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Abstract—This paper suggests some algorithms for decomposing a system of Boolean functions into
subsystems of connected functions for representations such as truth tables (TTs), systems of disjunctive
normal forms (DNFs), and binary decision diagrams (BDDs). The connectivity of functions consists
of the presence of identical parts in the domains of functions from a given system. The algorithms are
heuristic and can be used in computer-aided synthesis systems for real-dimension problems with sev-
eral hundred functions, each having several tens of arguments. The experiments described below prove
the efficiency of this decomposition approach in the logic optimization of a system of Boolean func-
tions based on Shannon’s decomposition with the possible use of subfunction inversions.
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INTRODUCTION
Logical circuits are synthesized from library elements using the optimized two-level or multilevel rep-

resentations of systems of Boolean functions. In the literature, two-level representations (AND-OR) are
the ones involving disjunctive normal forms (DNFs), while multilevel representations are the ones involv-
ing different forms of functional decompositions [1–4]. The idea to employ the connectivity (common-
ality) of the domains of Boolean functions for multioutput combination circuits synthesis was proposed
long ago [5, 6]. The connectivity of incompletely defined Boolean functions described by the values sets
of Boolean variables was considered in the book [6]. As was demonstrated there, by extracting connected
functions it is possible to extend them to the completely defined ones; moreover, the common parts in
their domains correspond to subfunctions in the joint disjunctive and conjunctive decompositions.

Good connectivity of the functions has a significant influence on the appearance of identical structural
units (conjunctions, algebraic expressions, subfunctions, etc.) in the optimized two-level or multilevel
representations of functions, which are used to synthesize logical circuits in a certain technological basis.
The higher the connectivity of the functions the more likely their representations include more identical
subexpressions and the synthesized circuits have smaller complexity. As a matter of fact, the extraction of
connected functions is a logic optimization tool for the multilevel representations of systems of functions.
For the connected subsystems of functions, there are more efficient solutions of logic optimization prob-
lems, e.g., DNF optimization [2, 3], binary decision diagram (BDD) optimization [4, 7–9], and different
types of decompositions, e.g., joint functional decompositions [10]. In the Russian-language literature,
BDDs are also called binary solution diagrams, binary decision diagrams, binary decision diagrams, etc.
The BDD representations of Boolean functions correspond to the multilevel representations based on
Shannon’s decomposition [4].

This paper formulates the concept of connectivity of Boolean functions (and also connectivity up to
inversion) and develops extraction algorithms for the connected subsystems of functions with different
representations of systems of completely defined functions. The algorithms are heuristic and intended for
high-dimensional problems with several hundred functions, each having several tens of arguments, in the
systems whose representations have to be optimized. As was shown by the experiments on the extraction
of connected subsystems of functions, this procedure should be performed before BDD optimization,
which is currently the most widespread logic optimization method for synthesizing logical circuits from
library elements. Joint BDDs are preferable for some systems of functions, while separate ones are prefer-
able for the others [11]. By extracting all the connected functions we can integrate within the same sub-
system the functions that should be minimized based on joint BDDs.
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1. MAIN DEFINITIONS AND REPRESENTATIONS
OF SYSTEMS OF BOOLEAN FUNCTIONS

Consider a given system  of Boolean functions. Denote by 

the vector of all arguments , , …, . The characteristic set  of a component function  of a

system  is the set of all collections in the Boolean space on which the function  takes value 1. In
a similar way, denote by  the set of all collections on which a function  takes the value 0.

Hereinafter, the connectivity of Boolean functions is understood in the sense that some subdomains of
their domains coincide with each other. Denote by  the cardinality of a set А. A system  of functions

is called -connected if , where

In other words, there are p collections in the n-dimensional Boolean space on which all component func-
tions  of the system simultaneously take value 1 or 0. Obviously, for a given system of Boolean func-
tions of n variables, the parameter  specifies the maximum value of p. If a system of functions is

-connected, then it is also -connected for all q such that 0 < q < p. The value  will be called the
weight of connectivity for a system of functions. For a single Boolean function of n variables, the weight of
connectivity is the sum of the cardinalities of the sets  and ; to put it differently, this is the

number  of all elements of the Boolean space constructed over the variables of the Boolean vector
. The elements of this space are the n-component collections (vectors)  of zeros and

unities.

