion of the system, small
variations in the switching control, and also small variations in the switching times. In the proof of the
maximum principle for continuous [10] or discrete [12, 13] systems, auxiliary functions play an important
role. Similar functions are used for HSVD. Between switching times, these functions satisfy the conjugate
system of differential equations, and at switching times, they satisfy recurrent equations. Due to the
change in the dimension of the HS, it is necessary to use different sets of auxiliary functions after each
switching.
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884 BORTAKOVSKY
The listed variations of controls for continuous motion and switchings are traditional for continuous
[10] and discrete [12, 13] systems. They generate small changes in the trajectory of the movement. Varia-
tions in switching times lead to unusual trajectory changes. Small time intervals arise at which it is impos-
sible to determine the variation (even deviation) of the trajectory, since the reference and perturbed tra-
jectories belong to different state spaces. Therefore, it is necessary to overcome certain technical difficul-
ties in calculating the variation of the functional.

The proved necessary conditions for optimality of the HSVD and the previously obtained sufficient
conditions [14] can be used for a wide range of control problems with switching: continuous-discrete [15],
logical-dynamic, composite [1, 2], step systems [5], and systems with intermediate conditions [2, 8, 9, 16],
with a variable or branched structure [3, 4, 17, 18]. The application of the necessary conditions for the
optimality of the HSVD is demonstrated by an academic example.

1. FORMULATION OF THE PROBLEM

Assume that in the given time interval  the dynamic system completes N switchings at times
ti,  forming a nondecreasing finite sequence :

(1.1)

Between unequal consecutive switching times, the state of the system changes continuously, according
to the differential equation

(1.2)

and at the moments of switching, discretely in accordance with the recurrent equation

(1.3)

In relations (1.2)  is the set of numbers of nonzero (in length) partial inter-
vals  of continuous system changes;  is the state of the system at the moment of time ,

;  is the control of the continuous movement of the system at the moment of time
, ; and Ui is the given set of admissible control values, . At  differential

equation (1.2) is omitted ( ), function  defined at one point  and the value  of the
control at this point are irrelevant. In Eq. (1.3)  is the control of the switching of the system at the
moment , , and Vi is the given set of admissible switching controls,  Func-

tions , , and ,  are continuous over
the entire domain of definition together with the first partial derivatives with respect to t and vector com-
ponents xi. The possible equality of successive moments in (1.1) means that the system performs instant
multiple switchings [11].

The initial state of the system is fixed, , and the final is determined by the first achievement
of the terminal surface  given by the system of equations

where  is a continuously differentiable vector function. Similar terminal condi-
tions can be imposed on the left end of the trajectory [19] or on both ends of the trajectory simultaneously
(for example, the periodicity condition).

The set of admissible processes  consists of quadruples , including the
nondecreasing sequence  of switching times (1.1); the sequence  of absolutely continuous
functions , ; the sequence  of bounded measurable functions ;
and the sequence  of vectors . Moreover, the pairs , , satisfy the differ-
ential equation (1.2) almost everywhere on the interval Ti, while the triples , 
satisfy the recurrent equation (1.3). At the initial moment of time, the condition  is fulfilled, and
in the final one, the terminal condition  is fulfilled. We note that the number 
of switchings and switching moments  are not fixed and may not be the same for different
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valid processes. In this case, the case of no switching is not excluded, when N = 0 and  is an empty
set by definition.

The quality functional

(1.4)

where the functions , , and  are
bounded below and continuous together with the first partial derivatives with respect to t and x, is set on
the set  of admissible processes. In functional (1.4), the end time tF is also denoted by tN + 1.

It is required to find the minimum value of functional (1.4) and the optimal process d* =
 at which this value is reached:

(1.5)

If the smallest value (1.5) does not exist, then the problem of finding a minimizing sequence of admis-
sible processes can be posed [19]. The number of switchings for the processes of the minimizing sequence
can remain finite or increase indefinitely. An infinite number of switchings for the optimal process
becomes impossible if the condition of boundedness of the function  is strengthened in (1.4) by setting

. In this case, each term  in (1.4) can be considered as costs (or a penalty) in
switching . The use of such penalties in the quality functional eliminates fictitious switch-
ing when the state does not change  and the sequences of processes with an unlimited
increase in the number of switchings as non-minimizing.

