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Abstract—In this paper, we consider the problem of the root-mean-square optimal estimation of the
current state of a continuous stochastic object of observation exposed to continuous and pulsed ran-
dom impacts based on the results of discrete measurements of its output at certain clock time points.
To obtain real-time estimates using a low-performance computer, a new discrete finite-dimensional
filter that provides estimates only at certain clock and possibly inter-cycle time points is proposed. The
vector of its state is composed of the last few clock estimates, while the next estimate is sought in the
form of its explicit dependence on the last measurement and the previous state of the filter. The num-
ber of previous clock estimates to be taken into account can be selected from the condition of a com-
promise between the required estimation accuracy and the available measurement processing speed.
The prediction between measurements is based on the optimal clock and inter-cycle estimates heuris-
tically. The filter synthesis algorithm and methods for constructing its covariance approximations are
presented. An example is considered.
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INTRODUCTION

The main problem of optimal nonlinear filtering of Markov signals consists in the great complexity of
implementing at the required rate over time an absolutely optimal filter (AOF) [1–5] that establishes an
explicit dependence of the estimate on all the accumulated measurements. It is an infinite-dimensional
dynamic (recurrent) system with distributed parameters since its state is determined by the function of the
posterior probability density. Therefore, the modern particle filter [6–8] that implements the direct tra-
jectory realization of the AOF requires employing a very powerful computer due to the use of a cumber-
some sequential Monte Carlo method. In practice, this forces us to apply suboptimal finite-dimensional
estimation algorithms such as the generalized Kalman filter that is the simplest linearized approximation
to AOF. However, the accuracy of such approximations may be insufficient, in particular due to the recur-
rent accumulation of methodological and computational errors over a long period of time [9, 10]. In addi-
tion to the vector of the estimate, the need to calculate the matrix of its covariances makes even such cova-
riance approximations to the AOF rather complicated to implement, especially in the case of a significant
number of estimated variables [11].

An alternative to the slow AOF is finite-dimensional optimal structure filters (OSFs) of various orders,
which are generalizations of a conditionally optimal filter of a specified structure and fixed order [3, 12,
13]. Continuously discrete versions of the OSF for Markov continuous (diffusion) signals are given in [14,
15] while the continuous OSF for piecewise continuous (jump diffusion ) signals is described in [16]. In a
finite-dimensional approach, the nonlinear filtering problem is split into two parts. The most complicated
of them consisting in obtaining the filter equations is solved in advance before the appearance of measure-
ments at the filter design stage. As a result, the implementation of the OSF consisting in recurrently
obtaining estimates based on incoming measurements requires only the solution (modeling) of these
equations. The complexity of this operation is determined by the number of equations and the type of their
nonlinearities.

However, the listed continuously discrete OSFs have a number of disadvantages. The accuracy of a
small-order filter (SOF) having a continuous prediction [14] is limited due to the invariable dimension of
its state vector equal to the number of estimated variables. The order of a finite memory filter  (FMF) and
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50 RUDENKO
a piecewise constant prediction [15] can be already chosen since it is a multiple of the dimension of the
measurement vector but the estimation of this filter depends only on the last few measurements.

In this paper, we propose a procedure for constructing a sufficiently simple recursive large-order filter
(LOF) with a piecewise polynomial prediction. Unlike the FMF, its memory time is infinite, while the
contradiction between accuracy and complexity can be controlled by choosing the filter order. The esti-
mation vector is still sought as the best function of the last measurement and the filter state vector. How-
ever, the latter is now formed from the vectors of several previous estimates, thereby increasing, in com-
parison with the SOF, the RAM of the filter, which allows us to improve the accuracy by expanding the
allowable set of estimates. In this case, the old measurements are not forgotten because information about
them is accumulated in the estimates. Besides, the class of diffusion estimated signals extends to the jump
diffusion one.

The synthesis of a new LOF is shown to be reduced to finding an advance relevant conditional proba-
bility density from a recursive chain of transformations of the prediction-correction type. It is based on
the Kolmogorov–Feller integro-differential equation in partial derivatives (prediction) and the Bayes–
Stratonovich integral formula (correction). The LOF can be otherwise synthesized numerically by the
Monte Carlo method but with the cumbersome construction of a histogram of the desired structural vec-
tor-function of the filter on each measuring step depending on a large number of arguments. Therefore,
the construction of two traditional numerical-analytical covariance approximations to the LOF is consid-
ered. An example of assessing the state of the Van der Pol stochastic oscillator is demonstrated.

