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Abstract—The problem of constructing multiframe superresolution (SR) based on processing a
sequence of low-resolution (LR) images in conditions of applicative noise (AN) is considered. The lat-
ter appear in the form of distributed areas of false or anomalous observations in LR images and are
considered as an additional factor in reducing the quality of the original images, characterized by an
irregular arrangement of LR or zero-resolution areas. The existing methods for solving this problem
are analyzed using models of spin glasses and their varieties, as well as models of random Markov
fields. The authors describe a method based on the use of recurrent algorithms for the optimal condi-
tional linear filtering of a sequence of LR images in combination with superpixel segmentation and
Expectation-Maximization-clustering (EM-clustering) to identify areas affected by AN. The synthe-
sis of conditionally linear filtering algorithms is considered both in the usual and in the adaptive set-
ting, taking into account the possible uncertainty regarding the processing parameters and registration
means. An experimental study is carried out to compare algorithms on sets of test images. The analysis
of the experimental results shows certain advantages of the developed approach for the synthesis of
algorithms for constructing SR in an adaptive setting, which consists in increasing the accuracy and
structural similarity of high-resolution (HR) image restoration in comparison with analogs.
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INTRODUCTION
The resolution of digital images depends on the characteristics of the systems that form and record

these images. In addition, the resolution of images is affected by restrictions arising from their transmis-
sion over communication channels. For the efficient operation of many information processing systems,
high-resolution (HR) images are required, which provide the required level of scene detail, but cannot be
obtained in hardware, primarily due to the limited capabilities of the recording and data transmission
facilities. In this regard, a general approach to the construction of multi-frame superresolution (SR) algo-
rithms is known [1–12], which allows the reconstruction of images from HR by accumulating a sequence
of images with low resolution (LR). Using this approach, from the observed sequence of LR images dis-
playing the same scene, if there are fractional pixel displacements (not multiples of one LR pixel) between
them, an image with an HR is recreated.

Another important factor that determines the quality of the recorded images is that the resulting
graphic materials are often exposed to not only additive but also the so-called applicative noise (AN)
(shadowing of objects, as well as the presence of damaged areas in the images and anomalous observa-
tions). The impact of the latter leads to the appearance of distributed areas of anomalous observations in
each original image, which can also be considered as an additional factor in reducing the resolution, which
is distinguished by the irregular nature of the location of areas of low or zero resolution.

Currently, there are several different algorithms for constructing SR [1, 2], but only some of them con-
tain attempts to solve the problem of compensating the losses in conditions of applicative distortions with
a simultaneous increase in the resolution. At the same time, some of these algorithms [3, 4] are aimed at
combating the effect of AN by painting over the affected areas of LR images, while other algorithms [5–
12] are based on the accumulation and processing of a sequence of LR images. These works include the
previous publications of the authors of this article [8–12], based on the use of methods and algorithms for
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optimal filtering of a Kalman-type image sequence in combination with machine learning algorithms that
are focused on identifying and localizing areas affected by AN.

At the same time, in the known works, the issues of solving the presented problem under conditions of
statistical uncertainty regarding the parameters of the mathematical model of observations, for example,
the parameters of interframe shifts [11] and the dispersion of the blur of the imaging system [12], have been
insufficiently considered. The statement of the problem under the indicated conditions can be considered
as the statement of the problem of the synthesis of algorithms for the optimal filtering of the sequence of
images that are adaptive to the parameters of the used models. In addition, in the known works there are
no quantitative data and results of the comparison of the known approaches and algorithms based on the
use of optimal filtering methods in combination with machine learning algorithms for a complex solution
of the problem of increasing the image resolution in conditions of AN.

The aim of this paper is to study algorithms for constructing multiframe SR in conditions of AN in an
adaptive setting and compare them with the known algorithms used or potentially applicable to solve the
considered problem of increasing the resulting resolution of a sequence of images.

