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Abstract—This paper focuses on the optimal minimum mean square error estimation of a nonlinear
function of state (NFS) in linear Gaussian continuous-time stochastic systems. The NFS represents a
multivariate function of state variables which carries useful information of a target system for control.
The main idea of the proposed optimal estimation algorithm includes two stages: the optimal Kalman
estimate of a state vector computed at the first stage is nonlinearly transformed at the second stage
based on the NFS and the minimum mean square error (MMSE) criterion. Some challenging theo-
retical aspects of analytic calculation of the optimal MMSE estimate are solved by usage of the multi-
variate Gaussian integrals for the special NFS such as the Euclidean norm, maximum and absolute
value. The polynomial functions are studied in detail. In this case the polynomial MMSE estimator
has a simple closed form and it is easy to implement in practice. We derive effective matrix formulas
for the true mean square error of the optimal and suboptimal quadratic estimators. The obtained
results we demonstrate on theoretical and practical examples with different types of NFS. Comparison
analysis of the optimal and suboptimal nonlinear estimators is presented. The subsequent application
of the proposed estimators demonstrates their effectiveness.

DOI: 10.1134/S1064230719060169

INTRODUCTION

Estimation and filtering are powerful techniques for building models of complex control systems. The
Kalman filtering and its variations are well-known state estimation techniques in wide use in a variety of
applications such as navigation, target tracking, communications engineering, biomedical and chemical
processing and other areas [1–6]. However, in many applications it is of interest to estimate not only a
state vector  but also a nonlinear function of the state vector (NFS),  which expresses
practical and worthwhile information for control systems. The first motivating example of the NFS is the
location of a target and radar. An angle (ϕ) and distance (d) from radar to target are shown in Fig. 1:

The second example can be an arbitrary quadratic form, , representing an energy-like
function of an object [7], or the Euclidean distance (2-norm), , between the current 

1 This work was supported by the Incheon National University Research Grant in 2015–2016.
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Fig. 1. Location of radar and target: , d = OA, . 
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and nominal  states, respectively. So estimation and prediction of quantities represented by an NFS can
be helpful in different applications, such as system control and target tracking.

The problem of estimation of nonlinear functions with unknown parameters and signals based on the
minimax theory has been studied by many authors [8–11] and the references therein. Estimation of
parameters of nonlinear functional model with known error covariance matrix is presented in [12]. Min-
imax quadratic estimate for integrated squared derivative of a periodic function is derived in [13]. In [14,
15], the optimal matrix of a quadratic function is searching based on cumulant criterions. Estimation of
penalty considered as a quadratic cost functional for quantum harmonic oscillator is given in [16]. Esti-
mators for integrals of nonlinear functions of a probability density are developed in [17, 18]. We also men-
tion estimation of nonlinear functions of spectral density, periodogram of a stationary linear signals [19–
21]. Some extension of these results obtained by [22]. In [23] an unknown distance between a target and
radar is approximated by Taylor polynomial to subsequent estimation of its coefficients. For algorithms
and theory for estimation information measures representing an nonlinear function of signals the reader
is referred to [24, 25]. However, most authors have not focused on estimation of an NFS for vector signals
defined by dynamical models, such as stochastic differential systems.

The aim of this paper is to develop an optimal two-stage minimum mean square error (MMSE) esti-
mator for an arbitrary NFS in a linear Gaussian stochastic differential systems, and considerably study a
special polynomial estimators for which one can obtain an important mean square estimation results. The
main contributions of the paper are listed in the following:

1. This paper studies the estimation problem of an NFS within the continuous Kalman filtering frame-
work. Using the mean square estimation approach, an optimal two-stage nonlinear estimator is proposed.

2. The optimal MMSE estimator for a polynomial functions (quadratic, cubic and quartic) is derived.
We establish that the polynomial estimator represents a compact closed-form formula depends only on the
Kalman estimate and error covariance.

3. Important class of quadratic estimators is comprehensively investigated, including derivation of a
matrix equation for its true mean square error (MSE).

