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Abstract—A large-scale review and analysis of the existing methods and approaches to extract rules
from artificial neural networks, including deep learning neural networks, is carried out. A wide range
of methods and approaches to extract rules and related approaches to develop explainable artificial
intelligence (AI) systems are considered. The taxonomy and several directions in studies of explainable
neural networks related to the extraction of rules from neural networks, which allow the user to get an
idea of how the neural network uses the input data, and also, using rules, to reveal the hidden relation-
ships of the input data and the results found, are explored. This review focuses on the relationship of
the most common rule-based explanation systems in AI with the most powerful machine learning
algorithms using neural networks. In addition to rule extraction, other methods of constructing
explainable AI systems are considered based on the construction of special modules that interpret each
step of changing the neural network’s weights. A comprehensive analysis of the existing research makes
it possible to draw conclusions about the appropriateness of using certain approaches. The results of
the analysis will allow us to get a detailed picture of the state of research in this area and create our own
applications based on neural networks, the results of which can be studied in detail and their reliability
evaluated. The development of such systems is necessary for the development of the digital economy
in Russia and the creation of applications that allow making responsible and explainable management
decisions in critical areas of the national economy.

DOI: 10.1134/S1064230721060046

INTRODUCTION

The large-scale development of artificial intelligence (AI) systems, including applications based on
artificial neural networks, opens up the broadest opportunities for their use in various fields, from emotion
recognition systems to predictive analytic systems, medical, and military applications. At the same time,
existing systems and applications have one common significant drawback: the impossibility of interpreting
the results obtained and decisions made. The well-known problem of the so-called black box imposes sig-
nificant restrictions on the use of such systems, including legislative ones, since it is impossible to trace
the decision-making process by a neural network.

These problems are currently being addressed in the explainable artificial intelligence (XAI) direction.
Explainable AI systems help the user understand the decisions made using machine learning methods,
which increases the confidence in these systems and enables them to make more effective decisions based
on the results of the system. All this allows developers and users to investigate the factors that are used by
the neural network in solving a specific problem and understand which parameters of the neural network
need to be changed in order to improve the accuracy of its work.

In addition, the study of how neural networks extract, store, and transform knowledge may be useful
for the future development of AI techniques. For example, increasing the explainability of artificial neural
networks will allow detecting the so-called hidden dependences that are not present in the input data, but
appear as a result of their integration into the neural network. Methods for extracting rules from neural
networks are one of the connecting elements between symbolic and connectionist models of knowledge
representation in AI.
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1. THE HISTORY OF EXPLAINABLE AI MODELS

Research in this area can be divided into three stages: in the first stage (starting from 1970) expert sys-
tems were developed; in the second stage (mid-1980s), the transition was made from expert systems to
knowledge-based systems; and in the third phase (since 2010), deep architectures of artificial neural net-
works, which required new global research on the construction of explainable systems, have been studied.

We take a closer look at each of these stages.

1.1. First Step. Expert Systems 

Rule-based explanation systems. The first and second generations of explainable AI are related to
expert systems involving decision-making and diagnosis. The main stage in the development of expert sys-
tems came in the early 1970s and contained representations based on knowledge, as well as the use of rules
and relationships. The systems had a Q&A toolkit for users and could provide rule-based recommenda-
tions and diagnoses. Studies have shown that explaining how computer systems work improves people’s
confidence in recommender systems [1]. When interpreting the results of the work of the expert system,
the explanation of the principle of operation of the system and the rationale for choosing the architecture
of the system also differed [2].

At the first stage, in the era of the development of expert explanatory systems, large-scale studies were
carried out demonstrating that expert systems with an explanatory component are able to exert a greater
influence on decision-making, and the effect was directly proportional to the user’s skill level [3–6].

However, many of the first generation expert systems did not deliver the expected benefits. When work-
ing on medical expert systems, researchers recognized that physicians would ignore expert system recom-
mendations unless a rationale (justification) was provided for why the system made such recommenda-
tions. The initial explanation systems attempted to provide this rationale by describing the main goals and
steps used to make a diagnosis. This approach, which Swartout and Moore called “Resume as an expla-
nation myth” [7], also did not completely suit users, and this led to a rethinking of the approaches, goals,
and objectives of XAI systems. The first generation appeared in the late 1970s [8] and existed for about 10
years.

Some imperfection of expert systems of the first generation, in turn, gave rise to the first generation of
systems that include an explanation block as an obligatory element, for example, Mycin [9] and systems
related to it, such as Digitalis Therapy Advisor [10], BLAH [11] and other special purpose explanation sys-
tems. Using inference trees, these systems worked by creating logical and probabilistic rules for diagnosing
or answering questions. In general, since knowledge and experience were formulated in terms of rules,
these rules were described in natural language. A simple explanation was expressed as a rule for making a
decision. Such explanations were usually written in a limited natural language, but they were often simply
the use of “if–then” production rules for textual descriptions.