1. ANALYSIS OF KNOWN ALGORITHMS

1.1. Algorithms Based on the Spin Glass Model (ABSGM) 

The algorithms presented in [5, 6] are based on the spin glass model [13], and this model is used to sim-
ulate the noise acting on the images, but not the images themselves. Hereinafter, images are considered as
vectors obtained in the course of the progressive scanning of two-dimensional pixel arrays. Assume { }
is a sequence of the initial LR images obtained at the moments of time  from which we want to rec-
reate the HR image x, and  is the hidden vector defining pixels  which are affected by
noise (–1 indicates presence of noise and +1 indicates absence of noise). We present probabilistic models
for , x, and used in [5, 6].

The prior distribution of the hidden variables  is described by the Boltzmann distribution:

(1.1)

Energy  is set as follows:

(1.2)

where i ~ j means that the ith and jth pixels are adjacent; and constants  and  are set based on the
properties of noise: the self-coupling coefficient  characterizes the trend of the propagation of local
areas of closure (LAC) of AN; and the coefficient of internal connections , the degree of correlation
between adjacent pixels of the LAC. It is assumed that noise usually occupies a smaller part of the image;
hence, . Since the AN affects the entire areas of the image, and not individual pixels, .
Since the elements z(t) take only two values: ±1 (Ising model), expressions (1.1) and (1.2) are analogs of
the spin glass model.

The conditional distribution of observations  is described by Gaussian law

(1.3)

where  is the operator characterizing the effect of the system for forming the observed images and
 is the matrix inverse to the diagonal covariance matrix, the diagonal elements of which are specified

as follows:

(1.4)
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Here , because  means greater reliability; and , less reliability. A priori distribu-
tion x is also described by the Gaussian law

(1.5)
where ρ is the accuracy coefficient. In (1.5) A is a precision matrix with a smoothing effect:

(1.6)

where  is the number of neighbors of the ith pixel of the image.
The HR image x can be defined as the mathematical expectation of the a posteriori distribution ;

however, this cannot be done in an explicit analytical form due to the presence of hidden variables. There-
fore, in [13], it is proposed to use the method of variational Bayesian inference, in which the a posteriori
distribution over a set of unobservable variables is approximated by another distribution, called the varia-
tional distribution  in such a way that the Kullback–Leibler divergence between the two dis-
tributions would be minimal.

In this case, the numerical solution for x is the expectation μ of the Gaussian distribution:

(1.7)

where  is the expectation operator, and the diagonal elements of the expected inverse covariance

matrix  are set as follows:

(1.8)

Due to the large dimension  it is difficult to get this matrix directly. However, it follows from (1.7)
that

(1.9)

Thus, to find μ, it suffices to solve the linear equation (1.9) taking into account the strong sparseness
of the matrix . For this, it is proposed to use the conjugate gradient method [14].

The optimal variation distribution for values  is described by the Bernoulli distribution:

(1.10)

where sig is sigmoid and  is a mistake in the ith pixel of the tth observation (LR images),
the expected value of which can be approximately calculated:

(1.11)

where  is the ith row of the matrix Wt.
Taking into account the relations described above, the algorithm for obtaining an HR image takes the

following form.
1. .
2. .

3. To find  (  on step l), according to (1.7)–(1.9), using the conjugate gradient method.

4. Recalculate  (coefficients  on step l), according to (1.10).
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5. Repeat 2–4 until the following condition is met: .

6. .

1.2. ABGSM Taking into Account the Inertial Motion of the AN (ABGSMIM)
The authors of [6] supplement the approach given above, proceeding from the assumption that the

areas affected by AN are not in random places of the LR images but move inertially between frames. For
this, the vector  describing the displacement of the AN between observations t and t + 1 in
Cartesian coordinates is introduced in the model. With this in mind, the energy function (E) is defined as

(1.12)

where  is the shift matrix and  is the predicted position of the AN on frame t + 1 and con-
stant  describes the degree of similarity of the AN areas between adjacent frames.