For a system  of functions, the measure (share) of connectivity  is the ratio

As easily seen, the measure of connectivity is bounded:

If a system of functions contains a single component function  (or all component functions coincide
with each other), then . If a system of functions consists, e.g., of a pair { , } of mutually
inverse functions, then . Clearly, this is not the only example of the systems of functions with
the zero measure of connectivity; such systems will be called unconnected. Some examples will be given
below.

Introduce an m-component Boolean vector , hereinafter called the polarization

vector for the component functions . Let  if a function  is considered, and let  if the
inversion  of  is considered. A system  of functions is called -connected if there exists at least

one polarization vector  for which the corresponding system of functions is -con-

nected. The concept of -connectivity matches the standard connectivity of functions up to the inversion
of the component functions of a system.

The systems of Boolean functions may have different representations. In what follows, the matrix rep-
resentations—truth tables (see Table 1) and systems of DNFs (see Table 2)—as well as the representations
with algebraic formulas defining Shannon’s decompositions (BDD representations) will be used. For the
system of functions described by Table 1, the measure of connectivity is , because the
values of all four component functions are not simultaneously equal to 1 or 0 on any collection of values
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Table 1. System of completely defined Boolean functions

      

0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0
0 1 0 0 0 0 1 1
0 1 0 1 1 1 0 0
0 1 1 0 0 1 1 1
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 1 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 1 0 1 0

1x 2x 3x 4x 1f 2f 3f 4f

Table 2. System of DNFs of Boolean functions

      

– 0 1 – 1 0 0 0
0 1 1 – 0 1 1 0
– – – 1 1 0 0 0
1 0 1 – 0 1 0 0
1 1 0 – 0 0 1 1
– 1 – 0 0 0 0 1
– 1 1 1 0 0 1 0
0 – – 1 0 1 0 0
– – 0 0 0 0 1 1

xT fB

1x 2x 3x 4x 1f 2f 3f 4f
of the variables vector . As will be demonstrated below, this system actually contains sub-
systems of connected functions.

In the matrix representation, the system of DNFs (Table 2) is defined by a pair of matrices as follows:
the rows of the ternary matrix  represent the elementary conjunctions (the ternary vectors–intervals of
the Boolean space [3]), while the unit values of the elements in the Boolean matrix  indicate the entries
of the corresponding conjunctions into the DNFs of the functions:

=x 1 2 3 4( , , , )x x x x

xT
fB
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2 3 4;D x x x
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1 2 3 1 2 3 1 4;D x x x x x x x x

= ∨ ∨ ∨3
1 2 3 1 2 3 2 3 4 3 4;D x x x x x x x x x x x
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Note that this system of DNFs describes the same system of Boolean functions as Table 1. If an elementary
conjunction does not contain q literals, then its ternary vector has q unknown elements (“–”). By defini-
tion, a ternary vector with q unknown elements has weight . In other words, the weight of a ternary vector
is the number of all binary vectors obtained by replacing its unknown elements with elements 0 or 1.

The systems of DNFs are often minimized [2, 3], in order to reduce the number of elementary con-
junctions and (or) the number of literals in conjunctions. In the resulting minimal systems of DNFs, ele-
mentary conjunctions (ternary vectors) have different relations with each other. In what follows, the rela-
tion of orthogonality will be used. If all ternary vectors of a matrix  are pairwise orthogonal, then the
system of DNFs is called orthogonalized [12]. Ternary vectors  and  are

orthogonal if there exists at least one component i ∈ {1, …, n} such that  and  are well-defined
and not equal to each other. For example, the ternary vectors a = (0 – 10) and b = (–100) are orthog-
onal since the orthogonality condition holds for i = 3:  and . If ternary vectors are orthog-
onal, then the conjunction (logical product) of the corresponding elementary conjunctions is 0:

.
The BDDs are the graph representations of Boolean functions. As was shown in [4], such representa-

tions mean that each component function  is defined as a pair of orthogonalized DNFs. One such
DNF determines the unit-value domain  of a component function, while the other determines the

zero-value domain . For a system of functions, the BDD representation is compact because defining
a graph is not as cumbersome as listing all paths from root vertices to the leaf vertices 0 and 1. For graph
simplification the leaf vertices are often duplicated. Each path from a root vertex of a BDD labeled by a
function  to the leaf vertex 1 is identified with the elementary conjunction containing the arcs-literals

 and  on this path. In addition, an arc labeled by 0 is identified with the negative literal ; an arc
labeled by 1, with the positive literal ; and all paths between the above vertices, with the disjunction of
the resulting elementary conjunctions that forms the orthogonalized DNF . The paths from a root ver-

tex  to the leaf vertex 0 define the orthogonalized DNF .

