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Abstract—In recent years, the widespread TCP/IP computer network model has been replaced by the
software-defined network model, where the control plane is separated from the data plane and is log-
ically centralized. The new model requires a revision of traditional network control protocols.
One group of such revised protocols consists of multicast routing protocols. In this paper, the multicast
routing protocols used in traditional TCP/IP networks are analyzed, and their basic disadvantages and
difficulties in their application in software-defined networks are revealed. Multicast routing algo-
rithms that use the capabilities of software-defined networks and ensure the optimization and reliabil-
ity of routes in multicast routing are described. These algorithms are exempt from the drawbacks of tra-
ditional networks. The proposed algorithms are implemented as an application for the RunOS con-
troller. This experimental study shows that the delays due to the use of the proposed algorithms for
restructuring routes satisfy the requirements of telecommunications operators of large regional
networks.
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INTRODUCTION
Multicast routing is an efficient means of transmitting data from a single server to a group of clients.

In multicast routing, the packets sent to different clients are duplicated by certain network devices in the
process of transmission rather than by the sender, as is the case in unicast routing. This approach allows
us to reduce the traffic in the network compared with unicast routing when the server has to send the same
packets to each client. There is a variety of applications in which such a mechanism is required. For exam-
ple, these are online broadcasting, internet TV, video conferences, and distribution of large files.

Presently, the architecture of computer networks is changing. The traditional TCP/IP architecture is
replaced by the software-defined network (SDN) architecture [1]. In the opinion of the leading network
hardware manufactures [2–4], nowadays SDNs form one of the most promising directions of the network
industry. In the context of the current paper, the most important aspect of SDNs is their centralized net-
work control, which provides a global view of the topology and state of the network. In turn, this opens
new opportunities for routing with regard to constructing optimal routing trees taking into account the
network load.

The existing solutions for multicast routing in traditional networks use routing trees produced by pro-
tocols as such Routing Information Protocol (RIP) [5] or Open Shortest Path First (OSPF) [6] on the net-
work layer (L3) and STP (Spanning Tree Protocol) [7] on the data-link layer (L2). The application of cer-
tain route optimization criteria on one layer (e.g., the network layer) can contradict the criteria used by
the protocol on another layer, e.g., the data-link layer. In the TCP/IP architecture, routing on the network
and data-link layers is separated from each other and not coordinated with each other. It may turn out that
the minimum weight tree on the layer L3 cannot be fully implemented because the STP closed the
required ports on the L2 layer.

The SDN technology solves this problem by enabling the SDN controller to configure the routing tree
on layers L3 and L2 consistently. The SDN does not use devices such as routers. The controller “sees” the
network topology directly on layer L2. This makes it possible to overcome the routing problem indicated
above, which is inherent in traditional networks by using a specific route optimization criterion for
each group.
407



408 PETROV, SMELIANSKY
Since the SDN controller is aware of all changes in the state of the network devices, communication
links, or ports, new opportunities for designing fault-tolerance mechanisms open up. Such a mechanism
makes it possible to use various algorithms for reconstructing multicast routing trees when the group state
changes (new clients joining the group or leaving it) or when the network topology changes.

In this paper, we describe algorithms for multicast routing in SDNs that ensure the optimization and
fault tolerance of multicast traffic. These algorithms make it possible to use different optimization criteria
for different groups. To this end, we analyze the existing multicast routing algorithms used both in tradi-
tional networks and in SDNs and discuss their drawbacks. We consider the following optimization criteria
of multicast routing in SDNs: minimization of the distance from the server to the clients, maximization
of capacity, and minimization of the network link load. In this paper, we describe an algorithm ensuring
the fault tolerance of multicast routing, i.e., an algorithm for updating the group tree while preserving its
optimality under the changing group state and network topology. We also present an algorithm for mini-
mizing the total number of rules installed on switches.

The proposed algorithms were implemented in an application for the RunOS controller [8]. The exper-
imental study showed that the delays due to route reconstruction satisfy the requirements of telecommu-
nications operators of large regional networks.

The paper is organized as follows. Section 1 contains the analysis of the existing algorithms of multicast
routing in the traditional and software-defined networks. In Section 2, the problem is formally stated. In
Section 3, we consider the construction of multicast routing trees. In Section 4, an implementation of the
proposed algorithm for the RunOS SDN controller is described. Section 5 contains the results of testing
this implementation.