1. PROBLEM STATEMENT FOR CONTINUOUS-DISCRETE FILTERING

Let us consider the following hidden Markov model of an observation system.

Let a piecewise-continuous n-dimensional estimated useful signal  that varies in time ,
is continuous on the right , and has a limit on the left  be the state vector of its forming filter.
The latter, which is an object of observation, is perturbed both by continuous Gaussian white noise and
by pulsed Poisson white noise. It is described by the Ito stochastic differential equation that has the fol-
lowing integral form:

(1.1)

Here, X0 is the random initial signal value characterized by the probability density ,  is the bias
vector-function,  is the diffusion matrix function, Wt is the standard Wiener process,

 is a random vector of the hopping amplitude of the random process Xt at time t, which
is determined by the conditional probability density , and  is the Poisson flow of the time
points of the hoppings, which depend on the current value of the signal and have a conditional intensity

,

 is an integer conditional process counting the number of these hoppings over a time period of [0, t),

with the Poisson distribution law:

Note that, in Eq. (1.1), the integral over time is understood as the mean square and the integral over
the Wiener process Wt is understood as the Ito stochastic integral. The probability density  of a
piecewise continuous signal Xt is known to satisfy the Kolmogorov–Feller integro-differential equation [2,
17, 18], which is a generalization of the more well-known Fokker–Planck–Kolmogorov differential equa-
tion over the class of jump diffusion processes.
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OPTIMAL RECURRENT NONLINEAR FILTER 51
Also let instant inertialess measurements of the vector , including incomplete or inaccurate ones,
determined by the following formula of the meter:

(1.2)

be performed at known clock time points of

Here,  is the m-dimensional measurement vector,  is the meter vector-function, and Vk is
the vector of independent discrete white noise with a probability density .

Regarding relations (1.1) and (1.2), we make the following natural assumptions.
Assumption 1. Equation (1.1) has a strong solution  and it is unique. Sufficient conditions for this are

given in [17, 18].
Assumption 2. The random process Xt and its measurements Yk have finite second moments

where  is the mathematical expectation operator and  is the square of the Euclidean norm.
Assumption 3. For simplicity, we will consider all random variables to be absolutely continuous, which

allows characterizing them with probability densities.
It is required at each moment of time from any half-interval between two adjacent clock instants of

time to find the estimate  of the vector Xt as a function of all the measurements accumulated by this time:

(1.3)
which is optimal in terms of the minimum standard error of the estimate:

(1.4)

Here,  is a symmetric positive definite matrix of weight coefficients. Note that the criterion (1.4)
provides the non-bias of the estimate

which guarantees the absence of a systematic error in it. Therefore, this criterion serves to minimize the
spread of estimates relative to the estimated value.

2. EQUATION SELECTION FOR THE NEW FILTER
We correct the given problem statement, for which we first describe the known result of its solution.

2.1. Constructing an Absolutely Optimal Filter

If no restrictions are imposed on the class of estimates (1.3) determined by the functions  of the
number of arguments  that grow over time, then the optimal function in the sense of (1.4) is the
function of the posterior mean:

(2.1)

Here,  is the posterior probability density, and the integrals here and below are taken over the entire
Euclidean space of the corresponding dimension:

In this case, the density  does not depend on the previous estimating functions (2.1) and the cor-
responding estimates  and satisfies the Kolmogorov–Feller integro-differential equation in partial
derivatives (prediction equation) on each interval between measurements . At the time of the next
measurement , the final section  of the solution of this equation according to the Bayes
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52 RUDENKO
formula (correction equation) is recalculated into the initial section  for the next interval
. It is usually complicated to implement these calculations at a rate with the arrival of measure-

ments.
Therefore, we abandon the requirement that the estimate be explicitly dependent on all measure-

ments (1.3), which leads to the AOF’s complexity indicated above. Note that the search for an explicit
dependence of the clock estimates  of the diffusion signal Xt similar to (1.3) only on the last few mea-
surements  led to a much simpler, albeit, less accurate, continuously discrete OSF [15], but
its memory time is finite.