In [12], first-generation systems are considered that created explanations by rephrasing the rules for
making a decision. In general, expert systems and systems of explanation of the first generation focused
on describing the internal states of an intellectual system, as well as its goals and plans. Sometimes it was
quite simple, because the rules themselves were a formalization of the rules used by the experts. Some-
times, however, linguistic descriptions bore little resemblance to human explanation or natural language
at all. First, they relied only on the format of logical and causal if–then rules and not on providing expla-
nations at a higher level of the reasoning strategy (for example, collecting basic information about a
patient, creating a network for alternative explanations, and trying to support a specific hypothesis). Sec-
ond, some of the rules were logically necessary for the system to work, not necessarily meaningful to users,
and not related to the user’s standard “how” and “why” questions. Third, domain knowledge was some-
times compiled (for example, causal relationships between symptoms and diagnoses), so it was not
included in the explanation.

When Mycin was originally developed, the inability to fully explain the set of rules and their rationale
was not considered a f law, because creating any explanations in a readable form from the written reasoning
tree of the program was already a difficult task and a significant advance in the field of AI. Moreover, such
associative models were rules of thumb based on demographic and physiological data that were usually
familiar to users. The latter were supposed to simply follow the advice of the program after it had been
tested and certified by experts. However, attempts to expand or refine these rule sets, use them for learn-
ing, or explain high-level associations have been unsuccessful.
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1.2. Second Phase. Knowledge-Based Explanatory Systems 
By the mid-1980s, the limitations of first-generation explanatory systems faced the problem that it was

not enough to simply summarize the inner workings of the system. The generated text could be correct,
but it was not necessarily what the user wanted to know or did not understand. Second-generation systems
often blurred the line between a consulting program [12], a mentor [13], an advisor [14], and a data entry
system [15], but researchers were challenged to go beyond methods that did not improve the understand-
ing or acceptance of expert systems. The main driving force behind second generation systems was the
need to develop more abstract structures that would facilitate reuse and ease of system design. NEOMYCIN
did this by providing a task- and meta-rule-based diagnostic procedure and a related taxonomic and
causal language [16, 17].

Early in the development of explanatory expert systems, it was recognized that their knowledge base,
rules, and explanations could be used to create intelligent mentors. A distinctive feature of intelligent
learning systems is that they derive a mental model of the subject area of each student (his knowledge base)
based on the student’s behavior. These systems were first collectively called computational analytics and
intelligence (CAI) systems to distinguish intelligent mentors from simple learning machines of the 1960s,
and were adopted by the AI community in education, especially in the 1980s and early 1990s years.

For example, in the GUIDON expert system, a student’s request for patient data and his stated
hypotheses were used to search back through the MYCIN rule network (or any other network) to deter-
mine which rules were not taken into account. The explanation was a network of inferences and some-
times included ambiguities (for example, evidence that a student knows a rule based on previous interac-
tions should be distinguished from its application in a specific case). This is why systems were sometimes
called knowledge-based teachers, as opposed to learning machines in the 1960s. The main idea was that the
subject knowledge of the expert system (for example, the rules of medical diagnostics) was separated from
the knowledge base of the training (for example, the rules for managing the dialog). In addition, the pro-
cess of interpreting domain rules, similar to explaining the behavior of an expert system based on a model
(tracing) of its internal processes, was used to explain student behavior by building a model of how the stu-
dent reasoned.

1.3. Stage Three. New Methods of Explanation Based on Pattern Recognition and Word Processing
 After some stagnation related to the slowdown in the development of the direction of knowledge-based

systems, the third stage, related to 2017–2021 and reflected in Section 4 of this article, which describes the
DARPA Explainable AI program, appeared.

The emergence of the third stage can be clearly demonstrated by analyzing the number of publications
on the topics of rule extraction and explainable AI. When analyzing the number of publications over the
past 20 years, it can be noted that interest in extracting rules from neural networks has remained more-or-
less stable (according to some sources, even periodic, which is related to the three considered generations
of explainable AI systems) and increases only with the advent of the third generation of explainable AI sys-
tems (Fig. 1), which is mainly related to the creation of the DARPA program.

With the advent of the DARPA program, we can observe explosive growth in the number of publica-
tions directly on the topic of explainable AI (since 2018) and its further growth, as shown in Fig. 2.

In systems of the third generation, as in systems of the first generation, attempts were made to explain
the inner workings of the system, which in itself remains a serious problem. First generation systems built
expert knowledge into rules, often obtained directly from experts, and attempted to construct language
descriptions based on expert judgment. These rules have often been transformed into natural language
expressions, and a large part of this study has focused on building knowledge representation systems. In
systems of the third generation, this task turned out to be much more difficult. The disadvantages of first
generation systems related to a poor level of detail and incomprehensible language can become a problem
for third generation systems. Since the first generation of systems, computer technology in data visualiza-
tion, animation, video, etc., has advanced significantly, and many new ideas have been proposed as poten-
tial methods for generating explanations. Although the first generation systems supported natural lan-
guage dialogs and interactivity in question and answer systems, modern systems do this at a higher level
than expert systems. An example is the use of reasoned explanatory human-machine dialogs to eliminate
inconsistencies in knowledge bases in the process of acquiring knowledge using software for expert sys-
tems [18].

Some of the explanations presented in the first generation systems were easier to create than the expla-
nations in the third generation, because they were a direct repetition of hand-coded rules. The current
generation of systems may find it harder to provide the simple explanations that first generation systems
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 60  No. 6  2021
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Fig. 1. Number of publications by year in the field of rule extraction from neural networks.
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Fig. 2. The number of publications by year on the topic explained by AI (XAI).
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produce. However, in a sense, the third generation systems currently being developed reflect the achieve-
ments of the first generation systems. Many of these systems are expected to encounter problems similar
to those experienced by the first generation systems. Importantly, they can be solved by methods that orig-
inated in second generation systems.

