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Abstract—Nonconservative mechanical systems with one degree of freedom are considered. The goal
is to provide the existence of steady-state oscillations with the prescribed properties. The system’s
behavior is modeled by a second-order autonomous dynamical system with one variable parameter
describing the amplifying coefficient of the control action. A numerical-analytic method to find the
amplifying coefficient is proposed. Conditions of the orbital stability are obtained for the steady-state
oscillations. An example of the application of the method is provided. The proposed approach can be
applied to solve control problems and to find periodic solutions of second-order autonomous dynam-
ical systems.
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INTRODUCTION
The problem to generate oscillations with the a priori given properties is actual for various applications;

it is discussed in many contemporary papers, in particular, for the case of systems with one degree of free-
dom, e.g. [1–9].

The efficiency of control strategies providing the existence of steady-state oscillations with a priori
determined properties is frequently verified on the example of the control problem for a heavy pendulum.
In [5], the stabilization problem for oscillations of a mathematical pendulum is solved by the passification
method (see [10]), where the control depends on the coordinate and velocity. In [6], the following two
approaches to the control of nonautonomous pendulum systems are considered: the active control with
nonlinear saturation (see [11]) and passive damping assuming that an additional object with one degree of
freedom is added to the mechanical system. In the cited papers, the structure of the constructed control
is rather complicated: feedback with respect both to the coordinate and velocity is presented.

In order to construct a control providing the existence of periodic oscillations, one can use approaches
to search for periodic solutions of nonconservative systems and modify them. For example, in [7–9],
approaches close to the method proposed in [12] are used to control the oscillator under small noncon-
servative actions. In [13], to construct a periodic motion of a vibration system, a corollary of the averaging
method of [14] is applied; this corollary establishes a correspondence between fixed points of the averaged
system and periodic solutions of the complete system. If there are no small parameters, then methods
using the numerical integration of the system (the shooting method) and numerical-analytical procedures
can be used to find periodic solutions. Examples of numerical-analytical procedures are methods for non-
autonomous systems with a periodic dependence on time, e.g., the methods proposed in [15, 16] (to
extend such approaches to autonomous systems, we have to change variables in advance (as a rule, this
substitution is nontrivial) and the projection methods (see, e.g., [17, 18]). The latter are sensitive to the
influence of high harmonics.

In this paper, we consider an autonomous pendulum-type mechanical system with one degree of free-
dom. Conservative and nonconservative forces act on the system. Also, a control action with a feedback
and one varied parameter is presented, e.g., by the moment linear with respect to the angular velocity or
proportional to the sign of the angular velocity, where the proportionality factor is to be selected to provide
the desired properties of the system’s motion. Assume that the requirements to the steady-state oscillation
mode are formulated. For example, the steady-state oscillations are to enclose the known equilibrium
state and possess the given value of the mean mechanical energy. The posed problem is to select an ampli-
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fying coefficient of the control action which ensures the existence of such a steady-state mode (an attract-
ing one is preferable).

Such control problems arise, e.g., in tuning operating duties for mechanisms and technical systems.
In particular, the control of the external load in the local chain of a small-scale wind power unit can be
reduced to such a problem (see [2]).

In this paper, we propose a numerical-analytical method to construct a control providing the existence
of a steady-state oscillation mode with the prescribed properties for a nonconservative system without
small parameters. This method is a numerical-analytical iteration procedure. The first iteration coincides
with the result of the application of the criterion constructed in [12]. The new method extends the method
proposed in [19] to the case of systems without the central symmetry properties. Apart from constructing
a control, the method can be applied to searching for periodic solutions of second-order autonomous
nonconservative dynamical systems.

We consider an example of the application of the proposed method to the oscillation problem for a
controlled heavy pendulum in the air f low. The control action is presented by the moment in the pendu-
lum hinge which is proportional to the sign of the angular velocity of the pendulum. The proportionality
factor is a varied parameter. Using the proposed method, we solve the problem to find an amplifying coef-
ficient of the control action which ensures the existence of steady-state oscillations with the prescribed
value of the mean mechanical energy (the oscillations enclose the lower equilibrium of the pendulum).
For attracting periodic motions, basins of attraction are described.

We discuss specific features of the new method and its advantages over the well-known methods.