The BDD in Fig. 1 represents the same system of Boolean functions as Tables 1 and 2. Next, Tables 3–6
give the orthogonalized DNFs obtained by the graph’s BDD representation (Fig. 1). Each functional ver-
tex of the BDD is identified with Shannon’s decomposition formula. For example, the functional vertex

 is identified with the formula ; the functional vertex , with the formula
; etc. Therefore, functional vertices are often not indicated on graphs, while labels 0 and 1

on the arcs are replaced by different lines. For example, if an arc is labeled 0, then the corresponding line
is a dashed line [8, 9]. The entire BDD graph is identified with the 13 formulas (1.1)–(1.4), which incor-
porate 29 logical disjunctions and conjunctions:

(1.1)

(1.2)

(1.3)

(1.4)

2. CONNECTIVITY CHECK FOR A SYSTEM OF BOOLEAN FUNCTIONS

Problem 1. Given a system  of Boolean functions and a parameter p, where

, check the -connectivity of .

Problem 2. Given a system  of Boolean functions, a polarization vector

, and a parameter p, where , check the -connectivity of .
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Fig. 1. BDD representation for system of Boolean functions.
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If the functions of this system are defined by -bit Boolean vectors of their values on all collections in
the Boolean space (i.e., by the column vectors of their values in truth tables), the connectivity of the sys-
tem can be successfully checked using the technique of Boolean calculations suggested in [13]. For the
subsystem of functions defined by Table 7, the -connectivity check includes the following operations:
(1) the module 2 addition (XOR) of the column vectors describing the values of these functions and
(2) the calculation of the number of unit values in the resulting vector. The -connectivity check requires
the preliminary inversion of those column vectors of system functions that correspond to the zero com-
ponents in the polarization vector.

Note that in the truth table the Boolean function is identified with the full DNF (FDNF), which con-
tains the full elementary conjunctions that are mutually orthogonal.

The next subsections will illustrate the solution of Problems 1 and 2 by an example of the subsystems
of a system of functions defined by the truth table (Table 1), the DNF (Table 2), and the BDD represen-
tation (Fig. 1 and formulas (1.1)–(1.4)).

2.1. Connectivity Check for Systems of DNFs of Functions

If functions are defined by a system of DNFs, Problem 1 is restated as follows.

2n

pS

α
pS
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Table 3. Function  defined by orthogonalized DNFs

DNF    

– 0 0 0 0
– 1 – 0 0
– 1 – 1 1
– 0 1 – 1
– 0 0 1 1

1f

1x 2x 3x 4x 1f

1
0
fD

1
1
fD
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Table 4. Function  defined by orthogonalized DNFs

DNF    

1 0 0 – 0
0 0 – 0 0
0 1 0 0 0
1 1 – – 0
1 0 1 – 1
0 1 1 – 1
0 0 – 1 1
0 1 0 1 1

2f

1x 2x 3x 4x 2f

2
0
fD

2
1
fD

Table 5. Function  defined by orthogonalized DNFs

DNF    

– 0 1 – 0
– 0 0 1 0
0 1 0 1 0
1 1 1 0 0
0 1 1 – 1
– 0 0 0 1
1 1 0 – 1
0 1 0 0 1
1 1 1 1 1

3f

1x 2x 3x 4x 3f

3
0
fD

3
1
fD

Table 6. Function  defined by orthogonalized DNFs

DNF    

– 0 1 – 0
0 1 – 1 0
1 1 1 1 0
– 0 0 1 0
1 1 0 – 1
0 1 – 0 1
1 1 1 0 1
– 0 0 0 1

4f

1x 2x 3x 4x 4f

4
0
fD

4
1
fD
Problem 1a. Given a system of DNFs  representing a system of Boolean func-

tions  of n variables, check the -connectivity of .
With the DNF representation of a system of functions on the general set of elementary conjunctions,

the -connectivity check for this system should be preceded by its orthogonalization and general orthog-
onalization. The corresponding algorithms were described in [12] (orthogonalization) and in [14] (general
orthogonalization).