2.2. Filter with a Polynomial Prediction

In order to obtain an equally simple discrete OSF but with an infinite memory time, we propose to
search for the best estimate Zk of only the clock value  of the n-dimensional jump diffusion vector Xt at each
measuring cycle k. For possible savings in computational costs, it is also possible to evaluate only its cer-

tain, most interesting -dimensional part , which, without loss of generality, consists of the first
 components of the vector Xt. Therefore, the criterion of the optimality of the estimate (1.4) is every-

where, at any moment of time, replaced by a similar, but weaker, clock optimality condition:

(2.2)

The estimate  will be sought in the form of an explicit dependence on the last measurement Yk and

on not more than  previous estimates , namely,

(2.3)

determining the best function  based on condition (2.2).

We heuristically construct a prediction  of the information vector  between measurements using
one or several optimal clock estimates Zk, for example, in the form of an extrapolating polynomial. For
example, the prediction may be constant, linear, etc.:

(2.4)

Thus, to evaluate the random process (1.1) from the discrete measurements (1.2), we propose to syn-
thesize a continuously discrete filter with an optimal clock estimate (2.3) and a polynomial prediction (2.4).
Unlike the FMF [15], the old measurements are not forgotten here because the information about them
is accumulated in the estimates and so the memory time of the new filter as a dynamic system is infinite.
A similar filter for discrete Markov signals is described in [19].

2.3. Filter with a Piecewise Polynomial Prediction

To obtain a more accurate prediction, on the time interval between adjacent measurements , we
introduce similarly to [15] additional L inter-cycle points , , denoting the interval boundaries as

 and :

At these points, we will find inter-cycle estimates  as their explicit dependences on l clock estimates

(2.5)

determining functions  from the optimality condition analogous to (2.2):
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Using these additional estimates , we can construct any of the polynomial predictions of type (2.4)
and on each inter-cycle interval separately:

(2.7)

3. THE STATE VECTOR AND THE PROPOSED FILTER ORDER
Equation (2.3) linking the current estimate Zk with the previous ones is a high-order recurrence for-

mula (difference equation). We transform it into a system of first-order equations, for which we collect l
of the latest estimates into a block column-vector of a dimension growing initially:

(3.1)

The process of changing this vector Uk of considered estimates may be written recursively,

(3.2)

using the following vector-functions of estimate accumulation or updating:

Here, C is the matrix of the removal of its last, obsolete block  from the block column-vector ,
while E and O are the unity and zero matrices, respectively. Then, the main filter equation (2.3) and addi-
tional expressions for inter-cycle estimates (2.5) take the following form:

(3.3)

(3.4)

Remark 1. Instead of (3.4), we can search for direct dependences of the inter-cycle estimates  and
on the last measurement Yk that are similar to (2.3), replacing (2.5) by the relations

Given (3.1), these formulas will be similar to (3.3):

Consequently, the initial input-output filter equations (2.3) and (2.5) are represented by equivalent
input-state-output relations (3.2)–(3.4). Indeed, the first-order difference equation (3.2) is the state
equation of the filter, while relations (3.3) and (3.4) are the formulas of its outputs. In this case, the state
of the filter is determined by the block vector (3.1), and its maximal dimension , which does not
change from the lth step , is the filter order. By increasing the coefficient of multiplicity l, this
order may be arbitrarily large. Only the filter’s output functions  and  are subject to optimization
by criterion (2.2), while the function of its state  is fixed. As a result, the following statement is proved.

Lemma. The filter defined by recurrence formulas (2.3) and (2.5) is finite-dimensional with a fixed equa-
tion of state (3.2) and optimized formulas of outputs (3.3) and (3.4). Its state vector (3.1) consists of the desired
number l of estimates remembered by it, so that the filter order is equal to , where  is the dimension of the
estimation vector.

Remark 2. Due to the invariance of the state function , the proposed estimation algorithm belongs
to the type of semi-optimal OSF of an arbitrary order [20]. The new filter differs from the FMF by prin-
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54 RUDENKO
ciple replacing past measurements  with past estimates . In the particular case when the
coefficient of multiplicity l = 1 when Eqs. (2.3) and (2.5) take the simplest form

this filter degenerates into the well-known SOF [15, 21].
Therefore, we give the following definition.
Definition. The recurrent dependence of clock estimates on measurements (2.3), as well as the equiv-

alent pair of the state equation (3.2) and the output formula (3.3), will be termed a filter of large order
 with a polynomial prediction (2.4). These same relations, but with additional formulas for inter-

cycle predictions (2.5) or (3.4), will be termed a filter with a piecewise polynomial prediction (2.7).