1. PROBLEM POSING AND FORMALIZATION

Consider a mechanical system with one degree of freedom such that its motion is described by the
dimensionless equations of the following kind:

(1.1)

Here, the dot denotes the derivative with respect to the dimensionless time, x is the dimensionless gen-
eralized coordinate, y is the dimensionless momentum,  is the Hamilton
function describing the total mechanical energy of the system,  is an analytical function defined
by the structure of the kinetic energy of the system,  is an analytical function describing the
potential energy of the system, a > 0 is a dimensionless coefficient,  is the dimensionless general-
ized force corresponding to external nonconservative forces (an analytical function), and  is the
control. It is assumed that the control is the product of coefficient b to be selected and the given function

 characterizing the feedback structure such that  provided that . Thus, the control
is selected in the form of a dissipative or antidissipative function (depending on the sign of b). For exam-
ple, the control might be of the form  or .

The problem is to select a suitable amplifying coefficient b for the control action in order to generate
in system (1.1) attracting periodic oscillations with the prescribed time mean  of the function  if
this is possible; this correspond to a certain average mechanical energy. It is assumed that the oscillation
modes have to “enclose” the prescribed equilibrium of system (1.1). Also, we need to describe the basin
of attraction of the “constructed” oscillation mode and to find the range of values of h accessible under
the control of the selected structure. The method proposed below can be easily generalized for the case
where the value of the oscillation amplitude is to be prescribed and for other similar problems to construct
oscillations with prescribed properties.

The goal of this paper can be formalized as follows: for a given h, find sufficient conditions for the exis-
tence of a value  such that, for , system (1.1) has a periodic solution enclosing an isolated
equilibrium  and such that the mean value (with respect to time) of the function  along this
solution is equal to h. If such  exists, then the goal is to find it, to find out whether the correspond-
ing periodic solution is attracting; and to describe the basin of attraction, if the solution is attracting.
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2. FINDING AN AMPLIFYING COEFFICIENT PROVIDING THE EXISTENCE OF A CYCLE

Assume that fixed points of system (1.1) are found and an isolated fixed point  is selected such
that it is to be enclosed by periodic solutions. Further, we assume that  (for brevity). Consider system
(1.1) in the band , where A0 and C are positive constants to be selected such that the cycle cor-
responding to the given value h of the function H(x, y) is located in the band (if such a cycle
exists).

We start from an auxiliary problem. Let A be such that . The value  corresponds
to the phase point . We look for a value  of parameter b, providing the existence of a periodic
solution of system (1.1), passing through the phase point . Define successive approximations of the
following kind:

(2.1)

(2.2)

and

where  and  are the n-step approximations of the phase curves describing the parts of the
desired cycle lying in the upper and lower half-planes of the phase plane, respectively,  and  are the
n-step approximations of the value of variable x at the right-most point of the desired phase cycle, and

 is the n-step approximation of the desired value of the amplifying coefficient.

The zero iteration (2.1) coincides with the result of the formal application of the method proposed in
[12] to system (1.1): it is formal in the sense that it is required in [12] for parameter a to be small but the
fulfillment of this condition is not guaranteed in the specified problem.

If system (1.1) possesses the central symmetry property, then we obtain  and
 on each step; in this case, the numerical implementation of the method and the proof of the

assertions on the limit of sequences (2.2) are substantially simplified (see [19]). In the present paper, no
central symmetry of system (1.1) is assumed. Then the upper and lower parts of the desired cycle are con-
structed as limits of sequences such that each one consists of parts of the trajectories of the Hamilton sys-
tems which are different for the upper and lower half-planes. To obtain each consequent “generating”
Hamilton system, we substitute the preceding approximation  and  for a part of the
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periodic trajectory in the right-hand side of system (1.1). On the nth step, the Hamiltonians of these gen-
erating systems have the form

The next approximations  and  are the trajectories of the systems determined by the
Hamiltonians  and  (respectively) for the Hamiltonian level h0.

If both sequences  and  converge for all x, then the sequences , , and  con-
verge. Let these sequences converge. Let the relation  holds provided that n is
sufficiently large, and the limits  and  of the sequences  and  (respectively) coincide with each
other, i.e., . Then the limit of the sequence of  is the desired value  and the part of the
cycle existing in system (1.1) for , lying in the upper half-plane, is described by the limit 
of the sequence of , while its part lying in the lower half-plane is described by the limit  of
the sequence of .

If the sequences of (2.2) do not converge, then this does not mean the nonexistence of the desired value
of the parameter ; it just means that it cannot be found by the proposed method (the correspond-
ing examples can be provided). Thus, the convergence of the method is a sufficient (but not necessary)
existence condition for the desired coefficient .

By the properties similar to the properties of vector field rotation (see [20]), if  exists, then it is
unique (for centrally symmetric systems, a similar property is discussed in [19]).