Note that the control parameters in problem (1.5) form the control complex, which includes: the num-
ber of switchings N, switching times , …, , continuous motion control , switching control , and
the moment of the end of the control process tF. As a rule, the solution of the problem I → min is reduced
to solving a number of problems  with a fixed number of operations N, which increases sequen-
tially:  Note that in applied problems the number of switchings is limited by technical require-
ments.

2. FUNCTIONAL VARIATIONS
The optimality conditions are derived by the method in [20] as follows: using the control variations, we

compose an equation for trajectory variation; we express the variation of the functional in terms of varia-
tions of the control and the trajectory; and we exclude the variation of the trajectory from the obtained
expression by introducing auxiliary variables that satisfy additional equations and transversality conditions
(in the form of [21]). We will compare the values of functional (1.5) on the reference (unperturbed) admis-
sible process  and a perturbed admissible process . For the
HSVD, we use two types of control parameter variations: either needle variations  of the controls ,
small changes  of the control , and a small variation  of the end moment or small variations  of
the switching times ti, 

2.1. Variations of Controls and End Times 

The needle variations  of the controls  represent the final deviations  on the
set  of a small measure , . At the other points , variation  is zero. The value

 will be assumed to be infinitesimal of the first order and , . We assume
that the variation  of the end point and variation  of the switching controls have
the same order of smallness, i.e.,  and  ~ μ. These variations give rise to small
variations  of the trajectory that satisfy the variational equations

(2.1)

(2.2)
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Hereinafter, the following notation is accepted [20]: argument t, enclosed in square brackets, means
that the function is calculated in the reference mode at the specified time. For example, fi[t] =

 is the value of function fi in the reference mode;  is the matrix
(Jacobi) of the first partial derivatives of the vector function fi by vector components xi calculated in the
reference mode. The tilde sign refers only to the perturbed control; i.e., . Variations

 are of the order of smallness μ, and the equations in variations (2.1) and (2.2) are satisfied with the
accuracy o(μ).

We write down the variation of functional (1.4)

(2.3)

where . Here, as before, the first partial derivatives of functions are denoted by
indicating the corresponding argument in the subscript. For example,  is the partial derivative of the
scalar function  by time t and  is the gradient of the same function along the coordinates of
the vector xN. Now, following the method of [20], it is necessary to exclude the variations  in (2.3).

We introduce the Hamilton–Pontryagin (HP) functions for continuous motion and switchings,
respectively:

Here  are the auxiliary variables,  We assume that between the times of switch-
ing, the function , , are absolutely continuous and satisfy the conjugate systems of
equations:

(2.4)

at the moments of switchings, the recurrent equations

(2.5)

and at the final moment of time, the transversality conditions

(2.6)

at , where .
We add to variation (2.3) the equalities

(2.7)

which follow from the Newton–Leibniz formula for nonzero length intervals , . For coin-
cident switching times , equalities (2.7) obviously hold. After adding equalities (2.7), variation (2.3)
takes the form

(2.8)
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In (2.8), it was taken into account that there is no variation of the trajectory at the initial moment of
time; i.e., .

Consider first the terminal terms, which, after the substitution  can be
transformed in the following way:

According to the transversality conditions (2.6), this expression is equal to zero.
Now we write down the integrands for one interval , , substituting the expressions from the

equations in variations (2.1) and the conjugate system (2.4) for derivatives  and . Omitting index i
(to shorten the notation), we get

Consequently, the integral terms of variation (2.8) have the form

Let us write the terms in (2.8) related to one switching moment ti:

We substitute variation (2.2) and group the terms with variations :

Taking into account (2.5), the first term is zero. The second term is expressed through the derivative
 functions of the HP. Summing up, we get

Thus, the variation of functional (1.4) with varying controls and the end of the control process has the
form

(2.9)

2.2. Variations of Switching Times 

We will vary only the switching times. We assume that the variations  of switching times ti,
 are so small that the following inequalities are fulfilled:

The value  will be assumed to be infinitesimal of the first order. Between switching
times ti and , the trajectory variations  and control  are not defined, since the support and
perturbed processes belong to different spaces. Figures 1 and 2 show the reference (solid line) and per-
turbed (dashed line) trajectories with variation δti of the moment of switching ti. Figure 1 presents case

; and Fig. 2, the case . At intersections  of the intervals  and
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Fig. 1. Support (x) and permutation ( ) of the trajectory at .
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Fig. 2. Support (x) and permutation ( ) of the trajectory at .
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, , the variation  has the same order of smallness as |δt| and the control variation is
zero. Equation in variations