Here the a priori distribution  is set based on the fact that the displacement process is Markov
and the LAC will most likely keep the direction of movement

(1.13)

where r is the accuracy coefficient and I is the identity matrix.
Using the Laplace method, the density of the variational distribution θ is described as

(1.14)

where  and  is the Hessian .
Taking into account these considerations, the values  are calculated as follows:

(1.15)

where  and .

1.3. Algorithms Based on Models of Markov Random Fields (ABMMRFs)
The approach presented in [6] is based on the use of the model of random Markov fields [15]. The

observation model is described by the following relation:

(1.16)
where operator Ot removes the pixels affected by AN, operator D performs decimation of the HR image,
operator Ht characterizes the impact of the observed image formation system, and  is Gaussian noise.
It is believed that these operators for obtaining the observed LR images are either known or can be deter-
mined. In this case, the assessment procedure Ot assumes the procedure for the independent segmenta-
tion of each LR image yt into useful and false observations, which will be discussed below.

The HR image x is considered as an inhomogeneous adaptive random Markov random field (DAMRF
model) [15], which allows preserving the inhomogeneities and details of the HR image x. The joint distri-
bution density x is set as follows:

(1.17)
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The choice of the model is important, since it reflects information about the smoothness of the image
using the measure of local spatial changes . The DAMRF model adaptively estimates the level of pixel
similarity to preserve heterogeneities:

(1.19)

where η is the difference between the values of two adjacent pixels.
The maximum a posteriori probability x can be obtained based on gradual nonconvex (GNC) optimi-

zation [15] as follows:

(1.20)

where β is the regularization factor. During the optimization, variable γ changes at each iteration accord-
ing to the rule , .

2. ALGORITHMS BASED ON THE USE OF OPTIMAL FILTERING METHODS (AOF)
The approach proposed by the authors of this work in [8–10] and developed further is based on the use

of optimal linear filtering methods. The state model describing the initial sequence of images is given by
the following relation:  (2.1)where , , and xk are L-dimensional image vec-
tors, ;  is an L × L operator defining the values of interframe shifts of the objects in the images;
and uk is the L-dimensional centered Gaussian random vector with the covariance matrix Qk.

Each image xk corresponds to the observable LR image (size ) characterized by the M-dimen-
sional vector yk . The model of an imaging system that receives an image xk should take
into account the following factors [8–12]:

—shifts and displacements caused by the movement of the camera (or objects) relative to the scene;
—blur due to the scattering function of photodetectors;
—uniform decimation to match the resolution of the observed images.
The possibility of the presence of areas of closure and AN in the generated images, which lead to the

replacement of the (useful) information about the observed object by extraneous (false) information not
related to the object of observation, should also be taken into account. The observation model corre-
sponding to the considered formation system is given by the following relations:

(2.2)

where yk is the vector of dimension M2 corresponding to the next LR frame, which is received for process-
ing; vk is the centered Gaussian vector of additive noise with the covariance matrix ;  ;

 is the operator characterizing the effect of the system for forming the observed images (in meaning it
corresponds to the operator  of model (1.16)) and takes into account all of the factors mentioned
above (displacement, decimation, blurring);  are diagonal matrices with random elements taking
the value zero or one in the case of receiving from the primary sensor useful (   ) or
false (  ) information (Ak corresponds in meaning to the operator Ot of model (1.16)); 
is the prediction of the vector of evaluation of the observed LR image, obtained based on the a priori infor-
mation about the nature of the images, taking into account the processing of the k – 1 frame; and wk is a
vector with zero mean and covariance matrix  describing the deviation of the emerging false observa-
tions with respect to the vector .

Diagonal matrices are introduced that characterize the probabilities of the usefulness of the block’s
pixels  and  such that . The diagonal elements of these matrices contain the proba-
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bilities of unit values  . Matrices of pairwise probabilities of the joint
emergence of useful  or false  observations for each pair of the image’s pixels,
where , , , are also introduced.