1. MULTICAST ROUTING

1.1. Multicast Routing in Traditional Networks

One of the standards of multicast routing on the network layer is the Protocol Independent Multicast–
Sparse Mode (PIM-SM) [9]; in this protocol, the routing tree is the shortest path tree from the server to
the clients. The routing tree is a rooted tree in which the root is at the server, the leaves are at the clients,
all other vertices correspond to routers, and each edge corresponds to a physical network link.

A disadvantage of PIM-SM is that it does not build routing trees that are optimal in terms of the num-
ber of edges [9]. The routing trees produced by this protocol can have a larger number of edges. As a result,
the traffic will use a greater number of physical network links and take away a part of the network capacity.

The number of links in multicast routing is minimized by constructing the Steiner tree [10]. This prob-
lem is formulated as follows: given a weighted graph  and a set of vertices , construct
the connected minimum cost acyclic subgraph H of G containing all the vertices of M. The cost of the sub-
graph is defined as the sum of the weights of its edges. If the weights of all edges are identical, then the
Steiner tree is the tree with the minimum number of edges.

It is known that the problem of the Steiner tree construction is NP-hard [11]. In other words, the state
of the art of the computational complexity theory does not raise hopes of designing a polynomial-time
algorithm for solving this problem. For this reason, an approximate solution is typically sought [12].
Approximation algorithms are often complicated for the implementation in traditional networks due to a
large number of data exchanges between routers. For this reason, algorithms for the Steiner tree construc-
tion are rarely used in the existing multicast protocols for traditional networks [13].

Another disadvantage of PIM-SM is the loss of packets when the routing tree is updated due to failures
of network communication links or communication devices (switches or routers). In traditional networks,
updating the routing tree takes too much time [14].

In traditional networks, routing on the data-link layer is based on the STP protocol [7] and Internet
Group Management Protocol (IGMP) snooping [15], which provides the means for tracking the
IGMP-traffic on the data-link layer. STP is a protocol for building a spanning tree in the ethernet network
to prevent traffic loops on the data-link layer.

IGMP snooping prevents the transmission of redundant multicast traffic on the data-link layer that
appears because the switch by default sends the multicast traffic to all ports (the broadcast mode); this is
due to the fact that the switch uses the MAC (Media Access Control) address of the client, which in this
case is the group address. IGMP snooping makes it possible to track the ports connected to the clients,
thus preventing the group traffic broadcasting and reducing the network load.
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MINIMIZATION OF MULTICAST TRAFFIC 409
It is seen from the reasoning given above that the STP tree does not satisfy various route optimization
criteria, such as the link workload and path length from the source to the clients. Moreover, updating the
spanning tree using the STP in the case when the network topology changes is time consuming [16].

1.2. Multicast Routing in SDNs

The SDN technology allows us to build routing trees using more complicated metrics and to drastically
reduce the time needed to build routing trees due to the centralization of the network control.

In [17], it is proposed to use an application for the SDN controller called NOX; this application pro-
cesses the IGMP messages from clients and creates routes of the multicast traffic in the network. The
routes from the server to the clients are found using Dijkstra’s algorithm [18]. The distances between net-
work nodes (the number of segments in routes) are used as the edge weights.

In [19], an algorithm for multicast routing in data centers called the Avalanche Routing Algorithm
(AvRA) was proposed. This algorithm minimizes the number of edges in the routing tree. It was imple-
mented as the application for the OpenDaylight SDN controller [20].

AvRA is a polynomial randomized algorithm that builds the routing tree by connecting each new client
to the nearest vertex of the routing tree. AvRA does not produce the optimal solution for networks with an
arbitrary topology. However, it was proved in [19] that, for some popular topologies, such as Tree and
FatTree, this algorithm finds the optimal solution with a probability close to one. If AvRA cannot find the
optimal tree, it uses the same algorithm used in PIM-SM [19].

In [21], by contrast with the routing tree, a tree called the Branch-aware Steiner Tree (BST) is pro-
posed. The distinction of the BST from the Steiner tree is that not only the number of used edges but also
the number of branch nodes is minimized when this tree is constructed. The authors of [21] propose
a k-approximation algorithm for constructing the routing tree, where  is the number of clients. This algo-
rithm is called the Branch Aware Edge Reduction Algorithm (BAERA); by a k-approximation algorithm
we mean an algorithm that produces an approximate solution at a cost that does not differ by more than
a factor  from the cost of the optimal solution.