Assume that the sequences of (2.2) converge for a given A. Then, to solve the main problem, compute
the mean value  of the function  along the found periodic trajectory  existing
in system (1.1) for  (this trajectory is described by the functions  and ):

(2.3)

Note that to compute the value , the value  found above is used.
Apply algorithm (2.1)–(2.3) to all values of A such that  (for the numerical implementation,

a step with respect to A is selected). Assuming that the sequences of (2.2) converge for all such values of A,
we obtain a dependence between the mean level h of the mechanical energy on steady-state oscillations
and the value of coefficient b. This dependence is parametrized by value A. In other words,

.

The monotonicity of the dependence  is not guaranteed and thus it is not guaranteed that the
dependence  is one-valued. If it is not one-valued, then each value of  can be taken as the desired
amplifying coefficient of the control signal; e.g., we can take the value with the broadest basin of attraction
of the corresponding cycle.

3. STABILITY AND BASIN OF ATTRACTION
The following assertion takes place providing possibility to check the stability of a cycle: if for A = A1

the derivative of the function  is negative, then, for , the cycle of system (1.1) passing through
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Fig. 1. Scheme of aerodynamic pendulum.
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the point  is attracting; if the derivative of the function  is positive for , then, for
, the cycle of system (1.1) passing through the point  is repelling. This assertion follows

from the properties of the vector field rotation.
To describe basins of attraction of cycles existing for various values of parameter b, apply method

(2.1)–(2.3) for all A such that  (for the numerical implementation, a step with respect to A is
selected). This yields dependence  describing cycles existing in system (1.1) for various values of
b. In particular, if the corresponding values of  coincide each other for more than one value of A then
more than one cycle exists for such a value  and unstable cycles bound basins of attraction of
orbitally stable cycles. If procedure (2.2) converges for all the corresponding values of A, then the descrip-
tion obtained this way is complete. In other words, the convergence of the method in a sufficiently broad
range of values of A is a sufficient condition for obtaining exhausting information on the basins of attrac-
tion of the constructed orbitally stable cycles.

Consider an example of the application of method (2.1)–(2.3), including the analysis of basins of
attraction of the constructed periodic solutions, to a particular mechanical system.

4. METHOD APPLICATION: EXAMPLE
Consider a heavy aerodynamic pendulum in a stationary horizontal airf low (see Fig. 1). Similar prob-

lems are considered in [21–23] in relation to the search of self-oscillating and autorotation modes of pen-
dulum systems in f low-energy conversion problems. Our example differs from the mentioned ones by the
orientation of the blade with respect to the holder and by the character of the location of the object’s center
of mass. In [24], the oscillation amplitude is maximized for a heavy pendulum with a viscous friction,
where the control is the location of a heavy point on the holder; the constructed control has a relay form,
and switchings occur if the sign of the angular coordinate or angular speed of the pendulum changes.

The aerodynamic pendulum is a rigid body that can rotate around a fixed horizontal axis O. It consists
of the holder OG and the blade, which is a plate orthogonal to the holder. The center of mass of the pen-
dulum coincides with point G. The pendulum is located in the gravitational field in the horizontal airf low.
The vector  of the f low velocity lies in the plane of oscillation of the pendulum.

In the sequel, the following notation is used:  is the rotation angle of the holder OG, counted from the
vertical axis, r is the length of the holder OG,  is the mass of the pendulum, and J is the pendulum’s
moment of inertia with respect to the axis of rotation.

Introduce the following kinematic characteristics of the motion:  is the dimensionless
angular speed of the pendulum, V is the value of the f low speed, U is the airspeed of point G, and

 is the instantaneous angle of attack (the angle between vector U and the
plate).

The aerodynamic action on the pendulum is described by the quasi-steady approach
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(see [25, 26]), where D is the drag force, L is the lift force,  is the air density, S is the reference area of the
plate, and  and  are the dimensionless coefficients of the drag force and the lift force.

The aerodynamic coefficients are approximated by the following functions which reflect their specific
properties:

It is assumed that the moment of value  is applied at hinge О. It can be treated as a relay
control torque. If T is a dissipative moment (i.e., ), then it can also be interpreted as dry friction in
the hinge.

In dimensionless variables, the equations of motion of the system can be represented by a system of
type (1.1), where angle  corresponds to variable x,  corresponds to variable y, and the dot denotes the
derivative with respect to the dimensionless time :

(4.1)

Further, we assume that p = 1. Since system (4.1) has a cylindrical phase space, it suffices to consider
 on the interval .