Using the obtained models, two types of algorithms can be synthesized: the optimal algorithm in the
class of linear filtering algorithms and the optimal conditionally linear filtering algorithm. The class-opti-
mal linear filtering algorithms implements the estimation using the standard relations for the weight
matrices of the recurrent filter that do not depend on observations. Its capabilities are discussed in detail
in [9, 10]. At the same time, it was found that this type of algorithm has insufficient efficiency for con-
structing SR under the influence of anomalous observations and, in particular, AN. Another approach
based on the use of an optimal conditionally linear filtering algorithm, in the development of the previous
one, involves the use of a posteriori information on the false observations for each of the obtained LR
images. It is shown that, in such problems, the conditionally linear filter has a significantly higher accu-
racy of reconstructing the HR image compared to the optimal estimate in the class of linear ones.

To obtain an estimate of the HR image, the model of a Gaussian random field  with
the given initial estimates of the HR image  and its covariance matrix  is used here. In the case of
conditionally linear filtering, the equations for updating the HR image estimate  when the next frame

 arrives have the following form [9]:

(2.3)

where vectors  and  are an estimate of the HR image and its forecast for the next frame;  and

 are an estimate of the covariance matrix with extrapolation to the next frame;  is a
sequence of binary vectors obtained as a result of segmentation, containing single values in the positions
of the frame pixels yk that are in the areas of closure; and a record of the form  denotes elementwise
multiplication of operators A and B.

In the process of operation, the conditionally linear filter uses an additional informational com-
ponent θk, which is obtained as a result of the segmentation of each incoming frame yk and manages

changes in the matrix  of the filter’s weight coefficients from step-to-step (2.3). In order to obtain
such additional information for each processed LR image, we propose to use two-stage processing based
on machine learning methods and including superpixel segmentation [16, 17] followed by the clustering
of superpixels using the EM algorithm.

Each superpixel is an atomic region (fragment) of the image, and all pixels included in it are considered
during further processing as a single whole. The superpixel image map has a number of advantages over
the conventional regular pixel grid. This is because each superpixel is a consistent unit of data, since the
pixels belonging to it have similar color, brightness, and texture properties. Such properties of superpixels
determine their effective use in solving problems of segmentation of objects with both known and
unknown properties.

As a result of applying the EM algorithm to the resulting superpixel map, all the original pixels of the
LR image are divided into two classes (useful image and AN fragments). At the same time, in the process
of executing the EM algorithm, the a posteriori probabilities of the usefulness of pixels (diagonal elements

 and ) and the binary vector θk whose unit values correspond to pixels yk not obscured by
the interference.
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element θk. The matrix strings  and  correspond to vector scans of matrices  and , cal-
culated over all matrices  and :  and 

3. SYNTHESIS OF ALGORITHMS FOR OPTIMAL FILTERING
IN AN ADAPTIVE SETTING (AOFA)

The implementation of SR algorithms involves significant computational and time costs. In order to
achieve the highest processing speed, the stages of segmentation (determining parts of the useful image
and areas of AN localization) and recording (determining the parameters of interframe shifts) are carried
out separately, based only on the LR frames. However, it is obvious that the greatest processing efficiency
can be achieved when these steps are carried out in conjunction with the procedure for increasing the res-
olution, taking into account the uncertainty regarding some processing parameters. This makes it possible
to select the parameters of the SR algorithm that provide the best (according to the given criterion) result
for evaluating the HR image.

In this approach, in models (2.3), it is proposed to introduce the dependence on the random vector δ,
whose components correspond to the processing parameters of the kth frame. For example, vector δ may
contain the values of the parameters of interframe shifts, the dispersion of the blur due to the scattering
function of the photodetectors, or the parameters of the segmentation algorithm of the kth frame.