4. Performance of the proposed estimators for real NFS illustrates their theoretical and practical use-
fulness.

This paper is organized as follows. Section 1 presents a statement of the MMSE estimation problem for
an NFS within the Kalman filtering framework. In Section 2, the general optimal MMSE estimator is
proposed. Here we study the comparative analysis of the optimal and suboptimal estimators via several
theoretical examples with a practical NFS. In Section 3, the importance of obtaining an optimal estimator
in a closed form is studied. An optimal polynomial estimator represents a closed form expression in terms
of the Kalman estimate and its error covariance. For an optimal and suboptimal quadratic estimators we
derive matrix formulas for the true MSEs. The efficiency of the quadratic estimators is studied for a scalar
random signal and on real model of the wind tunnel system.
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1. PROBLEM STATEMENT
The Kalman framework involves estimation of the state of a continuous-time linear Gaussian dynamic

system with additive white noise,

(1.1)

Here,  is a state vector,  is an observation vector,  and  are zero-mean
Gaussian white noises with intensities Qt and Rt, respectively, i.e., , ,  is

the Dirac delta-function, , , ,  and ,  is the expecta-
tion of a random vector X.

We assume that the initial state  and system and observation noises ,  are mutually
uncorrelated.

A problem associated with such system (1.1) is that of estimation of the nonlinear function of state vector

(1.2)

from the overall noisy observations 
There are a multitude of statistics-based methods to estimate an unknown function  from real

sensor observations  We focus on choosing the best estimate  minimizing MSE: 
In general the optimal MMSE solution (further “estimate” or “estimator”) is given by the conditional
mean,  [26, 27]. The most challenging problem is how to calculate the conditional mean.
In this paper, we solve this problem for the NFS (1.2) within the Kalman filtering framework.

We propose optimal and suboptimal MMSE estimation algorithms for the NFS and their implemen-
tation in next section.

2. OPTIMAL TWO-STAGE MMSE ESTIMATOR FOR GENERAL NFS
Here the optimal two-stage estimator for the general NFS is derived. Also we propose a simple subop-

timal estimator. The both estimators include two stages: the optimal Kalman estimate of the state
vector , computed at the first stage is used at the second stage for estimation of the NFS (1.2).

2.1. Optimal Two-Stage Algorithm

First stage (calculation of Kalman estimate). The estimate  of the state xt based on the

observations , and its error covariance  are given by the continuous Kalman-
Bucy filter (KBF) equations [4–6]:

(2.1)

Second stage (optimal estimator for NFS). The optimal estimate of the NFS  based on the
observations  also represents a conditional mean, that is

(2.2)

where  is a multivariate conditional Gaussian probability density function determining

by the conditional mean  and covariance .
Thus, the estimate in (2.2) represents the optimal MMSE estimator for the general NFS which

depends on the Kalman estimate  and its error covariance Pt.
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In practice, the nonlinear function (1.2) may depend not only on the state vector, but also on its esti-
mate. Then the NSF takes the form

(2.3)

Taking into account that the state estimate  represents the known function of observations,  =
, the MMSE estimate of an unknown function,  is given by the formula similar to (2.2).

Namely

(2.4)

Further, we consider several theoretical examples of application of the general nonlinear estimators (2.2).

2.2. Examples of Two-Stage Estimator

Let  be a bivariate Gaussian vector; and  and  are the Kalman estimate
and error covariance, respectively.

Example 1 (expected value of the Euclidean norm). The overall estimation error is defined as

(2.5)

Taking into account that the Euclidean norm of the error depends on the difference between state vec-

tor and its estimate,  one transform the formula (2.2). We have

where  is the conditional probability density function of the error 

Next using [28] we have the analytical expression for the MMSE estimate of the Euclidean norm zt = 

(2.6)

where  is the hypergeometric function, and λ1, t and λ2, t are the eigenvalues of Pt.
Example 2 (feedback control depends on maximum of state coordinate). In mechanical systems a

piecewise feedback control law is given by

where D is a distance threshold. Then the MMSE estimate of the maximum  is obtained
from [29],

where φ(⋅) and Φ(⋅) are the standard conditional Gaussian density and cumulative distribution function,
respectively.
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Fig. 2. Optimal MSE (dotted curve) and suboptimal MSE (solid curve) for z = sinθ.
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Example 3 (estimation of sine function). Let θ be a random unknown angle which is measured in the
presence of an additive white noise. Then

(2.7)

where  and wt is a zero-mean Gaussian white noise with intensity r.