Now, perform the orthogonalization of the system of DNFs (Table 2) for obtaining its orthogonalized
form (Table 8), in which all pairs of ternary vectors are orthogonal. Orthogonalized DNFs are more com-
pact than truth tables; in the current example, Table 8 contains 12 rows against 16 rows of Table 1. How-
ever, the minimal DNFs (Table 2) are even more compact than the orthogonalized systems of DNFs:

( ) = ( ( ), , ( )D x x x…

1 )mD D

( )=f x x x…

1( ) ( ( ), , )mf f pS f x( )

pS
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Table 7. Subsystems of Boolean functions

     

0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 0
0 0 1 0 1 0 1 1
0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1
0 1 0 1 1 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1
1 0 0 1 1 0 1 1
1 0 1 0 1 1 1 0
1 0 1 1 1 1 1 0
1 1 0 0 0 0 0 1
1 1 0 1 1 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 1 0 1 1

Weight of connectivity 11 5
Measure of connectivity 11/16 5/16

1x 2x 3x 4x 1f 2f 1f
2

f

Table 8. Orthogonalized system of DNFs

Weight of ternary vector    

2 0 – 0 0 0 0 1 1
2 1 – 0 0 0 0 1 1
2 0 0 – 1 1 1 0 0
1 0 1 0 1 1 1 0 0
2 1 0 1 – 1 1 0 0
1 0 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0 0
1 0 1 1 0 0 1 1 1
1 0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1 1
1 1 1 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0

1x 2x 3x 4x 1f 2f 3f 4f
Table 2 contains 9 rows only. For each ternary vector (elementary conjunction), the right-hand part of
Table 8, i.e., the vector of entries of all conjunctions in the DNF, is 0. Hence,  and the system of
functions is unconnected. For the orthogonalized form (like for truth tables or the systems of FDNFs),
the weight of -connectivity can be easily found for the subsystems of functions directly form (Table 9).
In the current example, there exist no collections in the domain of functions on which all these functions
are 0; nonetheless, the calculation of this domain is important for the -connectivity check. For extract-

ing the -connected subsystems, we need the domains in which all component functions are 0. This
domain can be large, and its explicit representation (as a DNF) can be difficult due to the complexity of
the corresponding DNF. However, the orthogonalized forms possibly include many elementary conjunc-

=max 0np

max
np
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pS

α
pS
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 58  No. 2  2019



174 BIBILO

Table 9. Subsystems of orthogonalized system of DNFs

Weight of ternary vector      

2 0 – 0 0 0 0 0 1
2 1 – 0 0 0 0 0 1
2 0 0 – 1 1 1 1 0
1 0 1 0 1 1 1 1 0
2 1 0 1 – 1 1 1 0
1 0 0 1 0 1 0 1 1
1 1 0 0 1 1 0 1 1
1 0 1 1 0 0 1 0 0
1 0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1 1
1 1 1 1 0 0 0 0 1
1 1 1 1 1 1 0 1 1
Weight of connectivity 11 5

Measure of connectivity 11/16 5/16

1x 2x 3x 4x 1f 2f 1f
2

f

Table 10. Minimal disjunctive basis for system of DNFs

   

4 – – 00

5
0 0 – 1
0 1 0 1
1 0 1 –

2
0 0 1 0
1 0 0 1

1 0 1 1 0

1 0 1 1 1

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

( )iS П iП 1x 2x 3x 4x

1П

2П

3П

4П
5П
6П
7П
8П
tions, which makes them cumbersome too. For reducing the number of elementary conjunctions, a rea-
sonable approach is to define a system of functions on the set of pairwise orthogonal DNFs  (disjunctive
basis). In [14] this representation was called the general orthogonalized form; among other results, the
cited book solved the general orthogonalization problem for a system of DNFs using the multiplication
and inversion of the DNFs associated with the unit and zero value domains of its component functions.

For the system of DNFs in Table 2, the minimal disjunctive basis (i.e., the one with a minimal number
of DNFs) includes the eight DNFs ; see Table 10. The matrix representation of the general orthogo-
nalized form

iП

iП

= ∨ ∨ ∨ ∨1 2 3 6 7 8;f П П П П П

= ∨ ∨2 2 4 5;f П П П

= ∨ ∨ ∨ ∨3 1 4 5 7 8;f П П П П П
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 58  No. 2  2019



DECOMPOSING A SYSTEM OF BOOLEAN FUNCTIONS 175

Table 11. General orthogonalized representation of system of DNFs

   