2. REVIEW OF RESEARCH ON RULE EXTRACTION
FROM ARTIFICIAL NEURAL NETWORKS

Increasing the transparency of neural networks by extracting rules from them has two main advantages.
This gives the user some insight into how the neural network uses input variables to make decisions, and
allows the hidden features in the neural networks to be revealed when rules are applied to explain how
individual neurons work. Identifying critical attributes or causes of neural network errors can be part of
the understanding. In an effort to make opaque neural networks more understandable, rule extraction
techniques are bridging the gap between precision and clarity [19, 20].

In order for, for example, a neural network to be used in critical applications, for example, in aviation
or electric power, an explanation is required not only of the principles of its operation but also of how
the neural network obtained the result. In these cases, it is extremely important that the user of the
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 60  No. 6  2021
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system has the opportunity to check the output of the artificial neural network under all possible
input conditions [21].

To formalize the task of extracting rules from a neural network, the following definition can be used:
Given the parameters of the trained neural network and the data on which it was trained, create a descrip-
tion of the neural network hypothesis that is understandable, but close to the behavior of the specified net-
work.

To distinguish between different approaches to rule extraction from neural networks, a multidimen-
sional taxonomy was introduced in [21]. The first dimension it describes is the cardinality of the extracted
rules (for example, IF–THEN rules or fuzzy production rules). The second dimension is called transpar-
ency and describes the strategy behind the rule extraction algorithm. If a method uses a neural network
only as a black box, regardless of the architecture of the neural network, we call it a pedagogical approach.
If instead the algorithm takes into account the internal structure of the neural network, we call this
approach decomposition. If an algorithm uses components of both pedagogical and decomposition meth-
ods, then this approach is called eclectic. The third dimension is the quality of the extracted rules. Since
quality is a broad term, it is divided into several criteria: quality, accuracy, consistency, and intelligibility.
While quality measures the ability to correctly classify previously unseen examples, accuracy measures the
degree to which rules mimic the behavior of a neural network [19]. Accuracy can be thought of as accuracy
in relation to the output of the neural network. Consistency can only be measured when the rule extraction
algorithm involves training a neural network instead of processing an already trained neural network. The
extracted rule set is considered consistent when the neural network generates rule sets that correctly clas-
sify test data for different training epochs. Comprehensibility is seen as a measure of the size of the rules,
that is, short rules with fewer rules are considered more comprehensible.

In this study, we will focus on only three described criteria. In accordance with [22], we focus on meth-
ods that do not impose special requirements on how the neural network was trained before the rules were
extracted. In addition, only algorithms capable of extracting rules from feedforward neural networks are
analyzed, regardless of any other characteristics of the architecture. In accordance with [23], it is neces-
sary that the algorithm has the greatest degree of generality.

Let us analyze some methods for extracting rules that meet these characteristics. Let us start with the
decomposition approach. As mentioned earlier, decomposition approaches for extracting rules from neu-
ral networks operate at the neuronal level. Typically, the decomposition approach analyzes each neu-
ron and generates rules that mimic the behavior of that neuron. We consider below the layer-by-layer
CT rule extraction algorithm, the Tsukimoto polynomial algorithm, and the rule extractor via decision
tree induction.

The CT algorithm was one of the first approaches for extracting rules from neural networks [24].
It describes each neuron (layer by layer) with IF–THEN rules by heuristically looking for combinations
of input attributes that exceed the neuron’s threshold. The recording module is used to retrieve rules that
relate to the original attributes of the input, not the outputs of the previous level. To find suitable combi-
nations, the CT method uses a tree search, that is, the rule (represented as a node in the tree) at this level
generates its start nodes by adding an additional available attribute. In addition, the algorithm uses a num-
ber of heuristics to stop the tree from growing in situations where further improvement is not possible.

Tsukimoto’s polynomial algorithm for extracting rules from a neural network is very similar to the CT
method. It uses a multilevel decomposition algorithm to extract IF–THEN rules for each neuron, and
also tracks the strategy for finding input configurations that exceed the neuron’s threshold. The main
advantage of Tsukimoto’s algorithm is its computational complexity, which is polynomial, while the CT
method is exponential. The algorithm achieves polynomial complexity by finding appropriate terms using
the space of multidimensional functions. In the second step, these terms are used to create IF–THEN
rules. The training data is then used to improve the accuracy of the rules. In the last step, Tsukimoto’s
algorithm tries to optimize intelligibility by removing irrelevant attributes from the rules.