It is proved in [21] that the BST construction is NP-hard. Moreover, while there are approximation
algorithms for the Steiner tree that find a solution with the cost not exceeding the cost of the Steiner
tree by more than a factor of ; there are no polynomial approximation algorithms for a BST that
can find a solution that differs from the optimal one by a factor  for any  (  is the number of
clients) [21]. In other words, in this problem it is difficult to obtain an approximate solution that is
close to the optimal one.

None of the multicast routing algorithms for SDNs allow us to select the optimality criteria for multi-
cast routing trees for each individual group. However, this option is needed because different groups can
have different requirements related to the service quality. For example, constraints on delays in the traffic
to group members can be imposed for the groups responsible for video conferencing. In IP-television, the
delay is not as important; however, the minimization of the network load is the key factor. In addition, the
existing algorithms cannot update the routing tree in the case when the network topology changes due to
failures in network links or switches.

2. STATEMENT OF THE PROBLEM

We represent the network by the graph , where  is the set of vertices corresponding to
switches and  is the set of edges represented by the pairs  if the switches  and  are connected by a
physical link. Denote by n the number of vertices and by  the number of edges in ;  is the
set of members of the group g, where . Each switch connected to the clients of the group  is a
member of this group. The group members may join the group or leave the group. There is a dedicated
vertex  in  called the group server, where the server is the source of traffic of this group. Suppose that
a function  determining the capacity of the edge between the vertices  and  is defined
on all edges .
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410 PETROV, SMELIANSKY
2.1. Multicast Routing Problem
In the notation defined above, the multicast routing problem in the network can be formulated as fol-

lows: for every group , find a subgraph  of the graph  such that  is a tree and  contains all
the vertices of  The tree  is called the routing tree for the group .

2.2. Optimization Problem

In this paper, we consider three different optimization criteria for the tree  (it is denoted simply by
 below):

(1) Hop,
(2) Port Speed,
(3) Load.
The meaning of these criteria is explained below. Let us give the following definitions.
The length of the path  is defined as the number of edges in . It is denoted by

.

The shortest path between the vertices  and  in the graph  is the path  such
that .

The tree  is optimal with respect to the Hop criterion if, for every vertex , the path from  to 
in  is the shortest path between  and  in  (i.e., the solution to the multicast routing problem is pro-
vided by the shortest path tree).

The maxmin path with respect to the criterion  between the vertices  and  in the graph , where
, is the path  such that the function  is

maximal.
The tree  is optimal with respect to the Port Speed criterion if, for every vertex , the path from

 to  in the tree T is the maxmin path with respect to the criterion  between  and  in , where
 is the capacity of the edge  (i.e., the paths between the group members are chosen to max-

imize the minimum capacity of all the edges in the path).

The cost of the tree  is the quantity , where  is the membership indicator of

the edge  in the tree  (i.e.,  if the edge  belongs to T and  otherwise).
The tree  is optimal with respect to the Load criterion if T is the minimum cost tree and contains all

vertices .
The minimum cost  is achieved on the tree that has the minimum number of edges. In other

words, when the routing is done in a tree that is optimal with respect to the Load criterion, the minimum
number of network links is used.

The problem of building a tree that is optimal with respect to the Load criterion is the Steiner problem
on graphs [18]. The vertices  are called the Steiner vertices. It is proved in [18] that this problem
is NP-hard, and an exponential number of trees must be examined for finding the exact optimal solution.
Therefore, to solve the multicast routing problem with respect to the Load criterion, approximation algo-
rithms should be used.

2.3. Fault Tolerance Problem
The fault tolerance can be ensured by updating the routing tree T when the network topology changes.

The network state changes as follows:
(1) a client joins (connects to) a group or leaves a group;
(2) the communication link between two switches is broken or recovered;
(3) a switch is disconnected or reconnected.
The algorithm must update the tree  in such a way that the updated tree  is optimal with respect to

the criterion used to optimize the preceding tree .
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MINIMIZATION OF MULTICAST TRAFFIC 411
3. MULTICAST ROUTING ALGORITHM
Recall that, due to the centralized control, the convergence time in SDNs is practically zero and the

difference between the routing on the L2 and L3 layers disappears. In traditional networks, the conver-
gence time is nonzero because the routers need time to exchange data about their current states and form
a consistent representation of the network topology and its state in each router. Since the SDN controller
has the complete information about the topology and state of the network, the routing trees in SDN can
be constructed using more complex metrics. Moreover, a specific optimality metric may be chosen for
each group that meets the service quality requirements for the group.