(2.10)

are fulfilled with an error of .
Let us write down the variation of functional (1.4) for , 

To this variation we add the equalities

The terminal terms will be zero due to the transversality conditions (2.6)

Each integrand is also zero, according to the equation in variations (2.10) and the conjugate
system (2.4):
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We transform the last term by substituting the variation

(2.11)

and replacing . Discarding the terms of the second order of smallness and
grouping the terms, we obtain

The last term is zero according to Eq. (2.5). The remaining members are written using the HP function:

Replacing the expression in parentheses, according to (2.5), we obtain

At  we arrive at the same formula. However, in this case, instead of substitution (2.11), we must
use the variation

Thus, the variation of the functional upon variation of the switching times has the form

(2.12)

3. NECESSARY CONDITIONS FOR OPTIMALITY
The obtained variations (2.9) and (2.12) of functional (1.4), defined on the trajectories of the HSVD,

allow us to formulate the necessary optimality conditions. In order to take into account inequalities (1.1),
we will use the Lagrange method [22, 23] for removing restrictions.

Theorem. We assume the optimal process  has N switchings at moments t1, …, tN:
. Then there are functions ,  and such numbers λ0, λ1, …, λN + 1 that

are not zero at the same time and which fulfill the following conditions:
(1) differential equations:

(2) recurrent equations:

(3) transversality condition:
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(5) the condition for the nonpositivity of the variation of the HP function with respect to the switching control:

for any admissible variations , 
(6) the condition for the jump of the HP function:

(7) the complementary slackness condition:

and (8) nonnegativity condition:

Proof. If we take the optimal process as the support process, then the variations of functional (1.4) must
be nonnegative. The nonnegativity of variation (2.9) implies conditions (4) and (5) of the theorem.
Indeed, the perturbed control  differs from the optimal control  on the set of small measure. How-
ever, the set of an arbitrarily small measure can be taken to be dense everywhere on T. Therefore, almost
everywhere on each interval of integration Ti, the following inequality holds:

from which condition (4) for the maximum of the HP function with respect to a continuous control fol-
lows. In order to control switching from the inequality  for each admissible variation , we obtain
condition (5) of the theorem.

In order to remove the restrictions , , we use the Lagrange principle for the
switching times [22]. The Lagrange function for the considered problem of minimizing functional (1.4)
under constraints the type of inequalities takes the form

where λ0, λ1, …, and λN + 1 are Lagrange multipliers. Equalities (6), taking into account variation (2.12),
correspond to the conditions for the stationarity of the Lagrange function in variables ti, while con-
dition (7) of complementary slackness and condition (8) of nonnegativity correspond to the Lagrange
principle of removing the constraints of the type of inequalities [22]. The theorem is proved.

Note that if from conditions (4) and (5) of the theorem it is possible to express the optimal controls
 and  as functions of time, state, and auxiliary variables, then, substituting

these controls into the equations of motion and conditions (1) and (2) of the theorem, we obtain a bound-
ary value problem with intermediate conditions. Its solution depends on  arbitrary constants,
switching times , and multipliers . There are  parameters. The
remaining arbitrary constants obtained by integrating the differential equations of motion (2.1) and con-
jugate equations (2.4) are related by the same number of recurrent equations (2.2) and intermediate con-
ditions (2.5). The initial and final conditions together with the transversality conditions give  equa-
tions, which allows us to eliminate the remaining arbitrary constants. In order to find the remaining 2N + 2
parameters, we have N conditions (6) for the jump of the HP function and N + 1 conditions of comple-
mentary slackness. These conditions are sufficient, since coefficients λi are determined up to a positive
factor. As a rule, the system is supplemented with either the equality λ0 = 0 (degenerate [22] and irregular
[23] cases), or by the equality λ0 = 1 (nondegenerate and regular cases). Thus, the theorem, just as the maxi-
mum principle [10], gives a complete system of conditions for finding the process that can be optimal.
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4. EXAMPLE

Consider the movement of a group of control objects of variable composition on a plane. The move-
ment begins with one object of control: the carrier. With each switching, one object is separated from it,
which continues its independent controlled movement to the given target. The number of controlled
objects, and, consequently, the dimension of the HS increases with each switching. The control problem
is to achieve as soon as possible all the specified goals—the terminal positions of the control objects; i.e.,
the problem of multipurpose performance is being solved [15]. We will show the application of the neces-
sary conditions for optimality of the HSVD for a simple problem with one switching.