Another method of rule extraction by induction of a decision tree was introduced in [25]. Their CRED
algorithm transforms each output unit of the neural network into a solution where the tree nodes are tested
against the hidden layer nodes and the leaves represent the class. After this step, the intermediate rules are
retrieved. Then, for each branch point used in these rules, a different decision tree is created using the
branch point on the input layer of the neural network. In new trees, the leaves do not directly select the
class. Extracting the rules from the second decision tree leads us to describe the state of hidden neurons,
consisting of input variables. As a final step, the intermediate rules describing the output layer through the
hidden layer are replaced with those that describe the hidden layer based on the inputs of the neural net-
work. They are then combined to construct rules describing the output of the neural network based on its
input.
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Table 1. Algorithms for extracting rules from neural networks

Algorithm Network type used Algorithm type Retrieved rule type

DIFACON-miner Multilayer perceptron Decomposition IF–THEN
CRED Too >> Decision tree

FERNN >> >> M-of-N, IF–THEN
CT >> >> IF–THEN

Tsukamoto’s algorithm Multilayer perceptron, 
recurrent neural network

>> IF–THEN

TREPAN Multilayer perceptron Pedagogical M-of-N, decision tree
HYPINV >> >> Hyperplane rule
BIO-RE >> >> Binary rule

KDRuleEX >> >> Decision tree
RxREN >> >> IF–THEN

ANN-DT >> >> Binary decision tree
RX >> Eclectic IF–THEN

Kahramanli and Allah-
verdi’s algorithm

>> >> IF–THEN

DeepRED Deep neural network Decomposition IF–THEN
Pedagogical approaches do not take into account the internal structure of the neural network. The goal
of pedagogical approaches is to consider trained neural networks as an integral object or as a black box
[26]. The main idea is to extract the rules by directly matching the input data with the output data [27].

Pedagogical approaches work with a neural network as a function. This function sets the output of the
neural network for an arbitrary input, but does not provide an understanding of the internal structure of
the neural network or its weights. For a neural network, this class of algorithms tries to find a relationship
between the possible input variations and outputs generated by the neural network, with some using pre-
defined training data and some not.

Rule extraction based on interval analysis uses confidence interval analysis (VIA) to extract rules that
mimic the behavior of neural networks. The main idea of this method is to find the input intervals in which
the output signal of the neural network is stable, that is, the predicted class is the same for slightly changing
input configurations. As a result, the analysis of confidence intervals provides the base for reliable correct
rules.

Rule retrieval using sampling consists of several methods that follow more or less the same strategy for
extracting rules from a neural network using sampling, that is, they create a vast dataset as the base for rule
retrieval. After that, the selected dataset is passed to the standard learning algorithm to generate rules that
simulate the behavior of the network. In [28], it was proved that the use of sampled data is more efficient
than using only training data in rule extraction problems.

One of the first methods to follow this strategy was Trepan’s algorithm [29]. It works in a similar way
to the divide-and-conquer algorithm, looking for bifurcations in the training data for individual instances
of different classes. The main differences from divide and conquer are the best strategy for expanding the
tree structure, additional branch points, and the ability to select additional training examples at deeper
nodes in the tree. As a result, the algorithm also creates a decision tree, which, however, can be trans-
formed into a set of rules if necessary.

The binary input and output rule extraction (BIO-RE) algorithm is only capable of processing a neural
network with binary or binarized input attributes. BIO-RE creates all possible combinations of input data
and requests them from the neural network. Using the neural network output, a truth table 1 is created for
each example. It is also easy to move from the truth table to rules, if necessary.

ANN-DT is another decision-based sampling technique for describing the behavior of a neural net-
work. The general algorithm is based on the CART algorithm with some variations in the original imple-
mentation. ANN-DT uses a scaling-up sampling technique to ensure that the majority of the training
sample is representative. This is achieved using the nearest neighbor method, which calculates the dis-
tance from the sample point to the closest point in the training dataset and compares it to the reference
value.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 60  No. 6  2021
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The idea of creating a large set of examples at the first stage is also implemented by the STARE algo-
rithm. Like BIO-RE, STARE generates large truth tables for training. The advantage of STARE lies in its
ability to not only handle binary and discrete attributes but also to handle continuous inputs. To generate
truth tables, the algorithm rebuilds the input data. An example of a pedagogical approach using a training
set is KDRuleEx. Similarly to the Trepan algorithm, this algorithm also generates additional training
examples when there is too little data for the next split points. KDRuleEx uses a genetic algorithm to create
new learning examples. This technique results in a decision table that can be converted to IF–THEN
rules, for example.

An eclectic approach is a set of rule extraction methods that include elements of both the pedagogical
and decomposition approaches. In particular, the eclectic approach uses knowledge about the internal
architecture and the weight vectors in the neural network in addition to the symbolic learning algorithm.

The fast rule search approach in a neural network includes the FERNN approach, which first tries to
identify the corresponding hidden neurons and the inputs to the network. For this step, a decision tree is
built using the C4.5 algorithm. The rule extraction process results in the generation of M-of-N and
IF–THEN rules. With a set of correctly classified training examples, FERNN analyzes the activation val-
ues of each hidden vertex for which the activation values are sorted in ascending order. The C4.5 algorithm
is then used to find the best split point to form the decision tree. The table below shows a comparison of
algorithms for extracting rules from neural networks by type of neural network, type of algorithm, and
type of extracted rule [30].

3. NEURAL FUZZY MODELS IN THE TASKS OF EXTRACTING
RULES FROM ARTIFICIAL NEURAL NETWORKS

The most interesting part of this study is rule extraction using neuro-fuzzy models. Fuzzy rule-based
systems (FRBS) developed with fuzzy logic have become a field of active research over the past few years.
These algorithms have proven their strengths in tasks such as managing complex systems and creating
fuzzy controls. The relationship between both artificial neural networks (ANNs) and FRBS approaches
has been carefully studied and shown to be equivalent. This leads to two important conclusions. First, we
can apply what was found for one of the models to another. Second, we can translate the knowledge
embedded in the neural network into a more cognitively acceptable language: fuzzy rules. In other words,
we get a semantic interpretation of neural networks [31–33].