The SDN controller can directly track all changes in the network topology. This property can be used
to develop an algorithm for ensuring fault tolerance, i.e., an algorithm for updating the multicast routing
trees when clients join a group or leave it or when physical links or switches fail.

The multicast routing algorithm proposed in this paper is based on modifications of the existing algo-
rithms designed for building the optimal routing trees described in this section. For each optimality crite-
rion mentioned above, an algorithm building the corresponding multicast routing tree is chosen and an
algorithm for updating this tree in the case when the network topology changes is described.

3.1. The Hop Criterion
To build the routing tree that is optimal with respect to the Hop criterion, we should construct a tree of

the shortest paths from s to each vertex of the set . To this end, the spanning tree of the shortest paths
in  is first constructed, and then the minimum subtree containing all vertices of  is found. The mini-
mum subtree is constructed by pruning the branches of the spanning tree.

The spanning tree is constructed using the breadth first search (BFS) algorithm [22]. When executing
the BFS, the algorithm stores the list of leaf vertices (the leaves of the spanning tree), which is then used
to remove the subtrees not containing the vertices of . It is proved in [22] that the complexity of the BFS
is .The complexity of pruning the branches of the BFS tree is . Therefore, the total com-
plexity of the algorithm is .

In traditional networks, the shortest paths are constructed using distributed (parallel) algorithms of the
same time complexity but with a greater number  of message exchanges [6].

Proposition 1. A tree built using the above algorithm is optimal with respect to the Hop criterion.
Proof. It is proved in [22] that the BFS tree is a tree of the shortest paths, i.e., the path from the root 

to any vertex  of the tree is the shortest (in terms of the number of vertices) path in . Therefore,
—the paths to  are also the shortest ones. Hence, the resulting tree is Hop-optimal.

When a client  joins a group , the branch from the BFS tree containing  is added to the routing tree.
When a client leaves a group, the branch containing  is pruned. The branch is pruned up to a vertex that
has more than one descendant.

3.2. The Port Speed Criterion
To construct the routing tree that is optimal with respect to the Port Speed criterion, we should build

the maxmin tree  rooted at the vertex : . As in Subsection 3.1, a spanning tree satisfy-
ing this criterion is constructed, and then the minimum subtree containing all the vertices of  is found.

The algorithm for constructing the maxmin tree [22] is Dijkstra’s modified algorithm for finding the
shortest paths from a graph vertex to all the other vertices. The modification is that when a vertex is added
to a path, the condition  is checked instead of the condition d[w] +

 in the original Dijkstra algorithm (  is the capacity of the found path to the vertex  and
 is the capacity of the edge ). The capacity of the path to  passing through  is d[ ] =

. The order of examining the vertices is also determined by the function
 rather than by the function , where F is the set of unexamined

vertices.

It is proved in [22] that the complexity of Dijkstra’s algorithm is  therefore, the resulting com-
plexity of the algorithm for constructing the tree that is optimal with respect to the Port Speed criterion is

. As in the preceding algorithm, if a client leaves a group, the branch containing this client is pruned.
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Table 1. KMB heuristic

Input Connected graph G

Output Tree T approximating Steiner tree
1 Construct complete graph K(M, E) with set of vertices M
2 Weight of edges (i, j), where i, j ∈ M equals weight of minimal path from i to j in G
3 Find minimum spanning tree  in K
4 Replace each edge  by path in G corresponding to this edge. Denote resulting subgraph of G by 
5 Find minimum spanning tree T in 
6 repeat
7 r := false
8 if  then
9

10 r := true
11 until r = false

'T
∈( , ) 'i j T 'G

'G

∃ ∈ ∉ ∈: ,  ( )w T w M w leaf T
=: \T T w
Proposition 2. The tree built using Dijkstra’s algorithm modified as described above is optimal with
respect to the Port Speed criterion.

The proof of this proposition is similar to the proof of Proposition 1.