As an example, a variant with the selection of shift parameters is considered. Moreover, vector δ con-
tains the parameters of the affine transform that approximate interframe shifts in HR .
The range of possible values for  and Δθ are assumed to be known and discretized by a lattice of
samples containing Nδ nodes, for each of which the probability of realization  is set. When the next

frame arrives, for each possible value of the vector of unknown parameters ,  the condi-
tional estimates of the HR image  are calculated based on relations (2.1)–(2.3), where the condi-

tional operator given based on the ith possible vector value  is used.

Using the conditional ratings , the a posteriori densities  are determined:

(3.1)

The unconditional estimates  relative to vector δ and the corresponding covariance matrices 
are calculated as the weighted sums of the conditional estimates:

(3.2)

In expression (3.2), the likelihood functional  is calculated taking into account the error

 between the frame yk and projections  on the LR grid for a specific value of the vector of the

shift parameters . As information is accumulated, those a posteriori probabilities , that
are close to the true value of the undefined parameter δ, increase. At the same time, the resulting estimate
with a large weight uses conditional filters that reflect the true value of parameter δ.
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Fig. 1. Examples of the original LR image (a), the initial estimate in the form of the first image of the processed sequence
(b), the averaged initial estimate with VDSR (c), and several images of the processed LR sequence exposed to AN (d).

(a) (b) (c)

(d)
The features of the implementation of the proposed process of adaptive information processing are as
follows. In order to increase the speed and reduce the complexity of the computations, in particular, to
eliminate the need for inversion and other operations for large matrices, it is proposed to implement image
processing with overlapping small blocks. Images are divided into N1 and N2 blocks vertically and horizon-
tally, respectively. Upon completion of processing, the image is formed from the central (nonoverlapping)
fragments of the blocks. The size of HR image blocks: , where  and  =
L2/N2; and LR blocks: , where  and . Options  and 
determine the size of the blocks’ overlap (the width of the area in which the pixel values are interdepen-
dent). It should be noted that superpixel segmentation is carried out for the entire image as a whole.

This approach to processing provides the ability to f lexibly adjust the complexity of the computations.
First, in the process of calculating the estimate of the conditionally linear filter (3.1), only those image
blocks for which at least one element  (  ) contains a single value (at least one item is
useful) are corrected. Second, in order to calculate the a posteriori densities of the adaptive filter

, only a few ( ) informative blocks of the frame can be used—the most detailed
blocks, not obscured by the AN, which can be selected, for example, according to the maximum average
magnitude of the gradient of the block’s pixels. In this case, the error values  for different blocks of
one frame are assumed to be independent [11].

Also, instead of the weighted sum of the conditional estimates, the conditional estimate that maximizes
the a posteriori density  can be chosen as . Such an economical adaptive filtering scheme is
slightly inferior to the classical scheme in accuracy, but significantly surpasses it in terms of speed due to
the use of a directed selection of possible values of the vector of unknown parameters δ.

In the implementation of block processing and the techniques mentioned above, expressions (3.1) and
(3.2) have the form
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Fig. 2. Examples of HR images obtained based on the initial assessment in the form of the first LR image, and their
enlarged fragments: ABSGM (a); ABSGMIM (b); ABMMRF (c); AOF (d); AOFA (e).

(a) (b)

(c) (d)

(e)
(3.3)

4. RESULTS OF EXPERIMENTAL STUDIES

Each of the algorithms considered above was implemented in the Matlab R2019b environment, taking
into account the possibilities of block image processing [10], which reduces the dimension of the pro-
cessed and inverted matrices.

For ABSGM, AOF, and AOFA, the initial estimate is required. In the implemented algorithms, two
methods were considered for the formation of the initial estimate:

—the first LR image from the original sequence (sequential increase in resolution when new observa-
tions arrive);

—averaged LR image taking into account interframe displacements and localized AN.
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Fig. 3. Examples of HR images obtained based on the averaged initial estimate with VDSR, and their enlarged fragments:
ABSGM (a); ABSGMIM (b); ABMMRF (c); AOF (d); AOFA (e).