4. FINDING FILTER OUTPUT FUNCTIONS

Substituting the desired formulas for estimates (2.3) and (2.5) into the corresponding optimality crite-
ria (2.2) and (2.6), we obtain the following result similar to (2.1) based on the well-known theorem on the
best mean square regression.

Theorem 1 (on the optimal structure of the LOF). Under assumptions 1–3, the best functions among all
filter output functions measured by Borel exist and are found as the following conditional means:

(4.1)

(4.2)

(4.3)

and their corresponding estimates Zk and  are unbiased.
However, these relationships only express the desired functions in terms of three conditional probabil-

ity densities: initial , corrective , and predictive , . Using the
Bayes formula, we find the first of them by the well-known density  of the initial state of object (1.1),

(4.4)

and represent each correcting density  through the final cross section at  of the previ-
ous predictive , which is valid only on the interval :

(4.5)

In the last two relations,  is the likelihood function obtained from the measuring formula (1.2),

(4.6)

where  is the Dirac function, and the symbol  hereinafter designates the numerator of the
corresponding fraction. Similarly, the predicted density  can be expressed in terms of the joint
probability density  of random states of the observation object Xt and filter Uk:

(4.7)

Finally, using the Markov property of the jump diffusion process Xt determined by the Ito equation (1.1),
each of the probability densities  on the corresponding time interval between measurements can be
shown [15] to satisfy the well-known Kolmogorov–Feller equation:
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OPTIMAL RECURRENT NONLINEAR FILTER 55
Here, Kx and Fx are two direct generating process operators: the Fokker–Planck–Kolmogorov differential
operator

with the vector  of the gradient with respect to x and the trace operator of the matrix tr, as well as the
Feller integral operator

Note that, if the bias function  is non-differentiable with respect to the variable x once and the
diffusion functions  is non-differentiable with respect to the variable x twice, the solution to
Eq. (4.8) is understood in the generalized sense by Bubnov–Galerkin [22, 23].

Based on the relations between random variables  and  given in (3.2) and (3.3) and
the known properties of probability densities, the initial condition for equation (4.8) on the first interval

 is the probability density:

(4.9)

Here, the initial estimate function  is already known from (4.2) and (4.4).
Similarly, the initial condition  for Eq. (4.8) is found on each of the subsequent inter-cycle

time intervals , . It is related to the final value  of the solution to this equa-
tion on the previous interval  due to the change in the filter state vector from  to  at the
time instant  by formula (3.2). Indeed, as a result of the emergence of a new measurement Yk and
obtaining, according to (3.3), the next estimate of Zk using the found function , the latter is
added to the vector  with the possible removal of the outdated estimate  from it at the update stage.
Since  at the estimate accumulation stage and  at the update stage, the sections of
probability densities  and  at the same time tk are related by one of the following two relations:

(4.10)

Here, the function  is known from (4.2), (4.5), and (4.7), while integration over the variable  in
the second of these expressions corresponds to the removal of its block  from the vector .

5. ALGORITHM FOR PRECISE FILTER SYNTHESIS
The relations given above allow determining the following sequence of actions. They are performed in

advance before the measurement results appear and, therefore, can be implemented using a rather pow-
erful computer. The latter favorably distinguishes this filter and other OSFs from the classical AOF.

The first method for finding the optimal filter clock functions (4.2) is to alternate the process of solving
the Kolmogorov–Feller equation (4.8) on the next inter-cycle time interval ,  with a
suitable clock conversion (4.10) of the final value of the obtained probability density  to the
initial condition  for solving the same equation on the next interval. To perform such a con-
version, a clock function  is required. Therefore, each solution  to this equation obtained
on the kth interval by formula (4.7) is converted into a predictive probability density , the final section
of which, according to (4.5), is converted into a correction density . The latter allows finding by (4.2)
a function  that, firstly, is the result of the filter’s synthesis at a specified clock cycle and, secondly,
allows performing the aforementioned clock conversion of  to  in accordance with (4.10). The
initial condition for solving Eq. (4.8) on the interval  is the probability density  immediately
obtained from (4.1), (4.4), and (4.9). At the same time, each inter-cycle cross section of the predictive
density  at time  by (4.3) also allows finding the function  of calculating an additional estimate