The KBF equations (2.1) become

(2.8)

Integrating the Riccati equation for , we obtain . Further, we con-
sider a sine function of an unknown angle θ. Then an NFS becomes .

1. Optimal estimate. Using (2.2) the optimal estimate of the sine is

(2.9)

where  and Pt are determined by (2.8).

2. Suboptimal estimate. In parallel with the optimal mean square estimate (2.9) we consider a simple
suboptimal estimate, .

To compare estimation accuracy of two estimates, we derive the analytical formulas for their MSE:
 and  and demonstrate a comparative analysis. We obtain

where

Figure 2 illustrates the exact MSEs  and  for the parameters ; ;  and Fig. 3

shows the relative error,  Not surprisingly, Figs. 2 and 3 illustrate that the

optimal estimate is better than suboptimal one, i.e.,  We also observe that the difference
between two estimates becomes negligible as the time increases.
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Fig. 3. Relative error Δt, % between optimal and suboptimal MSEs for z = sinθ.
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Fig. 4. MSEs for estimates of absolute value z = |θ|:  (solid curve),  (dotted curve).
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Example 4 (estimation of distance between random location θ and given point a). In this case an NFS
becomes . Under the model (2.7) for a random location  we use the best estimate (2.2) for
the distance . Then

where  and Pt are determined by (2.8).
In the particular case with a = 0 the MMSE estimate of an unknown modulus, , takes

the form

In addition we can consider a simple suboptimal estimate 

To study the behavior of the MSEs,  and  set ; ;
. To compute the MSEs the Monte-Carlo simulation with 1000 runs was used. As shown in Fig. 4,

the optimal estimate  has a great improvement over the suboptimal one .

2.3. Alternative Idea of Suboptimal Estimation of NFS

In contrast to the proposed optimal MMSE solution (2.1) and (2.2) there is an alternative idea to esti-
mate an NFS. In this case the NFS, , is considered as additional state variable zt which is deter-
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mined by the nonlinear stochastic equation  in which the drift coefficient
 and diffusion matrix  are determined by the Ito formula applied to the complex function

f(xt), in which the argument is given by the equation  [30]. Including the variable zt into the

state of a system  we obtain system with the augmented state . Thus the prob-
lem of estimation of the NFS is reduced to the nonlinear filtering problem by replacing the original state
xt by the augmented one Xt. And approximate nonlinear filtering techniques can be used for simultane-
ously estimation of xt and zt. Many different approximate filters have been proposed [5, 6, 30–35], among
which we distinguish the extended Kalman filter [5], the conditionally optimal Pugachev filter with given
and optimal structures [30–32] and the unscented Kalman filter [33]. But computational complexity of
the approximate nonlinear filters is considerably greater than complexity of the linear Kalman-Bucy filter.
The proposed two-stage procedure (2.1) and (2.2) is more promising than estimation of the augmented
state Xt.

2.4. Simple Suboptimal Estimator for NFS

In parallel to the optimal estimator  we propose a simple suboptimal estimate of the NFS,
such as  which depends only on the Kalman estimate of state  and does not require its error
covariance Pt in contrast to the optimal one . The numerical results show that the suboptimal estimate

 may be either close to the optimal one (Example 3) or seriously worse (see Example 4 and further
Example 6).

2.5. Real-Time Implementation of MMSE Estimator

The error covariance Pt can be pre-computed, because it does not depend on the sensor observations

 but only on the noise statistics , Rt, the system matrices  and the initial
condition P0, which are the part of system and observation model (1.1). Thus, once the observation sched-
ule has been settled, the real-time implementation of the MMSE estimator, , requires only
the computation of the Kalman estimate .

2.6. Closed-Form MSE Estimator

For the general NFS, , calculation of the optimal MMSE estimate is reduced to calculation
of the multivariate integral (2.2). Analytic calculation of the integral (closed-form MSE estimator) is pos-
sible only in special cases as in Examples 1–4.

Further, we consider a polynomial function of state (polynomial form) for which it is possible to obtain
a simple closed-form MSE estimators that depend only on the Kalman statistics .