For , the pendulum has two equilibriums. Further, we consider a in this range. Due to the
actions of aerodynamic forces (in the case where b = 0), the lower equilibrium of the heavy pendulum is
displaced along the f low, the upper one is displaced against the f low, the fixed point  corresponding
to the upper equilibrium remains a saddle, and the fixed point  corresponding to the lower one is
asymptotically stable. If the value of b is different from zero, then the right-hand side of system (4.1) has
a discontinuity along line ω = 0. This leads to the following effect: on line ω = 0, in the punctured neigh-
borhood of each equilibrium , a special set  appears such that  for all points  of
this set.

Apply procedure (2.1)–(2.3) to find coefficient b providing the existence of an oscillation mode of a
pendulum with the prescribed mean (with respect to time) mechanical energy. For positive values of b,
such a problem can be interpreted as the description of the dependence of the mean energy of steady-state
oscillations on the dry friction coefficient in the axis of the pendulum. Note that, unlike the aerodynamic
pendulum which periodic motions are described in [27], this system is not centrally symmetric.

If there exists a cycle of system (4.1), then it encloses the equilibrium . According to the proposed
algorithm, we start from the auxiliary problem to find a cycle passing through the point , where

. For the numerical implementation of the method, the following criterion of the “practical”
convergence is used: if there exists an iteration such that the value  on this
iteration is less that the threshold value (in our case, the value 0.001 is selected), then we suppose that the
iteration process is completed.

For all values A for which sequences (2.2) converge, compute h along the numerically constructed
phase curves  and  using relation (2.3).

Figure 2 provides the dependence  obtained for the numerical realization of the method (2.1)–
(2.3) for the following two values of parameter a: a = 0.01 and a = 1. Figure 3 provides graphs  char-
acterizing the convergence speed of the method for several different values of h and a.

The dense branches of the curves in Fig. 2 correspond to families of attracting steady-state oscillations,
while the dotted branches correspond to families of repelling steady-state oscillations. In Fig. 2, the bifur-
cation values of parameter b are shown for the case where a = 1 (for other values of a, they can be intro-
duced in the same way). The following bifurcation occurs, while parameter b moves from the right to the
left through value : the attracting special set  surrounding the lower equilibrium shrinks to a
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Fig. 2. Dependence of value of h on coefficient b for a = 0.01 and a = 1. Dense curves denote families of attracting cycles,
while dotted curves denote families of unstable cycles.
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Fig. 4. Elements of phase portrait of system (4.1) for a = 1 and , numerically constructed by method (2.1) and
(2.2) (attracting cycle is denoted by bold dense curve, while repelling cycle is denoted by dotted curve) and by Runge–
Kutta method (this is denoted by thin dense curves).

1

�1

�

1

R

P

�1 �0

= −0.07b
point generating an orbitally stable cycle. For each arbitrarily small negative b there exist a new special set
 surrounding the isolated equilibrium ; however, it is a repelling set. All the region inside the gen-

erated cycle, including the set , but excluding the equilibrium itself, is a part of the basin of attraction
of the cycle. From the outside, the basin of attraction of the generated cycle is bound by the unstable cycle.
For  ( ), the attracting and repelling cycles merge with each other. Attracting cycles
with values  such that  are realized for negative values of coefficient b.

If an attracting cycle with values h such that  exists, then its basin of attraction is bounded
from inside by an unstable cycle. From outside, it is bounded by the phase trajectory passing through an
edge point of the special set . Such cycles are realized for positive values of coefficient b (the case of the
control simulating dry friction). For  ( ), the attracting and repelling cycles merge with
each other. For  ( ), the attracting cycle is destroyed, reaching the boundary of the spe-
cial set  surrounding the fixed point . The corresponding point on the curve  is denoted by F
(see Fig. 2). The values satisfying the inequality  correspond to pendulum rotations (not to oscilla-
tions).

Consider the behavior of system (4.1) for the case where a = 1 and the amplifying coefficient
. In Fig. 2, points P and R correspond to this case. Figure 4 displays the corresponding cycles

(the pairs of curves  and ) obtained by method (2.1) and (2.2) (the attracting one is shown
by the bold dense curve, while the repelling one is shown by the dotted curve) and the phase trajectories
of system (4.1) constructed by the Runge–Kutta method (shown by the thin dense curve) for .
We see that the results of numerical implementation of the new method are entirely coordinated with the
results of the direct numerical integration of the system.