, which serves to construct a more accurate piecewise polynomial prediction (2.7).
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The second numerical method for filter synthesis is to obtain the almost exact optimal functions of the
conditional means (4.1)–(4.3) due to these calculations in advance using the Monte Carlo method
applied step-by-step in time. For this purpose, it is necessary to perform multiple statistical simulations of
the equations of object (1.1), meter (1.2), and filter (3.2) and (3.3) at each measuring step k in order to
calculate sufficiently large packages of realizations of the random variables , , and . In this
case, the Ito equation can be integrated using one of the well-known stochastic difference schemes of the
Runge–Kutta type, for example, the Euler–Maruyama method. Then, the kth processing of the simula-
tion results should be performed by finding a histogram of the optimal function of the conditional mean

 and smoothing it out using any of the known methods. Knowledge of this function allows con-
tinuing the process of filter modeling for the next clock cycle. At the same time, if it is necessary, the inter-
cycle values of the signal  should be fixed for similarly obtaining additional functions .

However, both the described methods for the precise synthesis of the optimal filter are rather techni-
cally complicated. Therefore, we further consider the construction of two rather simple numerical-ana-
lytical approximations to the proposed filter. These approximations take into account only the covariance
of some random variables losing the estimation accuracy due to this, while the form of their functions can
be represented by analytical expressions. It only remains for us to numerically obtain the parameters of
these expressions.

6. GAUSSIAN APPROXIMATION TO THE FILTER

We use the procedure described in [15] for constructing this well-known approximation to the FMF
that, as noted above, differs from the proposed LOF only in the form of the state vector Uk.

We approximate the numerators of the fractions of the Bayes formulas (4.4), (4.5), and (4.7), namely,
one conditional and two unconditional probability densities:

by the normal density  with the corresponding conditional or unconditional parameters, such
as the mean m and covariance D. Then, by the property of the Gaussian distribution law, we obtain that
the conditional densities , , and  determined by these fractions are also
almost Gaussian, while their parameters, among which the desired conditional means (4.1)–(4.3) are
present, are expressed in terms of m and D by the normal correlation theorem. Therefore, the optimal filter
output formulas (3.3) obtain approximations that are only linear in the measurements of Yk and Y0. Fur-
thermore, due to the following relation between the densities

and type (4.6) of the likelihood function , three of the five parameters of the Gaussian approxi-

mation of the conditional density  can be expressed by its two other parameters using the
measuring function  (1.2). As a result, similarly to [15], we obtain this algorithm for computing
clock and inter-cycle estimates.

Theorem 2 (on the Gaussian LOF equations). If two conditional means of the meter (1.2)

have Gaussian moments (the characteristics of their statistical linearization according to Kazakov)

(6.1)
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then the following suboptimal filter equations hold:

(6.2)

Here,  is the clock prediction vector,  and  are the matrices from the first  rows of the -row
matrices  and ,  is the Moore–Penrose matrix’s pseudoinverse symbol,  and e0 are the initial

filter parameters,  and Tk are the clock parameters, and  and  are the inter-cycle parameters.
In this case, all these parameters are expressed through the first two moments m and D of the well-known
random variables by the following formulas:

(6.3)

Note that these parameters are also now determined easily by the Monte Carlo method by processing
the results of the multiple cycle-by-cycle statistical modeling of the equations of object (1.1), meter (1.2),
and filter (6.2) without plotting histograms.

7. LINEARIZED APPROXIMATION TO THE FILTER
Unfortunately, the integral procedure for finding the characteristics of the statistical linearization of

nonlinearities (6.1) that is necessary for constructing a Gaussian filter is rather complicated, while they
do not always exist in real estimation problems [24]. Therefore, another well-known approximation,
which is much simpler and, therefore, more widely used, is applicable. Similarly to [15], we can easily
obtain such a statement.