3. OPTIMAL CLOSED-FORM MMSE ESTIMATOR FOR POLYNOMIAL FUNCTIONS

Let consider a special NFS (1.2) that represents an arbitrary multivariate polynomial function (form)
such as,

(3.1)

where , and . For simplicity, we ignore the subscript t in this Section.
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3.1. Optimal Polynomial Estimators

In case of the polynomial forms (3.1), the optimal estimate  has a closed-form solution
since the conditional expectation depends on high-order moments of a conditional Gaussian distribution

, which can be explicitly calculated in terms of first- and second-order moments, namely, the Kal-
man estimate and its error covariance . The following theorem gives the best polynomial estimators.

Theorem 1. The optimal MMSE estimators  for the polynomial forms (3.1) are given by the

following analytical formulas:

(3.2)

The derivation of the estimators (3.2) is given in Appendix.
Example 5 (optimal and suboptimal estimation of the Euclidean norm). To determine an optimal rel-

ative location in wireless sensor networks we need to evaluate the cost function representing the Euclidean
norm of an overall error,

where e is n-dimensional random error, 
If n = 2 the optimal MMSE estimate  determined by formulas (2.5) and (2.6),

(3.3)

If n > 2 then it is difficult to derive an analytical formula for the optimal estimate  such as (3.3). In this
case we propose a simple suboptimal estimate  for the Euclidean norm. First, using the quadratic esti-
mator (3.2) we calculate the MMSE estimate of the square norm  and then extract the square
root. We have

(3.4)

where tr(P) denotes the trace of a matrix P.
To study behavior of the optimal and suboptimal estimates (3.3) and (3.4) at n = 2 we set

Then , . The relative error  shows that the suboptimal esti-

mate  is more worse than the optimal one .

3.2. Exact Matrix Formulas for Quadratic Estimators

Consider an arbitrary quadratic form (QF)

(3.5)
Using Theorem 1, the optimal quadratic estimator (3.2) can be explicitly calculated in terms of the state

estimate  and error covariance Pt,

(3.6)
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In parallel to the optimal estimate we propose a suboptimal estimate  of the QF which depends only
on the Kalman estimate  and does not require its error covariance Pt in contrast to the optimal one (3.6).
The suboptimal estimate is obtained by direct calculation of the QF at the point  such as,

(3.7)

Let compare estimation accuracy of the optimal (3.6) and suboptimal (3.7) estimates. The following
result completely defines the MSEs,

Theorem 2. The mean square errors  and  are given by

(3.8)

and

(3.9)

respectively. Here the unconditional mean  and covariance  of the state vector xt are

determined by the equations of the method of moments [6],

(3.10)

The derivation of the MSEs (3.8) and (3.9) is given in Appendix.

Note that the difference between  and  is equal 
Thus, equations (3.8)–(3.10) completely define the true MSEs of the optimal and suboptimal qua-

dratic estimators, respectively.

3.3. Theoretical and Practical Examples of Application of Quadratic Estimators

Example 6 (theoretical example—estimation of power of scalar signal). Let xt be a scalar random signal
measured in additive white noise. Then the system model is

where  and wt are the uncorrelated white Gaussian noises with intensities q and r, respectively, and x0 ~

The KBF equations (2.1) give the following

Let consider power of the signal xt, which is proportional to its square. Then 
Using (3.6) and (3.7) we obtain the optimal and suboptimal estimates of power of the signal, respec-

tively,

Compare accuracy of the estimates. Using Theorem 2, we obtain the true MSEs,
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Fig. 5. Relative error , % between optimal and suboptimal MSEs for quadratic estimators.
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where the mean μt and covariance Ct of the signal xt are determined by (3.10) as follows:

Figure 5 shows the relative error  for the values , , ,

, r = 0.1 From Fig. 5 we observe that the relative error Δt varies from 3 to 6% within the time zone
, and then it increases. In steady-state regime t > 4 the relative error reaches the value
 and at the same time zone the absolute values of the MSEs are equal  and

 = 0.1239. Thus the numerical results show that the suboptimal estimate  may be seriously
worse than the optimal one 

Example 7 (practical example—wind tunnel system). Here an experimental analysis of the quadratic
estimators is considered on example of a total kinetic energy of the high-speed closed-air unit wind tunnel
system [36]. The state vector  consists of the state variables  and  representing derivatives
from a chosen equilibrium point of the following quantities: x1—Mach number, x2—actuator position
guyde vane angle in a driving fan, and x3—actuator rate. Then the system model is given by

where the initial conditions are  and .
Two sensory measurement model is given

The intensities of the white noises  and  are subjected to  and
, respectively.