3.3. The Load Criterion

To construct the optimal routing tree with respect to the Load criterion, the Steiner tree connecting all
vertices of M should be constructed. In contrast to the preceding subsections, where the spanning tree was
first constructed and then paths to the clients were selected from it, in the case of the Load criterion the
Steiner tree must be constructed individually for each set M. In other words, when clients are connected
or disconnected, the optimal tree can be completely different from the preceding tree. The problem in
which clients can connect and disconnect is called the dynamic Steiner tree problem [10].

It was proved in [10] that no approximation algorithm giving an approximate solution with a coefficient
less than , where , exists. For this reason, we propose to use heuristic algorithms for solv-
ing the dynamic Steiner tree problem in real networks.

We will use the greedy heuristic algorithm for constructing the Steiner tree described in [23]. The algo-
rithm works as follows. When a new client appears, the closest point in the available Steiner tree is found
and the client is connected to this point—this is the heuristic rule. The shortest path can be found using
Dijkstra’s algorithm the complexity of which is  [22]. Initially, when the group has no clients, the tree
consists of the single vertex , which is the server of this group.

A disadvantage of this algorithm is that it does not take into account the disconnections of clients from
the group. There are examples of topologies and sequences of connections and disconnections of clients
in them for which this heuristic produces nonoptimal trees [23]. However, the reconstruction of the tree
at each change of the group content (the set M) can cause delays and loss of traffic for the clients remaining
in the group due to updating the multicast traffic paths. We need an algorithm for updating the tree and a
criterion to determine whether or not the tree needs to be updated.

To estimate the degree of nonoptimality of the tree produced by the algorithm described above, we
should compare its cost with the cost of the Steiner tree (the optimal solution); if the difference exceeds a
certain threshold , then the tree should be updated. Since finding the optimal tree is an NP-hard prob-
lem, we will compare the available tree with the tree produced using the KMB (Kou, Markovski, Berman)
heuristic [24], which is described in Table 1. It was proved in [24] that this heuristic gives a solution whose
cost exceeds the cost of the optimal solution by a factor of , where .

The outline of this heuristic is as follows. In the weighted graph  the shortest paths between all pairs
of vertices in  are found. Using these paths, the new graph  is constructed in which the edges are the
paths found in  and the weights of these edges are equal to the weights of the corresponding paths in .
Next, the minimum spanning tree  in  is found. Upon replacing the edges of  by the paths in , we

0.5 log k =k M

2( )O n
∈s M

Δ

−2 2/k =k M

,G
M K

G G
'T K 'T G
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 57  No. 3  2018



MINIMIZATION OF MULTICAST TRAFFIC 413
obtain the subgraph . Next, we find the minimum spanning tree  and remove the branches not con-
taining the vertices of . The resulting tree  is an approximation of the Steiner tree in .

Note that the subgraph in row 4 of Table 1 is not necessarily a tree because the paths in  correspond-
ing to the edges  can intersect. Therefore, the graph  can contain cycles. In row 8, 
denotes the set of leaves of the tree . In rows 6–11, the branches of  not containing the vertices of M
are removed.

The minimum cost paths between all pairs of vertices in M can be found using the Floyd–Warshall
algorithm [22], the complexity of which is . The minimum spanning trees can be found using the
Kruskal algorithm [22] with the complexity . Thus, the resulting complexity of constructing the

tree using the KMB heuristic is .

3.4. Updating the Routing Tree
To solve the fault tolerance problem, we need an algorithm that can update the routing tree when the

network topology changes. The SDN technology makes it possible to track such changes because each
SDN switch sends the controller information about the physical links connected to this switch.

We describe the procedure of updating the routing tree in the case of the following events:
(1) failure or recovery of the link between two switches;
(2) disconnection or reconnection of a switch.
Since the disconnection and reconnection of a switch can be modeled by the failure and recovery of

the links connected to this switch, we will consider only the first case below.
When a link fails, the edge  corresponding to this link is removed and the clients connected through

this edge should be reconnected using another path not passing through the removed edge. When an edge
is removed, the graph’s connectivity can be violated and the graph can be decomposed into a number of
connected components of which one will contain the vertex . In this case, the clients in the connected
components not containing  will not receive the multicast traffic. Therefore, the clients with which the
communication was lost must be reconnected. The reconnection should be performed in such a way that
the other clients not affected by the link’s failure do not experience a traffic delay or loss due to updating
the routing tree.

Below we assume that the root of the routing tree is at the vertex . Then, each vertex 
has a parent vertex .