Corollary (on the linearized LOF correction functions). If the nonlinearity  of meter (1.2) is dif-
ferentiable with respect to both arguments and the Taylor formula at the point , where Λk is the

prediction of the vector  and  is the average value of the interference Vk,

is valid for it, then the functions of the Gaussian correction (6.1) are approximated by the following
expressions:

(7.1)

Here,  and  are the sections of the Jacobi matrices of
partial derivatives, and  is the covariance matrix of the interference measurement.

As a result, the linearized LOF equations also have form (6.2), but with easily obtained functions (7.1),
while its parameters are still calculated by formulas (6.3).

Remark 3. The disadvantages of the two considered numerical-analytical approximations to the OSF
such as linearized (differentiability of nonlinearities and a small deviation from the linearization point)
and Gaussian (the difficulty of analytically obtaining Gaussian moments of nonlinearities and the possi-
bility of their non-existence) may be overcome by using purely numerical approximations occupying an
intermediate position between them, such as cubature [25] and unscented or sigma-point [9, 26, 27]
approximations.

8. COMPARISON OF THE NEW AND CLASSIC COVARIANCE FILTERS
To clarify the fundamental differences of the suboptimal LOF (6.2) and FMF [15] from a similar

approximation to a continuously discrete AOF, we give the equations of the latter. In this case, for sim-
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plicity, we restrict ourselves to considering the problem of estimating a purely diffusion signal, assuming
that there are no hoppings in the process Xt, so that . Moreover, let the LOF estimate the entire

vector Xt, i.e., , as a result of which its estimates  and  can be designated as  and .
The linearized version of the AOF is well known as an extended Kalman filter (EKF), while its Gaussian

version is not as well-known as a normal approximation filter (NAF). Their equations also differ only in the
form of structural functions. Any of them builds a prediction between measurements  con-
tinuously, integrating an autonomous (closed) system of ordinary differential equations for the esti-
mate  and the matrix  of the posterior covariances of the estimated vec-
tor [3, p. 354]:

(8.1)

Then, at each clock time point , the final values of the solutions  and  of system (8.1) on the

previous interval  are adjusted by measuring Yk in the initial conditions  and  for the next
interval  using the following formulas [3, p. 458]:

(8.2)

Here, the initial values are deterministic:

Thus, in addition to the same correction functions  and  as in the LOF, three prediction
functions , , and  are also needed now. In the Gaussian approximation for the NAF, they are
also found as, similar to (6.1), the characteristics of statistical linearization but of the bias and diffusion
functions of the object’s equation (1.1):

(8.3)

while, in the linearized approximation, for the EKF as in (7.1), they have a simpler form:

(8.4)

However, the system of differential equations (8.1), the second of which is an Riccati-type equation,
has to be solved numerically with a sufficiently small step while ensuring the symmetry and positive defi-
niteness of the covariance matrix, which is not at all simple [9, 10]. An n-dimensional vector of the esti-
mate  and various elements of the n × n-matrix of the covariance  form a rather large state vector of
the filter, so that its order is equal to . In this case, here it is not possible to save by evaluating
only part of the state variables.

Comparing the equations of the new filter (6.2) with the well-known (8.1) and (8.2), we note the fol-
lowing fundamental advantages of approximate OSFs.

1. Clock estimates of suboptimal filters are calculated using the same (common to them) correction
function

but with respect to different values of its arguments:
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Fig. 1. Limit cycles of the Van der Pol oscillator on the phase plane ( , ).
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Here, the clock AOF prediction  obtained by integrating the system of Eqs. (8.1) is replaced by the OSF

prediction vector Λk, which is easily found by the state vector of this filter  as Λk =
 using the precalculated parameters Γk and , and thus it is unbiased. Besides, the clock

matrix  obtained from the same system (8.1) is replaced in the OSF by the predeter-
mined determinate matrix , so that it is also not necessary to solve a complex equation
of the Riccati type.

2. Over the time interval between measurements, the AOF prediction is constructed by solving a com-
plex system of differential equations (8.1), while the LOF prediction is determined by a simple extrapola-
tion (2.4) or (2.7) of the clock  or inter-cycle  estimates. The latter are calculated as 
and are unbiased.

The performed analysis allows drawing the following conclusion.
Statement (on comparing approximations to LOF and AOF). The approximate OSFs do not need to

integrate the system of equations of approximate AOFs for the prediction vector and its covariance matrix
(8.1) and, therefore it is not necessary to find three prediction functions according to (8.3) or (8.4).
Instead, it is necessary to preliminarily find from (6.3) and use the clock parameters  and inter-
cycle parameters , which compensate for the lack of information about the covariance of the esti-
mation error Pt.