The total kinetic energy of an actuator can be expressed as sum of the translational kinetic energy of
the center of mass,  and the rotational kinetic energy about the center of mass, 
where I is rotational inertia,  is angular velocity, m is mass and  is linear velocity. Then the
energy can be expressed in the following QF,

where  is the extended state vector, and I = 0.136 kgm2, m = 7.39 kg.
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Fig. 6. Comparison of MSEs for total kinetic energy zt with using optimal and suboptimal quadratic estimators:  (solid

curve),  (dotted curve).
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Using Theorem 1 the optimal and suboptimal quadratic estimators take the form

where the estimate of the state  and error covariance  are determined by (2.1).

Our point of interest is behavior of the MSEs,  = E[(zt – )2] and  = E[(zt – )2] which can
be calculated by using Theorem 2. We observe in Figure 6 that the optimal estimator has the best perfor-
mance in contrast to the suboptimal one, i.e.,  < . The relative error Δt varies from 6.2 to 10%
within the initial zone, t ∈ [0.02; 0.07] of operation of the system, and then it decreases. In time zone, t >
0.07 the values of the MSEs and relative error are equal  = 0.89,  = 0.94, and Δt = 5.6%, respec-
tively.

As a result, we confirm that the proposed optimal quadratic estimator is more suitable for data process-
ing in practice.

CONCLUSIONS

In some application problems, nonlinear function of state variables contains useful information of the
target systems for control. In order to estimate an arbitrary NFS, an optimal two-stage MMSE estimation
algorithm is proposed. At the first stage, a preliminary state estimate from the standard KBF method is
calculated. And next the computed estimate is used at the second stage for the MMSE estimation of
an NFS.

Particular attention is given for a polynomial functions of a state. In this case, it is possible to derive a
closed-form polynomial estimator, which depends only on a parameters of the KBF. Interpretation of a
quadratic functional as power or energy is considered in Examples 6 and 7.

In a view of importance of an NFS for practice, the proposed estimation algorithms are illustrated on
theoretical and numerical examples for a real NFS. The examples show that the optimal MMSE estimator
yields reasonably good estimation accuracy.

Using the MMSE method, an optimal two-stage nonlinear estimator is proposed. We establish that the
polynomial estimators (quadratic, cubic and quartic) can be represented a compact closed-forms which
depend only on the KBF characteristics (Theorem 1). An important class of quadratic functional is com-
prehensively investigated, including derivation of a matrix equations for a true MSE (Theorem 2). Perfor-
mance of the proposed estimators for real NFS illustrates their theoretical and practical usefulness.
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APPENDIX

Proof of Theorem 1. The derivation of the polynomial estimators (3.2) is based on the Lemma 1.

Lemma 1. Let  be a Gaussian random vector,  and  be an arbitrary matrices.
Then it holds that

(A.1)

The derivation of the formulas (A.1) is based on their scalar versions given in [37, 38], and standard
transformations on random vectors.

This completes the proof of Lemma 1.
Next, replacing in (A.1) an unconditional expectations and covariance by their conditional versions,

for example, , S →  = P we obtain (3.2).
This completes the proof of Theorem 1.
Proof of Theorem 2. The derivation of the MSEs is based on the Lemma 2.

Lemma 2. Let  be a composite multivariate Gaussian vector, :

(A.2)

Then the third- and fourth-order vector moments of the composite random vector  are given by

(A.3)

The derivation of the vector formulas (A.3) is based on their scalar versions, and standard matrix
manipulations,

(A.4)

where , .
This completes the proof of Lemma 2.
Further, we derive the formula (3.8). Using (3.5) and (3.6), the error can be written as

(A.5)
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Next, using the unbiased and orthogonality properties of the Kalman estimate  we
obtain

(A.6)

Using Lemma 2 we can calculate high-order moments in (A.6). We have

(A.7)

where

(A.8)

Substituting (A.7) in (A.6), and after some manipulations, we get the optimal MSE (3.8).
In the case of the suboptimal estimate  the derivation of the MSE (3.9) is similar.
This completes the proof of Theorem 2.
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