When an edge , where  is the parent of , is removed, a new tree  that is optimal with
respect to the Hop or Port Speed criteria will be constructed in the graph . The tree  coin-
cides with , where  is the set of vertices of the subtree rooted at  in the rooted tree  in ,
because the removal of an edge  does not affect the shortest maxmin-route from  to the
vertex .

Thus, the tree must be changed only in the vertices in . Therefore, the changes in the traffic routes
will not affect the clients in the set .

If a new edge  appears, two cases should be considered.
1. The new edge is an edge that was earlier removed from the graph . Then, the routes in the new tree

will be changed only for the clients affected by the previous removal of this edge, while the routes to the
clients not affected by this removal will not change and they will not experience delays and loss of packets
due to updating the tree.

2. The new edge is indeed new or it existed earlier but the network topology changed during the time
this edge was removed. In this case, it cannot be guaranteed that the new edge will not change the routes
to all clients. Such edges can appear in the network if its physical configuration changes, e.g., new hard-
ware is installed. In this case, the tree updating is a reasonable procedure because it can optimize the dis-
tribution of the multicast traffic.

For the Load criterion, the clients disconnected from the group will be reconnected one-by-one to the
subtree of  containing the vertex  by the greedy Steiner tree construction algorithm described in Sub-
section. 3.3. The subtrees not containing  will be removed.
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If new physical links appear in the network, then the routing tree will be updated only if the tree cost
exceeds the cost of the tree constructed using the KMB heuristic more than by the threshold .

4. IMPLEMENTATION
The proposed multicast routing algorithms were implemented in an application for the SDN controller

RunOS [25]. The RunOS controller controls switches using the OpenFlow protocol [26]. This application
stores information about each group represented in the network. For each group, the collection of pairs
(switch, port) determining the location of servers that represent the group in the network is specified. Here
by the server we mean a physical server connected to the port and the router that receives group traffic
through L3 protocols, such as PIM and DVMRP.

To join or leave a group, network users send IGMP messages Join Group and Leave Group. For this rea-
son, the application installs on the SDN switches the routing rules that redirect all IGMP packets to the
controller. When the first client joins a group, the IGMP message Join Group is sent to the server of this
group to make the server initiate sending the multicast traffic. When the last client leaves this group, the
IGMP message Leave Group is sent to the server of this group to make it stop sending the traffic.

The messages Join and Leave Group are sent from the switch port connected to the server by sending
the message Packet-Out to the OpenFlow switch.

4.1. Multicast Routing
As the controller starts, the application receives information about the network topology and the state

of the network devices from the application topology. Next, for each group, depending on the optimality
criterion for the routing tree of this group, a spanning tree is constructed in which the paths connecting
the server with the clients will be sought. The spanning trees are constructed using the algorithms
described in the preceding sections.

At the start of the controller, the rule that redirects all IGMP messages to the controller is installed on
each SDN switch. Such messages are sent to the controller by the OpenFlow protocol using Packet-In
messages. The application installed on the controller processes IGMP messages. When the controller
receives the Join Group IGMP message, it seeks a path from the server to the client that sent the message
for joining the group. The information about the port number of the switch that received the message is
available for the application from the message Packet-In.

After the path from the server to the client has been found, the application installs the corresponding
rules on the switches lying on the route implementing this path. If this is the first client that requested the
group traffic, then the IGMP message Join Group is sent to the port to which the group server is con-
nected. If the client is not the first one requesting the group traffic, then the path to this client is sought
from the switch corresponding to the nearest vertex in the routing tree rather than from the switch con-
nected to the server.

On each switch, the Flow rules are installed in which the match field has the  entry equal to the
port number through which this switch is connected to the preceding switch in the route from the server
to the client and the  entry contains the group address. Thus, this rule processes only the packets
arriving from the server and related to the corresponding group.

The field action contains the number of the OpenFlow group rule corresponding to this group. This
rule is the routing rule that duplicates the traffic to different ports of the switch. The ports to which the
traffic is duplicated are described by the so-called Bucket records. The group rules are as follows.

The group is an All-group; i.e., packets are duplicated to each Bucket record, where the set of these
records is determined by the current structure of the routing tree. If the vertex corresponding to the switch
in the spanning tree of this group has multiple descendant vertices, then a Bucket record is created for each
such vertex, and this record sends traffic to the port connecting this switch with the switch corresponding
to its descendant vertex. Thus, the traffic is propagated through the routing tree. Below, the pair of rules
(Flow, Group) will be called the multicast routing rules.