4 0 0 1 1

5 1 1 0 0

2 1 0 0 0

1 0 1 1 1

1 1 1 1 0

1 1 0 1 1

1 0 0 0 1

1 1 0 1 0

( )iS П iП 1f 2f 3f 4f

1П
2П
3П
4П
5П
6П
7П
8П

Table 12. Connectivity of subsystems for system of DNFs with general orthogonalized representation

  

4 0 0 0 1

5 1 1 1 0

2 1 0 1 1

1 0 1 0 0

1 1 1 1 0

1 1 0 1 1

1 0 0 0 1

1 1 0 1 1

Weight of connectivity 11 5
Measure of connectivity 11/16 5/16

( )iS П iП 1f 2f 1f
2

f

1П
2П
3П
4П
5П
6П
7П
8П
of the system of DNFs (Table 2) is given in Table 11. In addition, Table 10 shows the weights of DNFs

defined as follows. The weight  of a DNF  is the number of full elementary conjunctions in the

FDNF equal to the DNF . For example, the weight of the DNF  is 4, since the DNF  con-
tains one elementary conjunction representing four full elementary conjunctions:

The weights of other DNFs from Table 10 can be calculated by analogy. If the general orthogonalized form
is successfully obtained for a system of functions, then the -connectivity check for its subsystems causes
no difficulty, being similar to the connectivity check for the orthogonalized form. For example, Table 12
defines two subsystems, and their weight of connectivity is easily calculated. Recall that, in this example,
all component functions do not take value 0 simultaneously on any domain in the Boolean space of their
input variables. Thus, the inversion of a component function can be constructed using the column of its

values on the intervals of the Boolean space of the DNF .

= ∨ ∨ ∨4 1 4 6 7f П П П П

( )
iS П iП

iП 1П =1
3 4П x x

= = ∨ ∨ ∨1
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4.П x x x x x x x x x x x x x x x x x x

pS

iП
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Table 13. Connectivity of subsystem { , } obtained by BDD representation of functions ,  (Fig. 1)

DNF     

 

1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 1 – 0 0 0

 0 1 1 0 0 1

 
1 1 – 1 1 0
0 0 1 0 1 0
1 0 0 1 1 0

 

0 1 – 1 1 1
1 0 1 – 1 1
0 0 1 1 1 1
0 0 0 1 1 1

Weight of connectivity 11
Measure of connectivity 11/16

1f 2f 1f 2f

1x 2x 3x 4x 1f 2f

1
0
fD 2

0
fD

1
0
fD 2

1
fD

1
1
fD 2

0
fD

1
1
fD 2

1
fD

Table 14. Connectivity of subsystem { , } obtained by BDD representation of functions ,  (see Fig. 1)

DNF     

 

1 0 0 0 0 1
0 0 0 0 0 1
0 1 0 0 0 1
1 1 – 0 0 1

 0 1 1 0 0 0

 
1 1 – 1 1 1
0 0 1 0 1 1
1 0 0 1 1 1

 

0 1 – 1 1 0
1 0 1 – 1 0
0 0 1 1 1 0
0 0 0 1 1 0

Weight of connectivity 5
Measure of connectivity 5/16

1f
2

f 1f
2

f

1x 2x 3x 4x 1f
2

f

1
0
fD 2

1
f

D

1
0
fD 2

0
f

D

1
1
fD 2

1
f

D

1
1
fD 2

0
f

D

2.2. Connectivity Check for Systems of Functions with BDD Representations
The logical operations over Boolean functions with BDD representations were described in [4]; they

involve the universal operation for obtaining the orthogonalized DNF of a system of two functions using
the orthogonalized DNFs of the functions participating in an operation. This approach can be adopted for
constructing the orthogonalized form of a subsystem of functions. In addition, it is easy to take into
account the polarization vector and inversion of a function in subsystem design.

The orthogonalized form of a subsystem is obtained from the orthogonalized forms of its component
functions through the multiplication of  by , where .

Calculate the orthogonalized form of the subsystem  by multiplying the corresponding DNFs.

The orthogonalized form is described by Table 13. For the subsystem { , }, we should consider

α
if

D α
jf

D α ∈ {0,1}
1 2{ , }f f

1f 2f
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 and ; in this case, the representation of this subsystem with four pairwise orthogonal
DNFs is easily derived (see Table 14).