We assume that for a period of time  the system makes one switching at time . Before
switching, there is only one control object: the carrier. Its motion is described by the equations

where x0 and y0 are the rectangular coordinates of the position of the carrier; γ0 is the angle between the
velocity vector and the abscissa axis (we will call it the angle of the direction of motion); and V is the constant
linear velocity of the carrier. The angle of the direction of motion  is the control in the interval .
The initial state of the carrier is specified as

The control object is separated from the carrier at the moment of switching t1:

(4.1)

Here x1 and y1 are the coordinates of the carrier, and  and  are the coordinates of the separated object,
which, according to (4.1), coincide with the coordinates of the carrier.

After the switching, the motion of the system is described by the equations

where  is the constant linear velocity of the separated object, and  and  are the angles of the direc-
tion of motion of the carrier and the separated objects, respectively. Functions  and  serve as con-
trols.

The end of the control process is determined by the conditions

(4.2)

We need to find the smallest value T and the control at which this value is reached; i.e., the problem of
group performance T → min is solved.

In comparison with the general formulation of the problem, we have

Switching control is absent; therefore, the control complex is formed by the continuous motion con-
trols , , and ; the switching moment t1; and the end moment T.

In Fig. 3, the trajectory of the carrier’s movement is depicted by the double line; of the separated
object, by the bold line; of the initial state, by the bold point; of the final states of the carrier and separated
objects, by the crosses; and of the separation point, by the circle. The direction of motion is indicated by
arrows.

We compose the functions of the HP:

[0, ]T ∈1 [0, ]t T

= γ = γ ≤ ≤� �0 0 0 0 1( ) cos ( ), ( ) sin ( ), 0 ,x t V t y t V t t t

γ ⋅0( ) 1[0, ]t

= =0 00 0 00(0) , (0) .x x y y

= = = =1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1' '( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ).x t x t y t y t x t x t y t y t

1'x 1'y

= γ = γ = γ = γ ≤ ≤� � � �1 1 1 1 1 1 1 1 1' ' ' '( ) cos ( ), ( ) sin ( ), ( ) cos ( ), ( ) sin ( ), ,Fx t V t y t V t x t t y t t t t tv v

v γ1( )t γ1'( )t
γ ⋅1( ) γ ⋅1'( )

= = = =1 1 1 1' ' ' '( ) , ( ) , ( ) , ( ) .T T T Tx T x y T y x T x y T y

= = = = = = = = γ γ0 0 1 0 1 0 0 00, , 2, 4, 1, 2, , ( cos , sin ) ,T
Ft t T n n p p U f V VR

= γ γ γ γ = = = = =v v
0 0 0

1 1 1 1 1 1 0 0 0 0 0 1 1' '( cos , sin , cos , sin ) , ( , , , ) , 1, 0, 0.T Tf V V g x y x y f f g F

γ ⋅0( ) γ ⋅1( ) γ ⋅1'( )

= ψ γ + ψ γ −0 01 0 02 0cos sin 1,H V V
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ˆ .H x y x y
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Fig. 3. Trajectory of motion.
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We write down the conditions of the theorem:
(1) differential equations for auxiliary variables:

(4.3)

Since, according to (4.3), the auxiliary functions are constant, the argument for these functions is not
indicated further;

(2) recurrent equations for auxiliary variables:

(4.4)

(3) transversality condition:

(4.5)
(4) the condition for the maximum of the HP function with respect to the control of continuous

motion, from which it follows that the derivatives of the HP functions with respect to γ0, γ1, and  are zero:

(4.6)

It follows from these equalities that the functions , , and  are constant. Therefore, the argu-
ment for these functions is not specified further;

(5) there is no condition for the nonpositivity of the variation of the HP function for the switching con-
trol, since there is no switching control;

(6) the condition for the jump of the HP function:

(4.7)

(7) conditions of complementary slackness: , ;
(8) nonnegativity conditions: , , and .
We will solve the problem for specific values of the parameters:

Let us first analyze the extreme cases when t1 = 0 or t1 = T. At t1 = 0 the separation of the control objects
occurs at the initial moment of time. Then the carrier reaches the target (origin) in a time of , and
the separated object comes to the final state (3, 0) in a time of . Consequently, the terminal con-
ditions (4.2) are not satisfied. The case t1 = T does not fit, because at the time of separation t1 the position
of the separated object coincides with the position of the carrier, and at the final moment of time T the
positions do not coincide. Then  and from the complementary slackness conditions we obtain