9. AN EXAMPLE OF THE NUMERICAL COMPARISON OF SUBOPTIMAL FILTERS1

To analyze the accuracy of the approximations to the AOF and the OSF, we consider the problem of
estimating a two-dimensional state vector of a stochastic version of a nonlinear Van der Pol oscillator. The
corresponding system of Ito equations (1.1), which is given here in a non-strict Langevin form, has the
following form:

1 The calculations were performed by a student, A.A. Rick, under the supervision of the author.
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Fig. 2. Time-dependent standard deviations of errors in estimating the variable  of the Van der Pol oscillator by various
linearized filters: (1) L-AOF, (2) L-SOF with a continuous prediction, (3) L-LOF of multiplicity l = 1 with piecewise
constant predictions, and (4) L-FMF of multiplicity l = 4 with piecewise constant predictions

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 0.5 1.0 1.5 2.0 2.5

1

2

3

4

3.0

1,tX
where  is Gaussian white noise. Figure 1 shows the phase plane ( , ) with two limit cycles of this
oscillator, perturbed (at ) and unperturbed (at ), that form the corresponding hysteresis
loops.

Let both state variables of this oscillator be measured with additive errors, so that the discrete meter (1.2) is
two-dimensional and non-linear in X1, t:

The accuracy of the compared filters was determined by the Monte Carlo method with averaging over
a sample of 800 realizations. Statistical modeling of the differential equations of the oscillator and the filter
with continuous prediction was carried out using the method of the Runge–Kutta type on the interval [0, 3]
with an integration step of Δtint = 0.01. The time interval was taken to be Δtmeas = 0.5 between measure-
ments and Δtprediction = 0.1 between piecewise-constant discrete predictions. The structural functions of
the linearized and Gaussian filters for this example were found in [15].

Figure 2 shows the plots of the standard deviations (RMS) of the errors Se1 for estimating the variable
X1,t by several linearized (L) continuously-discrete filters with various types of predictions. Four filters are
compared:

1. L-AOF (EKF) (8.1), (8.2), and (8.4), the prediction of which is necessarily continuous;
2. L-SOF with a continuous prediction [14];
3. L-LOF of multiplicity l = 1 with piecewise constant predictions (2.7) at ;
4. L-FMF of multiplicity l = 4 [15] with the same piecewise constant predictions.
As can be seen in Fig. 2, the accuracy of the L-AOF, which is of order  in this

example, over time loses increasing to both L-FMPs of order p = 2 and, moreover, to 4-fold L-FMF of
order .

The implementation time of the new filters in comparison with the classic L-AOF is also better:
—for an L-SOF with a continuous prediction, it is smaller by a factor of 1.6, since, unlike L-AOF, the

latter does not integrate the three differential equations for covariances,
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—for L-SOF and L-FMF with piecewise constant predictions, it is even smaller by a factor of 2.8
because they do not integrate any differential equations, even for prediction, while the large order of L-
FMF barely affected the estimation rate.

Thus, this example both confirms the conclusion formulated in Section 8 about the computational
advantages of the linearized LOF and FMF and even demonstrates some of their superiority in accuracy
over EKF.

CONCLUSIONS
The synthesis method for a fast continuously discrete nonlinear filter with infinite memory that pro-

duces estimates only at discrete time points, based on which it is possible to construct a prediction of the
desired type, is proposed. This filter can be implemented in real time on a low-performance computer and
has the highest accuracy in its class of simple filters, which remember the last few clock estimates of the
information part of the state vector of a continuous object, which is also exposed to pulsed impacts.

Formulas for the optimal output functions of the new filter are obtained. For the corresponding prob-
ability densities, a chain of integro-differential equations and clock conversion formulas for its solution is
found. A method for calculating the filter’s structural functions by the Monte Carlo method is described.
A Gaussian approximation to the proposed filter and its linearized simplification are also constructed.
A comparative analysis of these approximations with similar ones for the classical filter are performed.
The accuracy and estimation rate of the linearized filter is illustrated by a two-dimensional example,
which confirms the theoretical conclusions.
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