(a) (b)

(c) (d)

(e)
In both cases, the resolution of the original LR image was increased using the VDSR one-frame

upscaling algorithm [18], based on deep learning and originally built into the Matlab environment.

For an experimental comparison of the approaches and algorithms given above for constructing a SR,

12 sets of color LR images of a size of 128 × 128 from 20 frames each were formed. In order to create each

of the sets, LAC of AN (spots of random shape) were generated in the form of a forming binary mask cap-

turing the HR image. Further, the false observations themselves were formed as realizations of a random

field with the given parameters and their displacement was carried out with the original HR image in the

created binary mask. After that, the resulting image was cropped to create the first LR frame. During the

formation of each of the next LR frames, these actions were repeated, while the movement of the camera

with a random shift and rotation relative to the previously obtained image was simulated, as was the move-

ment of the areas affected by the AN, by generating a displacement and rotation of the forming binary

mask.

Examples of the initial LR images with a different AN localization and used initial estimates are shown

in Fig. 1.

In the course of the experiments, the resolution of the original images was doubled. Figures 2 and 3

show examples of the HR images obtained at the output. A qualitative analysis of the results shows that

the ABSGM and ABSGMIM are worse at eliminating applicative interference than their analogs.
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Table 1. The accuracy of restoring the original HR image in the case of using the first LR image as the initial estimate

Criterion
Baseline 

estimate
ABSGM ABSGMIM ABMMRF AOF AOFA

PSNR 16.28 19.22 19.33 19.62 26.46 27.04

SSIM 0.75 0.77 0.79 0.76 0.91 0.91

NIQE 10.13 6.83 6.59 6.53 6.11 6.12

Table 2. The accuracy of restoring the original HR image in the case of using the averaged initial estimate

Criterion
Baseline 

estimate
ABSGM ABSGMIM ABMMRF AOF AOFA

PSNR 26.58 19.22 19.33 22.31 26.80 27.23

SSIM 0.75 0.77 0.79 0.77 0.91 0.91

NIQE 7.58 6.83 6.59 6.72 6.35 6.33
ABMMRF performs this task somewhat better, but its results depend on the initial assessment and are less
detailed compared to the results of AOF and AOFA.

For a numerical comparison of the results in terms of the quality of the obtained HR images, the fol-
lowing indicators were used: the peak signal-to-noise ratio (PSNR, the higher the better), the structural
similarity index (SSIM, the higher the better) [19], and the image quality index (NIQE the lower the bet-
ter) [20]. The averaged values of these criteria for the entire group of processed images are given in Tables 1
and 2.

The data obtained show that the algorithm based on the use of conditionally linear filtering in adaptive
processing restores the original HR image more accurately than its analogs. At the same time, there is a
slight superiority of almost all the algorithms when implementing the second method of forming the initial
estimate based on averaging all frames and applying the VDSR algorithm. Nevertheless, the use of the ini-
tial estimate based on the first frame in combination with the use of AOFA makes it possible to obtain
practically the same quality while maintaining the possibility of implementing processing in the mode of
sequential information accumulation.

CONCLUSIONS

This article is devoted to the problem of constructing a multiframe SR in conditions of anomalous
observations of an applicative nature. The well-known algorithms based on the use of various approaches
are considered: models of spin glasses, models of Markov random fields, and models of optimal linear and
conditionally linear filtration within the framework of the proposed approach. The optimal conditionally
linear filter of a sequence of LR images in conditions of AN in an adaptive setting is synthesized. An exper-
imental comparison of all the algorithms given above based on synthetic and real sets of test images, which
showed the advantage of algorithms based on the use of conditionally linear optimal filtering of a sequence
of LR images and a two-stage procedure for processing each such image using superpixel image segmen-
tation, was carried out.
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