The data structures and efficient algorithms of logical operations over them [15] can be used for the
software implementation of the BDD representations of different systems of Boolean functions. Note that
the operation ◊ (the merging of two BDDs, see [15, p. 259]) is the basic operation for the connectivity
check of a subsystem in the BDD representation within a system of functions using their separate BDD
representations.

3. EXTRACTION OF CONNECTED SUBSYSTEMS:
PROBLEM STATEMENT AND ALGORITHM

Problem 3. Given a parameter  ( ) and a system  of Boolean func-
tions of n variables, decompose  into the minimal number of -connected subsystems.

The exact solution of Problem 3 can be reduced as follows:
—extracting all maximal -connected subsystems of functions in terms of cardinality;
—constructing the Boolean entry matrix R in which each row describes the entry of a component func-

tion into the corresponding subsystem;
—obtaining the smallest row coverage of the matrix R (the corresponding methods were considered in

detail in [3]);
—ensuring the mutual non-intersection of the subsystems in the shortest coverage by eliminating some

functions from the appropriate subsystems.
The exact solution of Problem 3 can be found for the systems of Boolean functions consisting of a finite

number of component functions of at most 20 variables. Consider some algorithms for solving Problem 3
with different representations of Boolean functions that can be implemented in logic optimization systems
(e.g., FLC [16]).

The heuristic algorithm in the solution of Problem 3 consists in the sequential (iterative) formation of
the next subsystem of -connected functions using the current (residual) system of functions. At the first
iteration, the current system of functions coincides with the functions of the original system.

Each iteration includes three steps as follows.

Step 1. Study  unordered pairs { }, i ≠ j, , of functions in the current system and find a
pair L of functions that are -connected with a maximal number of the parameter q, where ; if there
are several such pairs, then choose any of them (the heuristic EVR1). Otherwise (the pair L does not exist)
the solution of Problem 3 is the subsystems each of which includes only one function from the current
system.

Step 2. From the functions of the pair L (see Step 1) construct a subsystem of two connected functions
by eliminating this pair from the current system, and sequentially supplement this subsystem with the
functions obtained using the heuristic EVR2 as follows.

The heuristic EVR2: “from the set of all functions of the current system choose the one with the max-
imal value of the parameter q for the resulting -connected subsystem. If there are several such functions,
choose any of them”.

Step 3. If none of the functions of the current system can be included in the resulting -connected
subsystem ( ) without violating the constraint , then stop subsystem formation, choose all func-
tions beyond the current system as the new current system and go back to Step 1 (form the next subsys-
tem).

Step 4. Terminate subsystem formation when all functions of the current system are included in the
resulting subsystems (i.e., when the current system becomes empty). End of the algorithm.

The heuristic algorithm reliably gives the exact solution of Problem 3 in two cases as follows: (1) all
functions of the original system form a subsystem of connected functions; (2) each of the subsystems of
connected functions contains only one function of the original system.

Problem 4. Given a parameter  ( ) and a system  of Boolean func-

tions of n variables, decompose  into the minimal number of -connected subsystems.
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Table 15. Weights of connectivity for subsystems consisting of pairs of functions

Component functions

11 4 1

5 4

13

2f 3f 4f

1f
2f
3f
Obviously, Problem 3 is a special case of Problem 4. The solution of Problem 4 should be found in the
class of all connected subsystems of functions up to inversion.

The exact solution of Problem 4 is similar to that of Problem 3 and requires knowledge of all maximal
connected subsystems (taking into account the inversions of functions). Each time this leads to the
exhaustive search of  polarization vectors  for each resulting subsystem composed
of  functions, which is computationally intensive for real problems with tens or hundreds of functions
in a system.

The heuristic algorithm for solving Problem 4 has the following distinctions from its counterpart for
Problem 3.

The current system of functions is formed by some functions of the original system and also by their
inversions.

At Step 1, each of the functions  is considered in its direct ( ) and also inverse ( ) forms, with the
exhaustive search of all , , possible unordered pairs of functions in the current system (the

pairs { , }, { , }, and { , } are eliminated from consideration); the goal is to find a pair of
-connected functions with the maximal value  of the parameter q, . If there are several such

pairs, choose any of them (the heuristic EVR3). Form a polarization vector  for the subsystem
of two functions.

At Step 2, the next function from the current system is added in the resulting subsystem using the heu-
ristic EVR4 as follows.

The heuristic EVR4: “from the set of all functions (and their inversions) of the current system choose
the one (or its inversion) with the maximal value of the parameter q for the resulting -connected sub-
system. If there are several such functions, choose any of them”.