4.2. Minimization of Open Flow Rules in Multicast Routing
If the number of groups in the network is large, a large number of OpenFlow rules is needed, which

can negatively affect the performance of OpenFlow switches. For this reason, we need an algorithm for
minimizing the number of installed group rules while preserving the logic of routing the multicast traffic
for all active groups.

Δ

_in port

  _ip dst
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In this paper, we propose an algorithm for minimizing the number of group rules installed on switches.
This algorithm replaces the group rules of the same type by a single rule.

Each rule that the application installs on switches goes through an aggregation procedure. The rule
aggregation procedure joins the group OpenFlow rules with the identical set of Bucket records into a single
rule and updates the field  to the new group in the corresponding Flow rules.

The group routing rules are aggregated in two steps.
In the first step, the joined rules are created from the set of group routing rules created for each group.

For each switch, the application stores the list of the original (not joined) rules and the list of actual rules
installed on the switches.

As a request for creating a new multicast routing rule on a switch appears, it is checked if such a rule
already exists on this switch (the check is performed based on the identifiers of the group rules):

—if such a group is found, then the Flow rule is rewritten to point at an existing group rule;
– if no such rule exists, then the procedure of joining the new rule with the existing rules is initiated;

for this purpose, a rule with the identical set of Bucket records is sought among the rules installed on the
switch;

—if no rule with the identical set of Bucket records is found, then the new rule is installed on the switch
without any changes.

For each aggregate rule, there is a counter of multicast routing rules associated with it. A rule is
removed from the switch only when all the rules associated with it are removed, i.e., when the counter
becomes zero.

The second step of the aggregation procedure is the update of the switch states. The switch states are
updated in response to the events that change the configuration of the multicast routing rules in the net-
work, such as the events of leaving or joining a group, failures and recovery of communication links, or
failures and connection of switches. These events affect all groups; therefore, the states of switches are
updated only after the rule aggregation procedure is executed for all groups.

In the course of rule aggregation, the application compares the lists of the existing rules with the lists
of the updated rules. If there are rules that are included only in one list, then they are either removed from
the switch (if they do not appear in the updated list) or they are installed (if they are not installed on the
switch but appear in the updated list). The corresponding Flow rules are also updated.

To minimize the number of OpenFlow messages (if there are groups to be removed and groups to be
added), the pair of messages (delete and add) is replaced by a single OpenFlow message that changes the
set of Bucket records in the removed rule for the set corresponding to the new rule.

Thus, the rule aggregation allows us to reduce the number of rules installed on the switches if there exist
at least two group OpenFlow rules with the identical set of Bucket records.

4.3. Backing up the Application State

The RunOS controller supports the active and standby modes to ensure the fault tolerance of the SDN
control loop that uses standby controllers. The standby controllers are connected to the OpenFlow
switches as slaves, while the main controller is connected as the master. If the main controller fails, a
standby controller is chosen and switched to the master role.

To ensure the coordinated work of controllers, the last state of the applications is regularly saved to a
distributed database. The application also saves its state (the groups, connected clients, topology of the
routing trees for each group, and the configuration of the application operation). Thus, when the network
control is passed to a standby controller, the application can continue its work.

5. TEST RESULTS

5.1. Description of Test Scenarios

In this section, we describe the results of an experimental study of the developed application.
The experimental study was performed in the virtual SDN built using the network emulator Mininet

version 2.2.2 [27]. The OpenVSwitch version 2.7.0 switches [28] were used as the software SDN switches,
and the group traffic was generated by the iperf utility, version 2.0.5 [29].

_dst group
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Fig. 1. Dependence of connection time on number of groups (a) and number of switches (b).
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The application developed in this study was installed on the RunOS controller [25]. The controller was
run on the virtual machine on a server with the following characteristics:

The CPU was Intel® Core® i7 9xx (Nehalem Class Core i7), two cores clocked at 2.4 GHz, RAM 2
GB DDR3 1333 MHz, and network interface 1 Gb ethernet.