ψ = ψ = ≤ ≤ ψ = ψ = ψ = ψ = ≤ ≤� � � � � �01 02 1 11 12 13 14 10, 0, 0 , 0, 0, 0, 0, .Ft t t t t

ψ = ψ + ψ ψ = ψ + ψ01 11 13 02 12 14, ;

ψ γ + ψ γ + ψ γ + ψ γ − =v v11 1 12 1 13 1 14 1' 'cos ( ) sin ( ) cos ( ) sin ( ) 1 0;V T V T T T

γ1'

ψ γ − ψ γ = ψ γ − ψ γ = ψ γ − ψ γ =01 0 02 0 11 1 12 1 13 1 14 1' 'sin cos 0, sin cos 0, sin cos 0.

γ ⋅0( ) γ ⋅1( ) γ ⋅1'( )

λ ψ γ + ψ γ + ψ γ + ψ γ − ψ γ − ψ γ0 11 1 12 1 13 1 14 1 01 0 02 0' '{ cos sin cos sin cos sin }V V V Vv v

+ λ − λ =1 2 0;

λ − =1 1( ) 0t λ − =2 1( ) 0t T
λ ≥0 0 λ ≥1 0 λ ≥2 0

= = = = = = = =v 00 00 ' '2, 1, 4, 4, 0, 0, 3, 0.T T T TV x y x y x y

= 2 2T
= 17T

< <10 t T
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 and . This means  due to the nontriviality of the Lagrange multipliers. Therefore, the
problem is nondegenerate (regular) and we can take .

Denoting through (x, y) the coordinates of the separation point, for a nondegenerate problem, from
the equations of motion and terminal conditions, we obtain

(4.8)

System (4.8), together with conditions (4.4)–(4.7) for the nondegenerate case ( , λ0 = 1) has
13 equations with 13 unknowns: x, y, t1, T, γ0, γ1, , ψ01, ψ02, ψ11, ψ12, ψ13, and ψ14. Let us find a solution
to this system.

Eliminating from the last four equations the time T – t1 of the motion after separation, we arrive at the
equality

Consequently, the point of separation lies on the circle of Apollonius (see Fig. 3), since the ratio of the
distances traveled by the carrier and the separated object is constantly equal to the ratio of the velocities
( ).

Equality (4.7), taking into account the transversality condition, can be represented in the form
 = 1. Solving this equation together with the first equation in (4.6) with respect to

 and , we get

(4.9)

Here  is the length of the path to the separation point (see Fig. 3). From the last
two equations of (4.6), we find  and  and substitute them into Eqs. (4.4) and
into the transversality condition:

We express , , , and  through the coor-

dinates of the separation point. Here  is the length of the carrier’s path after separation. Sub-
stituting the values of the trigonometric functions and taking into account (4.9), we obtain the system

From the first two equations we find

We substitute these expressions into the third equation in (4.9). After simplifications, we arrive at the
equality

For  and  we get the equation . From here x = y or x + y = 4.
The line x = y (see Fig. 3) has no points in common with the circle of Apollonius, and the line x + y = 4
intersects it at the point with coordinates , . Therefore, the separation point will be

. The rest of the unknowns are easily found. We calculate only the minimum value of the func-

tional .
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Thus, the necessary optimality conditions are satisfied by the trajectory with the separation point
. Note that this trajectory is indeed optimal. In fact, of all the two-link polygonal lines with

ends (0, 0), (4, 4) and an intermediate vertex (x, y) belonging to a circle, the shortest path will be a broken
line whose links form equal angles with the radius of the circle drawn to the vertex (x, y). This follows from
the following rule of geometric optics: the angle of incidence is equal to the angle of reflection.

CONCLUSIONS
The proposed optimality conditions are used to solve the control problems for HSVD. These problems

differ from continuous-discrete systems in free switching moments, which are selected when optimizing
the control process. It is the search for the optimal switching times that is the most difficult part of the
solution. The necessary conditions usually make it possible to analytically express the controls of contin-
uous motion and switchings in terms of auxiliary variables. It is impossible to obtain analytical expressions
for the optimal switching times even in simple examples. Therefore, they have to be searched numerically,
and the necessary conditions should be used to control the optimization process. It should be noted that
the minimized functional as a function of the switching times has a ravine character and a set of local min-
imums.