At each iteration, the heuristics EVR1 and EVR2 allow us to find a subset of connected functions of
the maximum possible cardinality, thereby reducing the number of subsystems that are -connected
(Problem 3). The same property applies to the heuristics EVR3 and EVR4 used for solving Problem 4.

4. EXTRACTION OF -CONNECTED SUBSYSTEMS OF FUNCTIONS: AN EXAMPLE

It is required to decompose the system of functions (Table 1) into the minimal number of -con-
nected subsystems of functions (p = 11).

Iteration 1. Form the first subsystem of connected functions.
Step 1. The weights of connectivity for different pairs of functions in this system are given in Table 15.

The pair of functions with the maximal parameter value  is { , }.

Step 2. Form the first -connected subsystem { , }, sequentially supplementing it with other
functions. As can be easily seen, the functions of the subsystem { , , } take value 1 on the collection
1101 only (q = 1), and hence this subsystem is -connected. Add the function  in the subsystem { ,

} and check for which value of the parameter q it satisfies the -connectivity. There are only three col-

lections on which all functions of the subsystem { , , } take value 1 or 0; thus, the subsystem { ,

2 im
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Table 16. Weights of connectivity for subsystems consisting of pairs of functions (with function inversions)

Component functions

11 5 4 12 1 15

5 11 12 4 15 1

5 11 4 12

11 5 12 4

13 3

3 13

2f 2
f

3f 3
f

4f 4
f

1f
1

f
2f
2

f
3f
3

f

, } is -connected and, obviously, not -connected. This completes the formation of the first sub-
system. Further the subsystem { , } is considered as the current subsystem of functions.

Iteration 2. Form the second subsystem of connected functions.

Step 1. The subsystem { , } is -connected. End of the algorithm.
Now, perform BDD optimization separately for each of the resulting subsystems. The joint BDD for

{ , } (see Fig. 2) is described by the five equations (4.1) and (4.2), which contain 12 logical operations
of disjunction and conjunction:

(4.1)

(4.2)

The joint BDD for { , } (see Fig. 3) is described by the seven equations (4.3) and (4.4), which con-
tain 15 logical operations of disjunction and conjunction:

(4.3)

(4.4)

5. EXTRACTION OF -CONNECTED SUBSYSTEMS OF FUNCTIONS: AN EXAMPLE

It is required to decompose the system of functions (Table 1) into the minimal number of -con-
nected subsystems of functions (p = 11).

Iteration 1. Form the first subsystem of connected functions.
Step 1. The weights of connectivity for different pairs of functions in this system are given in Table 16.

The pair of functions with the maximal parameter value  is { , } and the polarization vector is

. Adding any function from the set { , , , } in the subsystem { , } will not
make the supplemented subsystem -connected as desired.

Iteration 2. Form the second subsystem of connected functions.

Step 1. The second subsystem is { , }, which satisfies the -connectivity with the polarization
vector . End of the algorithm.

As a result of the BDD optimization of the original system (without extracting the subsystems of con-
nected functions) and its synthesis from library CMOS elements, the total number of transistors in the
logic circuit was 68. The decomposition of the original system into two subsystems with the subsequent
BDD optimization of these subsystems [4] (see Figs. 2, 3) reduced the total number of transistors in the

logic circuit to 66. Note that the decomposition into the subsystems { , } and { , } of connected
functions with their BDDI optimization [17] yielded the best solution—a logic circuit with 62 transistors.
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Fig. 2. BDD representation for subsystem

{ , } of Boolean functions.
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Fig. 3. BDD representation for subsystem

{ , } of Boolean functions.
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(Binary Decision Diagram with Inverse (BDDI) cofactors [17] is a representation of systems of Boolean
functions based on Shannon’s decompositions with the possible use of subfunction inversions.)

6. RESULTS OF A NUMERICAL EXPERIMENT
A numerical experiment was conducted to study how the extraction procedure of connected subsys-

tems of functions affects the complexity of the resulting logic circuits (i.e., their area).
For this purpose, some systems of functions were taken from the collection of test examples [18]. For

each of them, the truth table was constructed in the SDF format using FLC [16]. Three circuit versions
were synthesized for each example based on different preliminary logic optimization programs as follows.

Version 1. Joint BDDI optimization, the conversion of the minimized BDDI representation to the
VHDL description and circuit implementation.