In order to get a semantic interpretation of the deep learning black box, neural networks can be used
instead of the last fully connected layer. For example, the adaptive neural fuzzy interference system
(ANFIS) is a multilayer feedforward network. This architecture has five layers such as a fuzzy layer, a pro-
duction layer, a normalization layer, a defuzzification layer, and an output layer. ANFIS combines the
advantages of a neural network and fuzzy logic. Below we have given a classification of the most well-
known neuro-fuzzy approaches.

Considering the architecture of neural fuzzy models, three methods of combining ANNs and fuzzy
models can be distinguished [34, 35]:

—neuro-FIS, in which ANN is used as a tool in fuzzy models;
—fuzzy ANNs, in which the classical ANN models are fuzzified;
—neuro-fuzzy hybrid systems, in which fuzzy systems and ANN are combined into hybrid systems [36, 37].
Based on these techniques, neuro-fuzzy models can be divided into three classes [38–40].
Cooperative neuro-fuzzy models. In this case, part of the ANN is initially used to define fuzzy sets

and/or fuzzy rules, where only the resulting fuzzy system is subsequently executed. In the learning pro-
cess, membership functions are determined, and fuzzy rules are formed based on the training sample.
Here the main task of the neural network is to select the parameters of the fuzzy system.

Parallel neuro-fuzzy models. The neural network in this type of model works in parallel with the fuzzy
system, providing input to the fuzzy system or changing the output of the fuzzy system. The neural net-
work can also be a postprocessor of the output data from a fuzzy system.

Hybrid neuro-fuzzy models. The fuzzy system uses a training method, as does the ANN, to adjust its
parameters based on the training data. Among the presented classes of models, the models of this partic-
ular class are most popular, as indicated by their application in a wide range of real problems [41–44].

The most popular hybrid models include the following architectures.
The fuzzy adaptive learning control network (FALCON) [45], which has a five-layer architecture.

There are two linguistic nodes per one output variable. The first node works with a training sample (train-
ing pattern) and the second node is the input for the entire system. The first hidden layer labels the input
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 60  No. 6  2021
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sample according to membership functions. The second layer defines the rules and their parameters.
Training takes place based on a hybrid unsupervised algorithm to determine the membership function and
the rule base, and it uses the gradient descent algorithm to optimize and select the final parameters of the
membership function.

ANFIS [46] is a well-known neuro-fuzzy model that has been used in many applications and research
areas [47]. Moreover, a comparison of the architectures of neural fuzzy networks showed that ANFIS
shows the minimum error in the prediction problem. The main disadvantage of the ANFIS model is that
it imposes serious requirements on computing power [48].

The system of generalized approximate intelligent control based on reasoning (GARIC) [49] is a
neuro-fuzzy system using two neural network modules, an action selection module and a state assessment
module, which is responsible for assessing the quality of the action selection by the previous module.
GARIC is a five-layer feedforward network.

The neural fuzzy controller (NEFCON) [50] was developed to implement the Mamdani-type fuzzy
inference system. Links are defined using fuzzy rules. The input layer is a fuzzifier, and the output layer
solves the defuzzification problem. A network is trained based on a hybrid reinforcement learning algo-
rithm and an error backpropagation algorithm.

The fuzzy inference and neural network system in fuzzy inference software (FINEST) [51] is a param-
eter setting system. The fuzzy predicates, implication function, and combinatorial function are tuned.

A system for automatically constructing a neural network of fuzzy inference (SONFIN) [52] is similar
to the NEFCON controller, but instead of implementing fuzzy inference of the Mamdani type, it imple-
ments the Takagi–Sugeno inference. In this network, the input sample is processed using the aligned clus-
tering algorithm. When identifying the structure of the precondition part, the input space is divided in a
flexible manner according to an algorithm based on aligned clustering. The system parameters are par-
tially tuned using the least squares method and the preconditions are tuned using the backpropagation
method.

Dynamically developing fuzzy neural network (dmEfuNN) and (EFuNN) [53]. In EFuNN, all nodes
are created in the learning process. The first layer passes the training data to the second, which calculates
the degree of fit with a predefined membership function. The third layer contains sets of fuzzy rules, which
are prototypes of input-output data, which can be represented as hyperspheres of fuzzy input and output
spaces. The fourth layer calculates the degree to which the output membership function has labeled the
input data, and the fifth layer defuzzifies and calculates the numerical values of the output variable.
DmEfuNN is a modified version of EFuNN. The main idea is that for all input vectors the set of rules is
dynamically selected, the activation values of which are used to calculate the dynamic parameters of the
output function. While EFuNN implements Mamdani-type fuzzy rules, dmEFuNN uses the Takagi–
Sugeno type.