The change in the model of the control system during switchings, in particular its dimension, expect-
edly complicates the optimality conditions, since the set of auxiliary functions changes quantitatively. It is
much more difficult to account for instant multiple switchings. In the case of an analytical solution, it is
necessary to consider different options for implementing the conditions of complementary slackness.
In the numerical solution, such switchings must be provided in a special way in the optimization process.

The application of the proven optimality conditions seems promising for solving the problems of con-
trolling groups of moving objects of variable compositions. In particular, these are problems of group per-
formance. Solutions to such problems are in demand in aviation, astronautics, and robotics.

REFERENCES
1. V. V. Velichenko, “Optimal management of composite systems,” Dokl. Akad. Nauk SSSR 176, 754–756 (1967).
2. V. R. Barsegyan, Control of Composite Dynamic Systems and Systems with Multipoint Intermediate Conditions

(Nauka, Moscow, 2016) [in Russian].
3. A. N. Kirillov, “Dynamic systems with variable structure and dimension,” Izv. Vyssh. Uchebn. Zaved., Pribo-

rostr. 52 (3), 23–28 (2009).
4. N. F. Kirichenko and F. A. Sopronyuk, “Minimax control in control and monitoring tasks for systems with

branching structures,” Obozr. Prikl. Promyshl. Mat. 2 (1) (1995).
5. V. A. Medvedev and V. N. Rozova, “Optimal control of step systems,” Avtom. Telemekh., No. 3, 15–23 (1972).
6. V. I. Gurman, The Principle of Expansion in Management Tasks (Nauka, Moscow, 1985) [in Russian].
7. V. G. Boltyanskii, “Optimization problem with phase space change,” Differ. Uravn. 19, 518–521 (1983).
8. H. J. Sussmann, “A maximum principle for hybrid optimal control problems,” in Proceedings of the 38th IEEE

Conference on Decision and Control, Phoenix, 1999.
9. A. V. Dmitruk and A. M. Kaganovich, “The maximum principle for optimal control problems with intermediate

constraints,” in Nonlinear Dynamics and Control (Fizmatlit, Moscow, 2008), No. 6, pp. 101–136 [in Russian].
10. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal

Processes (Fizmatgiz, Moscow, 1961; Wiley, New York, 1962).
11. A. S. Bortakovskii, “Synthesis of optimal control-systems with a change of the models of motion,” J. Comput.

Syst. Sci. Int. 57, 543 (2018).
12. V. G. Boltyanskii, Optimal Control of Discrete Systems (Nauka, Moscow, 1973) [in Russian].
13. A. I. Propoi, Elements of the Theory of Optimal Discrete Systems (Nauka, Moscow, 1973) [in Russian].
14. A. S. Bortakovskii, “Sufficient optimality conditions for hybrid systems of variable dimension,” Proc. Steklov

Inst. Math. 308, 79–91 (2020).
15. A. S. Bortakovskii, “Necessary optimality conditions for continuous–discrete systems with instantaneous

switching of the discrete part,” J. Comput. Syst. Sci. Int. 50, 580 (2011).
16. V. V. Velichenko, “Optimality conditions in control problems with intermediate conditions,” Dokl. Akad. Nauk

SSSR 174, 1011–1913 (1967).
17. S. V. Emel’yanov, Automatic Control Systems with Variable Structure (Nauka, Moscow, 1967) [in Russian].
18. V. G. Boltyanski, “The maximum principle for variable structure systems,” Int. J. Control 77, 1445–1451

(2004).
19. V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control (Nauka, Moscow, 1973) [in Russian].
20. R. P. Fedorenko, Approximate Solution of Optimal Control Problems (Nauka, Moscow, 1978) [in Russian].
21. A. M. Letov, Flight Dynamics and Control (Nauka, Moscow, 1973) [in Russian].
22. F. P. Vasil’ev, Optimization Methods (Faktorial Press, Moscow, 2002) [in Russian].
23. A. D. Ioffe and V. M. Tikhomirov, Theory of Extreme Problems (Nauka, Moscow, 1974) [in Russian].

−(4 2, 2)
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 60  No. 6  2021


	INTRODUCTION
	1. FORMULATION OF THE PROBLEM
	2. FUNCTIONAL VARIATIONS
	2.1. Variations of Controls and End Times
	2.2. Variations of Switching Times

	3. NECESSARY CONDITIONS FOR OPTIMALITY
	4. EXAMPLE
	CONCLUSIONS
	REFERENCES

		2021-12-09T18:10:36+0300
	Preflight Ticket Signature