Consider the behavior of system (4.1) for the case where a = 1 and the amplifying coefficient b = 0.14.
In Fig. 2, points K and M correspond to this case. Figure 5 displays the corresponding cycles obtained by
method (2.1)–(2.2) and the phase trajectories of system (4.1) constructed by the Runge–Kutta method.
The results of the numerical application of the new method are entirely coordinated with the results of the
direct numerical integration of the system.
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Fig. 5. Elements of phase portrait of system (4.1) for a = 1 and b = 0.14, numerically constructed by method (2.1) and
(2.2) (attracting cycle is denoted by bold dense curve, while repelling cycle is denoted by dotted curve) and by Runge–
Kutta method (this is denoted by thin dense curves).
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Fig. 6. Examples of iteration curves  and  for cycle K (a = 1).
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Fig. 7. Examples of reaching of cycle R from various initial-value conditions for case of one-switching controls.
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Figure 6 provides an example of the form of iterative approximations for cycle K, i.e., the curves
 and  for a = 1. The zero iteration is determined by the method proposed in [12]; it coin-

cides with the cycle of the mathematical pendulum.
Thus, to implement the desired program control for various values of h, the values of the amplifying

coefficient b such that  are to be used. Thus, to provide a possibility to implement the program
control, the restriction for the value of the control torque is to be greater than or equal to .
Assume that the exact instantaneous information about the current angle and angular speed of the pen-
dulum is always available and the restriction for the control coincides with , i.e., with  (for
the considered example). Then, the following strategy is preferable in order to achieve a neighborhood of
the program trajectory as soon as possible. Assume that the phase point corresponding to the initial-value
conditions is located inside (outside) the program cycle. First, we assign  ( ). Once the tra-
jectory  intersects the curve  or , the value of the amplifying coefficient b
is to be changed for b = . For a = 1, examples of the corresponding transitional processes are displayed
by the dotted curves in Fig. 7.

Thus, for a = 1, the data on the program values of the control torque and program trajectories obtained
by algorithm (2.1)–(2.3) are sufficient to reach the program mode with values  from
the wide range of initial-value conditions.

5. DISCUSSION OF RESULTS
Implementing method (2.1)–(2.3) numerically, we describe the dependence of the mean value of the

mechanical energy of steady-state oscillations of the aerodynamic pendulum on the amplifying coefficient
b of the relay control action. The stability properties of the found cycles are described. In particular, it is
clear from Fig. 2 that, under the considered relay control, attracting oscillation modes with relatively low
( ) and relatively high ( ) values of the mean energy can be implemented. Oscillations
with intermediate energy values are unstable under this kind of control. They divide basins of attraction of
orbitally stable periodic modes.

The considered example shows the efficiency of the proposed method for constructing periodic solu-
tions of a system of type (1.1), including the case of a discontinuous right-hand side. A significant differ-
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ence of the proposed method from the already known numerical-analytic iterative procedures for con-
structing periodic solutions (e.g., [15–18]) is the nonlinearity of the generating zero-approximation sys-
tem. Regarding the generation of oscillations of an autonomous system, the advantages of the proposed
method in comparison with known approaches are as follows: no transition to nonautonomous equations
is required (unlike [15, 16]), the presence of high harmonics in the program periodic solution has no a pri-
ori influence on the convergence speed (unlike projection methods), and it is possible to solve the problem
under specific restrictions on the control structure, e.g., under the condition that the control depends only
on the phase velocity (unlike [5, 6]).

Note that the value of parameter а affects the convergence speed and the fact of the convergence of
procedure (2.1) and (2.2) itself. Examples of the numerical implementation of the method show that the
iterative process (2.2) converges rapidly for sufficiently small values of a and near the merging points of
the cycles (see Fig. 3), i.e., in the cases where methods for finding periodic solutions based on direct
numerical integration work relatively slowly.

However, as a rule, the convergence of the method is lost once the values of а become sufficiently large.
The slowest convergence of method (2.1) and (2.2) and the absence of convergence are observed near the
bifurcation points corresponding to  and , i.e., in the case where the cycle is located close to
the special sets  or .

CONCLUSIONS
For dynamical systems with one degree of freedom, a numerical-analytic method for the construction

of a control is proposed such that the constructed control guarantees the existence of a steady-state oscil-
lation mode with the prescribed value of the mean mechanical energy. Unlike many other approaches, the
method is applicable for searching for a control depending only on the phase speed.

The method is based on the search for an amplifying coefficient of the control action (which is a varied
parameter of the model), providing the existence of a periodic trajectory passing through the given point
of the phase plane of the system. The orbital stability conditions are obtained for steady oscillations. The
advantages of the method compared with other numerical-analytic approaches applicable for similar
problems are described.

Using the problem on a heavy aerodynamic pendulum, we demonstrate the capabilities of the method,
provide results of the numerical simulation illustrating the convergence speed, and describe the range of
the parameters of the problem in which the method is preferable to the approach based on the direct
numerical integration of the system.
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