4. REVIEW OF APPROACHES TO THE DEVELOPMENT OF EXPLAINABLE AI SYSTEMS
We now explore different models of explainable AI. Almost all of them are related to third-generation

explanatory systems and the DARPA program, which began in 2018 [54]. The DARPA explainable AI
(XAI) program seeks to create AI systems whose learning models and solutions can be understood and
properly validated by end users. Achieving this goal requires methods for constructing more explicable
models, developing effective explicable interfaces, and understanding the psychological requirements for
an effective explanation. Explainable AI is needed for users to understand, properly trust, and effectively
manage their smart partners. DARPA sees XAIs as AI systems that can explain their decision to a human
user, characterize their strengths and weaknesses, and how they will behave in the future. DARPA’s goal
is to create more human-readable AI systems through effective explanations. XAI development teams
solve the first two problems by creating and developing Explainable Machine Learning (ML) technolo-
gies, developing principles, strategies and methods of human-computer interaction to generate effective
explanations. Another XAI development team tackles the third challenge by combining, extending, and
applying psychological explanatory theories that the development teams will use to test their systems. The
development teams evaluate how a clear explanation of XAI systems improves the user experience, confi-
dence, and productivity.

Russia is also paying attention to the direction of explainable AI. Thus, in 2020, Nizhny Novgorod
State University won the competition of large scientific projects from the Ministry of Education and Sci-
ence of the Russian Federation with the project “Reliable and logically transparent AI: technology, veri-
fication, and application for socially significant and infectious diseases” [55]. The main result of the proj-
ect should be the development of new methods and technologies that allow us to overcome the two main
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 60  No. 6  2021



974 AVERKIN, YARUSHEV
barriers of machine learning and AI systems: the problem of errors and the problem of explicitly explaining
solutions. The project manager, Professor Alexander Gorban, explained the main idea of the project as
follows: “These issues are closely related: without the ability to read logically, AI errors will remain unex-
plained. Additional training of the system within the framework of existing methods can damage existing
skills and, on the other hand, can require huge resources, which is impractical in serious tasks. For exam-
ple, the well-known cognitive computing system IBM Watson has failed in the personalized medicine
market due to systematic errors in diagnosing and recommending cancer treatment, the sources of which
could not be found and eliminated.”

The following is a brief description of the explainable AI models and research centers that are doing
this research in the framework of the DARPA Explainable AI program [54].

1. Deep Explainable AI (DEXAI) at the University of California, Berkeley (UCB). The UCB team,
including researchers from Boston University, University of Amsterdam, and Kitware, is developing a
human-readable AI system through explicit structural interpretation and introspective explanation, which
has predictable behavior and provides an appropriate degree of trust [56]. The key issues of deep explain-
able AI (DEXAI) consist of generating accurate explanations of the model’s behavior and chooseing those
that are most useful to the user. UCB addresses the first problem by creating implicit or explicit explana-
tion models: they can implicitly represent complex hidden representations in understandable ways, or they
can build explicit structures that are inherently understandable. These DEXAI models create a set of pos-
sible explanatory actions. For the second problem, UCB proposes rational explanations that use the user’s
belief model in deciding which explanatory actions to take. UCB is also creating an explanation interface
based on these innovations and principles of interactive development. Autonomous DEXAI models are
used to drive vehicles (using the Berkeley Deep Drive dataset and the CARLA simulator) [57] and in stra-
tegic game scenarios (StarCraft II). For analytic data, DEXAI uses Visual Question Answers (VQA) and
filtering techniques (for example, using large datasets such as VQA-X and ACT-X for VQA and activity
recognition tasks), xView, and Distinct [58].

2. Causal Models to Explain Machine Learning (CRA). The aim of the Charles River Analytics Team
(CRA) (including researchers at the University of Massachusetts and Brown University) is to create and
provide causal explanations for machine learning using causal models (CAMEL). CAMEL explanations
are presented to the user as stories in an interactive and intuitive interface. CAMEL includes a causal prob-
abilistic programming framework that integrates concepts and teaching methods from causal modeling
[59] with probabilistic programming languages [60]. The generative probabilistic models, presented in the
language of probabilistic programming, naturally express cause-and-effect relationships; they are well
suited for the task of explaining machine learning systems. CAMEL examines the internal representation
of a machine learning system to reveal how it represents user-defined concepts of the natural domain.
Then it builds a causal model of their impact on the operation of the machine learning system, conducting
experiments in which areas of agreement are systematically included or removed. After learning, it uses
causal models to derive explanations for the predictions or actions of the system. In the area of data anal-
ysis, CAMEL addresses the problem of detecting pedestrians (using the INRIA pedestrian dataset) [61],
and CRA is working on activity recognition problems (using ActivityNet). CAMEL’s autonomy property
is demonstrated in the Atari Amidar game, and the CRA works in StarCraft II.

3. Explore and communicate explainable views for analytics and autonomy. A team at the University
of California Los Angeles (UCLA) (with researchers from Oregon State University and Michigan State
University) is developing interpretable models that combine representational paradigms, including inter-
preted deep neural networks, compositional graphical AND/OR graphs, and models that produce expla-
nations on three levels (compositionality, causality, and utility). The UCLA system contains an execution
module that performs tasks with multimodal inputs, and an explain module that explains its perception,
cognitive reasoning, and decisions to the user. The runtime module outputs interpreted representations in
the form of a spatial, temporal and causal analysis graph (STC-PG) for 3D scene perception (for analyt-
ics) and task scheduling (for autonomy). STC-PG are compositional, probabilistic, interpretable, and
based on the principles of deep neural networks, and they are used for image and video analysis. The
explain module displays the explanatory syntax graph in the form of a dialog [62], localizes the corre-
sponding subgraph in the STC-PG, and determines the user’s intentions. UCLA covers both XAI prob-
lem areas using a common presentation and output structure. In the field of data analysis, UCLA demon-
strated its system using a network of video cameras for understanding a scenario and event analysis.
UCLA’s autonomy is shown in scenarios using robots performing tasks on virtual reality platforms with
realistic physics, and in an autonomous vehicle driving game.