The virtual network with software switches ran on a server with the following characteristics:
The CPU was Intel® Xeon® CPU E3-1240 V2, eight cores clocked at 3.40GHz, RAM 32 GB DDR3

1333 MHz, and network interface 1 Gb ethernet.
As a test topology, we generated a random network topology  for each test constructed using the

Barabási–Albert algorithm [30]; this algorithm is used to generate random networks and it uses the pref-
erential attachment principle. This principle assumes that the likelihood of attaching new nodes increases
with the node’s degree. The random networks generated using this model are connected and describe
real-life computer networks used by the telecommunication operators.

For each multicast routing algorithm, two types of tests were performed:

(1)  tests the time needed to connect clients to a group;

(2)  tests the reconnection time after a communication link fails.

The client connection time is the time Δt passing from the instant  when the client sent the IGMP
request for joining a group to the instant  when the traffic arrives at this group. The client reconnection
time Δ  passing from the time  of the failure of a communication link and when the traffic stopped being
received by a client to the time  when this client begins receiving the traffic again.

N

T1

T2

1t
2t

t 1t
2t
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Fig. 2. Dependence of reconnection time on number of groups (a) and number of switches (b).
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For each type of tests , where , a set of random network topologies  with various number of
network switches  and a random set of clients  was generated. For each topology , a set of
tests , where , was executed; in these tests, clients joined the groups . Depending on
the test type , either the mean connection time needed to connect the clients to these groups or the mean
time needed to update the routing trees for each group together with the reconnection of clients was mea-
sured. For executing the tests of type , ten random communication links were sequentially cut off and
the routing trees were updated.

We also note that the reconnection time was not measured for the topology of size one because it does
not allow building reserve routes for multicast traffic.

5.2. Results

Figure 1a shows the mean time needed for a client to join a group as a function of the number of groups.
The test results show that the mean time is almost independent of the criterion used to build the tree and
of the number of groups.

Figure 1b shows the mean time needed for a client to join a group as a function of the number of
switches in the network. The results for the same set of tests considered as a function of the number of
groups and the number of switches illustrated in Fig.1 show that the performance of the algorithms is
almost the same for all three criteria.

iT ∈1, 2i ijN
∈1, 25j ijC ijN

ijkT ∈1,1  00k { }…1, ,  kg g
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Figure 2a shows the mean time of client reconnection after the communication link failure as a func-
tion of the number of groups.

Figure 2a shows that the client reconnection time after the communication link failure is also almost
independent of the criterion used to update the routing tree. Figure 2b shows the mean time of client
reconnection after the communication link failure as a function of the number of switches in the network.

Testing showed that the tree building algorithms using three different criteria are equally efficient.
In other words, both the routing tree construction time and the time needed to update this tree are inde-
pendent of the tree type but depend only on the performance of the test platform. This can be explained
by the fact that the greater part of the computation time is taken by installing the routing rules on the
switches rather than by the tree construction algorithms.

The client connection time and the time needed to update the routing tree is between 130 and 260 ms.
This is an acceptable time period in telecommunication networks [31]. Thus, the implemented algorithms
are sufficiently efficient and can be used for practical purposes.

CONCLUSIONS
In this paper, we described multicast routing algorithms for SDNs that optimize multicast traffic routes

and ensure their fault tolerance. These algorithms make it possible to use different criteria for the optimi-
zation of routing trees for different groups. The results of the analysis of the existing multicast routing algo-
rithms used both in traditional networks and in software-defined networks are presented, and their main
drawbacks are discussed. These algorithms were implemented in an application for the RunOS [25] con-
troller both in the case of a single SDN controller and for the distributed network control plane. The appli-
cation processes IGMP messages arriving from clients and installs routing rules that redirect the multicast
traffic to the clients.

The algorithms discussed in this paper optimize multicast traffic routes and ensure their fault tolerance
under changes in the group contents and network topology due to various reasons (communication link,
switch, or its port failures). Three different routing tree optimality criteria were considered. For each cri-
terion, an algorithm for finding the optimal routing tree was chosen. For the optimality criterion based on
the number of communication links, a combination of heuristics for updating the routing tree was pro-
posed. In addition, an algorithm for reducing the total number of multicast routing rules installed on
switches was described.

The implementation of the multicast routing algorithms was tested on various randomly generated net-
work topologies consisting of SDN switches. The test results showed that the algorithms using the three
optimality criteria are equally efficient. In other words, both the routing tree construction time and the
time needed to update this tree are independent of the tree type and, therefore, depend only on the per-
formance of the test platform. Delays due to updating the routing tree turned out to be acceptable in the
networks of telecommunication operators.
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