Version 2. Separate BDDI optimization, the conversion of the minimized BDDI representation to the
VHDL description and circuit implementation.

Version 3. The extraction of connected subsystems of functions, joint BDDI optimization of each sub-
system, elimination of a hierarchical description, conversion to the VHDL description, and circuit imple-
mentation.

The connected subsystems were formed using almost the same parameter values 

expressed in % to the total number ( ) of all collections in the corresponding Boolean space. For the sys-
tem P82, % (see Table 17), which meant that the functions of the connected subsys-
tem took the same values on  collections in the Boolean space (here  denotes the
least integer that is greater or equal to ). For this example, n = 5 and the number of all collections in the
Boolean space is 32.

The joint BDDIs were constructed in BDD_Builder [17] using the heuristic choice of the next variable
in the decomposition as the one with the minimal number of different subfunctions (up to their inver-
sions). For version 2, BDDIs were constructed in FLC using a combined approach—a successive execu-
tion of the extraction procedure of connected subsystems, with further implementation of strategies such
as the BDDI optimization of the project’s leaves and hierarchy elimination, and the final conversion of
the resulting optimized representations to the VHDL descriptions. For all versions, the logic circuits were

( )ρ …

1, ,n mf f

2n

( ) = 60ρ …

1, ,n mf f
= × =  0.6 32 20p   a

a
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Table 17. Experimental results

Example

Parameters of
system of functions

Version 1.
Joint BDDIs

Version 2. 
Separate BDDIs

Version 3.
Decomposition into subsystems of connected 

functions and joint BDDIs for subsystems

n m  
%

Number of subsystems 
of connected functions

P82 5 14 19988 18481 60 2 21282
Z5XP1 7 10 18442 19296 50 1 18665

M2 8 16 45064 46532 60 1 45064
M3 8 16 52580 58456 60 3 52781

ROOT 8 5 26109 27113 65 4 26092
ADDM4 9 8 80782 77210 55 3 87154
MP2D 11 14 17471 17666 60 1 18018
ADD6 12 7 12806 20518 55 6 21929

T3 12 8 17276 17170 60 4 16941
TIAL 14 8 255531 441523 60 5 295043
B12 15 9 18358 16266 55 2 17934

INTB 15 7 273532 248338 55 3 221688
M181 15 9 18849 16344 60 2 17549
IN0 15 11 94620 93655 60 3 130706
B2 16 17 192655 313925 60 1 192655
Number of best solutions 7 5 – – 5

ASICS ASICS ( )ρ …

1, ,n mf f
ASICS
synthesized in LeonardoSpectrum [19] from library CMOS elements using VHDL descriptions with the
same synthesis settings.

The experimental results are illustrated in Table 17 with the following notations: n as the number of
variables; m as the number of functions in the system; and  as the area of the logical circuit expressed
in the conditional units of area of its logical elements. The best solutions—the circuits of the minimal
area—are set in bold in Table 17. In some cases, a single subsystem of connected functions was formed for
version 3 (the test examples Z5XP1, M2, MP2D, B2), while the area of the logical circuit was changed in
comparison with version 1. This meant that some functions of the original system were inverted (see the
example Z5XP1), and the synthesized circuit differed from version 1.

As indicated by the numerical experiment with the above collection of test examples, the extraction of
connected subsystems can be an efficient procedure in the case of the logic optimization of multilevel
BDDI representations (the subsequent synthesis produced logical circuits covering a smaller area). If the
functions of a system are strongly connected, the best result is obtained by the logic optimization with joint
BDDIs; and if they are weakly connected, with separate BDDIs. The advantages of decomposing a system
of functions into subsystems of connected functions rely on these characteristics of the extracted subsys-
tems of functions. Furthermore, the numerical experiment showed that in practice the corresponding
extraction programs need to specify an appropriate value for the measure of connectivity, and this issue
should be studied separately.

CONCLUSIONS

The logic optimization of multilevel representations for the high-dimensional systems of Boolean
functions is a topical problem that arises in the course of reducing the total area of all functional blocks of
very-large-scale integration circuits. A smaller area (fewer transistors in the circuits) has a positive effect
on the power saving of logical circuits. In many cases, the extraction of subsystems of connected functions
with further optimization of the BDDI representations of subsystems actually decreases the complexity of
functional descriptions, thereby reducing the area and power consumption of the logical circuits synthe-
sized using the optimized functional descriptions.

ASICS
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