4. Testing deep adaptive programs with informed information. Oregon State University (OSU) is
developing tools to explain the actions of trained agents that perform consistent decision-making and
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determine the best principles for developing user interfaces with explanations. The OSU explainable agent
model uses explainable deep adaptive programming (xDAP), which combines adaptive programming,
deep reinforcement learning (RL), and explainability. With xDAP, programmers can create agents that
represent solutions that are automatically optimized through deep RL when interacting with the simulator.
For each point of choice, deep RL connects a trained deep decision neural network (dNN) that can pro-
vide high performance but is inherently not explainable. After the initial xDAP training, the xACT pro-
gram trains an explanatory neural network [63] for each dNN. They provide a sparse set of explain func-
tions (x-functions) that encode the properties of the dNN decision logic. Such x-functions, which are
neural networks, are not originally interpreted by humans. To solve this problem, xACT allows domain
experts to attach interpretable descriptions to x-functions; and xDAP programmers, to annotate environ-
ment reward types and other concepts that are automatically built into dNNs as “annotation concepts”
during training.

The OSU explanation user interface allows users to navigate through thousands of agent solutions and
get visual and natural language explanations. Its design is based on the theory of information gathering,
which allows the user to efficiently navigate to the most useful explanatory information at any time. OSU
tackles the issue of autonomy and has demonstrated xACT in scripts using a custom RTS game engine.
Pilot studies have provided information to explain user interface design by describing how users navigate
an AI-powered game and seek to explain game decisions [64].

5. General training and explanation. A Palo Alto Research Center (PARC) team (including researchers
from Carnegie Mellon University, the Army Cyber Institute, the University of Edinburgh, and the Uni-
versity of Michigan) is developing an interactive explanatory system that could explain the capabilities of
the XAI system driving a simulated unmanned aerial system. Explanations of the XAI system should com-
municate what information it uses to make decisions and whether it understands how everything works.
To address this problem, PARC (COGLE) and its users are establishing a common framework for defin-
ing which terms to use in explanations and their meanings. This is provided by the PARC introspective
discourse model, which alternates between learning and explanation.

COGLE’s layered architecture separates information processing into comprehension, cognitive mod-
eling, and learning. The learning layer uses repetitive and hierarchical deep neural networks with limited
bandwidth to create abstractions and compositions on the states and actions of unmanned aerial systems
to support the understanding of generalized patterns.

COGLE’s annotation interfaces support performance analysis, risk assessment, and training. The first
interface is a map that tracks the actions of unmanned aerial systems and divides the path of action or deci-
sion (flight) into explainable segments. The second interface tools allow users to explore and assess system
competencies and make predictions about mission performance. COGLE is being demonstrated on the
ArduPilot Software-in-the-Loop Simulator and on the discrete abstract simulation test bed. Its quality is
evaluated by drone operators and analysts. Competency-based assessment will help PARC determine how
best to develop suitable models that are understandable for the domain.

6. Explainable reinforcement learning (RL) at Carnegie Mellon University. Carnegie Mellon Univer-
sity is creating a new discipline of explainable RL to enable dynamic human-machine interaction and
adaptation for maximum team productivity. Scientists have two goals: to develop new methods for study-
ing explainable RL algorithms and to create strategies that can explain the existing black box problems. To
achieve the first goal, Carnegie Mellon is developing methods to improve model learning for RL agents to
take advantage of model-based approaches (the ability to visualize plans in the interior of a model) while
combining them with the benefits of model-less approaches (simplicity and maximum performance).
These include methods that progressively add states and actions to models of the world after matching hid-
den information has been discovered, study models through end-to-end training on complex optimal con-
trol algorithms, explore general DL models that use rigid body physics [65], and study predictions of states
using repetitive architectures [66].

Carnegie Mellon University is also developing methods that can explain the actions and plans of the
black box’s RL agents. Methods include answering questions such as “Why did the agent choose a partic-
ular action,” or “What training data influenced this choice the most.” For this the university has devel-
oped methods that generate agent descriptions from behavior logs and detect outliers or anomalies. Car-
negie Mellon University has tackled autonomy and has demonstrated explainable RL in several scenarios,
including OpenAI Gym, Atari games, autonomous vehicle simulations, and mobile service robots.

7. Explainable generative adversarial networks. The SRI International team (including researchers
from the University of Toronto, the University of Guelph, and the University of California, San Diego) is
developing an explainable machine learning framework for multimodal data analysis that generates
understandable explanations with the rationale for decisions, accompanied by visualizations of the input
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data used to generate inferences. The deep attention-based representation system for explainable genera-
tive adversarial networks (DARE/X-GANS) employs DNN architectures similar to models of attention
in visual neuroscience. It identifies, extracts, and presents evidence to the user as part of the explanation.
Attention mechanisms provide the user with the means to explore the system and work together.
DARE/X-GANS uses generative adversarial networks (GANs) that learn to understand data by creating
it while learning representations with explanatory power. GANs become explainable with interpreted
decoders. This includes generating visual evidence for the given text queries using chunked text generation
[67], with the chunks being interpreted features such as human poses or bounding boxes. This evidence is
then used to find the requested visual data.

8. A system of answers to explainable questions. The Raytheon BBN Technologies team (including
researchers from Georgia Institute of Technology, Massachusetts Institute of Technology, and the Uni-
versity of Texas at Austin) is developing a system that answers any natural language (NL) questions users
ask about media and provides interactive possible explanations as to why the user got the answer received.
Explainable Answering Questions System (EQUAS) studies explainable DNN models in which internal
structures (e.g., individual neurons) are aligned with semantic concepts (e.g., wheels and steering wheel)
[68]. This allows neural activations in the network during the decision-making process to be translated
into NL explanations (for example, “this object is a bicycle because it has two wheels and a handlebar”).
EQUAS also uses neural imaging techniques to highlight the input areas related to the neurons that most
influenced its decisions. To express case-based explanations, EQUAS stores indices and extracts cases
from its training data that support its selection. Rejected alternatives are recognized and excluded using
contrasting language, visualization, and examples. The four modes of explanation correspond to the key
elements of argument building and interactive learning: didactic statements, visualizations, cases, and
rejection of alternatives.

9. Controlled probabilistic logic models. A team at the University of Texas at Dallas (UTD) (including
researchers from UCLA, Texas A&M, and Indian Institute of Technology Delhi) is developing a unified
approach to XAI using controlled probabilistic logic models (TPLM). TPLM is a family of representa-
tions that includes decision trees, binary decision diagrams, section networks, maximal decision dia-
grams, first-order arithmetic circuits, and controlled Markov logic [69]. UTD extends TPLM to generate
explanations of query results. For scalable inference, the system applies new algorithms to answer complex
explanatory queries using techniques such as generalized inference, variational inference, and combina-
tions of these.

10. Texas A&M University (TAMU). The TAMU team (including researchers from Washington State
University) is developing an interpretable DL framework that uses simulation learning to apply explain-
able shallow models and facilitate domain interpretation with visualization and interaction. Interpretable
system learning algorithms extract knowledge from DNN for appropriate explanations. Its DL module
connects to the template generation module using the interpretability of shallow models. Learning out-
comes are displayed to users with visualizations including coordinated and integrated views. The TAMU
system processes image data [70] and text [71] and is applied in the XAI analytics problem domain. It pro-
vides an efficient interpretation of the detected inaccuracies from a variety of sources while maintaining a
competitive detection performance. The TAMU system combines model-level and instance-level inter-
pretability to generate explanations that are easier for users to understand. The system has been deployed
to address multiple challenges using data from Twitter, Facebook, ImageNet, CIFAR-10, online health
forums, and news websites.

11. Explaining the model using the optimal choice of training examples (Rutgers University). Rutgers
University is expanding the capabilities of Bayesian learning to enable automatic explanation by choosing
the subset of the data that is most representative of the model’s inference. This approach also allows
explaining the conclusions of any probabilistic generative and discriminative model, as well as deep learn-
ing models [72]. Rutgers University is also developing a formal theory of human-machine interaction and
supporting interactive explanations of complex compositional models. Common among these is an
approach based on human learning models that promote explainability and carefully controlled behav-
ioral experiments to quantify explainability. Explaining with Bayesian Learning introduces a dataset, a
probabilistic model, and an inference method, and returns a small subset of examples that best explain the
inference of the model. It has been demonstrated that this approach facilitates understanding of large bod-
ies of texts, as measured by a person’s ability to accurately compose a summary of a body of text after short,
guided explanations. Rutgers University is focusing on the data analysis problem area and has demon-
strated its approach in images, text, their combinations (such as VQA), and structured modeling using
temporal causation.
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CONCLUSIONS
This article reviews the existing algorithms for extracting rules from ANN networks and machine learn-

ing models. Some of the modern algorithms fall into three categories: decompositional, pedagogical, and
eclectic. Particular attention is paid to the extraction of rules from neural fuzzy networks. The study of
fuzzy logic culminated in the late 20th century, and has since begun to decline. This decline may be partly
due to a lack of results in machine learning. Rule extraction is one way to help understand neural networks.
This research will pave the way for fuzzy logic researchers to develop AI applications and solve complex
problems that are also of interest to the machine learning community. Experience and knowledge in the
field of fuzzy logic are suited for modeling ambiguities in big data, modeling ambiguity in knowledge rep-
resentation, and providing non-inductive inference transfer learning. It also discusses rule extraction from
deep learning networks that currently provide an acceptable solution to a variety of AI problems. This is a
new field of machine learning that is believed to take machine learning one step further in the field of pat-
tern recognition and text understanding. However, in terms of explanations, it is still a black box model.
In the past few years, the problem has been expanded to include the general concept and knowledge
extraction from machine learning algorithms: explainable AI. Advances in machine learning and the rise
in computing power have led to the development of intelligent systems that can be used to recommend a
movie, diagnose cancer, make investment decisions, or drive a car without a driver. However, the effec-
tiveness of these systems is limited by the inability to explain decisions and actions to the user. The
DARPA Explainable AI program develops and evaluates a wide range of new machine learning methods:
modified deep learning methods that study explainable functions; methods that explore more structured,
interpretable causal patterns; and inductive model methods that derive an explainable model from any
black box model. The technologies and results obtained show that these three strategies deserve further
study and will provide future developers with design options that increase productivity and explainability.
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