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Abstract—An admissible multiprocessor preemptive scheduling problem is solved for the given execu-
tion intervals. In addition, a number of generalizations are considered—interprocessor communica-
tions are arbitrary and may vary in time; costs for processing interruptions and switches from one pro-
cessor to another are taken into account; and besides the processors, additional resources are used.
Algorithms based on reducing the original problem to finding paths of a specific length in a graph, a
flow problem, and an integer system of linear restrictions are developed.
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INTRODUCTION
The design and operation of complex technical objects (planes, space observation systems, pipeline

systems, nuclear reactors, etc.) frequently involve real-time multiprocessor computing systems. One of the
principal problems to be solved when developing software for such systems is to construct an admissible
schedule for the execution of software modules that shows which resources of the computing system are
to be allocated to each module and when. Many works deal with preemptive scheduling without taking
into account the restrictions on communications between processors and the costs for processing inter-
ruptions and switches from one processor to another. We highlight some works such as [1] (identical pro-
cessors), [2] (arbitrary processors, same execution intervals), and [3, 4] (arbitrary processors, arbitrary
execution intervals). Work [5] deals with the multiprocessor scheduling problem in a system with arbitrary
interprocessor communications and costs for processing interruptions and switches taken into account.
In [6], the conditions leading to the existence of a polynomial algorithm for finding an admissible sched-
ule in a multiprocessor system with an incomplete interprocessor communication graph are obtained.
In [1–6], no additional resource was assumed to exist. An admissible scheduling problem in a multipro-
cessor system with additional resources was considered in [7] (identical processors, one type of additional
resource), [8] (arbitrary processors, one type of additional resource), [9] (identical processors, several
types of additional resources), and [10] (arbitrary processors, several types of additional resources). In a
number of cases, similar problems can be reduced to minimax and grid problems and methods that solve
them given in [11–19].

In this work, we study the admissible multiprocessor preemptive scheduling problem for the cases
when (1) there are restrictions on interprocessor communications that may vary in time; (2) costs for pro-
cessing interruptions and switches are taken into account; and (3) besides processors, there are additional
resources in the system with job execution times linearly depending on the number of those resources allo-
cated to them. These problems can be reduced to finding paths of a specific length in a graph, f low prob-
lems, and an integer system of linear restrictions. Unlike [5, 6], we obtained new necessary and sufficient
existence conditions for the admissible schedule.

1. STATEMENT OF THE PROBLEM
We consider a computing system consisting of m processors. The performance of the jth processor is

, j = . There is a set of jobs (tasks) N={ } to be executed. Each task  has its own execution
interval  (the job i can be started not earlier than the instant  and should be finished not later than
the instant ) and the workload  of the processors required for it to be executed. The workload of the
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SCHEDULING IN MULTIPROCESSOR SYSTEMS 223
processors is represented as a set of successive cycles. Cycles of all processors are synchronized in time;
i.e., the beginnings and ends of the cycles of all processors coincide. One cycle is a time unit and the vari-
ables bi and fi, , are given in cycles numbered from 1 to T, where

,

Thus, the job i can be started not earlier than the bith cycle starts and should be finished not later than
the fith cycle. The performance  is the workload of the processor j during one cycle. To execute the job
i fully, the processor j requires  cycles. On the fixed cycle, each processor cannot execute more than
one job while each job is executed by not more than one processor. Task execution may involve interrup-
tions and switches from one processor to another. Interprocessor communications may vary in time and
are given by the array I of dimension  Moreover,  if, while it is being exe-
cuted on the processor j1, the job i can be interrupted at the end of the cycle k1 and resumed on the pro-
cessor j2 (it may be the same one, i.e., j1 = j2) at the beginning of the cycle k2; and  if such
a switch is not possible, <  Interrupting the task on the processor j1 at the end
of the cycle k1 and switching it at the beginning of the cycle k2 to the processor j2 or resuming it on the
same processor (j1 = j2) requires additional work from the processors j1 and j2, which totals 

Find out whether there exists an admissible execution schedule for the jobs N (i.e., the schedule such
that each job is fully executed in its execution interval ) and find it if it exists.

2. NP COMPLEXITY OF THE PROBLEM INVOLVED
We show that the stated problem is NP hard. To do this, it is sufficient to prove that the original prob-

lem in the form of property recognition (when the only thing we need to do is to find whether an admis-
sible schedule exists) is NP complete. We can easily show that this problem belongs to the NP class. More-
over, the known NP complete decomposition problem [20, 21] (the set of integers  is given; can
it be decomposed into two nonoverlapping subsets with an identical sum?) can be polynomially reduced
to it. To prove this, it is sufficient to put, in the original problem, N={ }, , ,

,  N,

and  for all  such that . In this case, interruptions and switches
lead to the fact that not all jobs will be finished by the end of the Tth cycle. Therefore, the answer to the
decomposition problem is positive if and only if the answer to the problem involved is positive.

3. REPRESENTATION OF THE ADMISSIBLE SCHEDULE
We give the admissible execution schedule for the jobs N as the lists , where

, , (3.1)

The pair (j, k) in the list  means that the job i is executed by the processor j in the cycle k. Obviously,
if for two jobs    then  since one processor cannot exe-
cute more than one job in one cycle. Moreover, if  and , , are two
successive pairs in , then  i.e., there exists the respective communication between
the processors  and .

4. CONSTRUCTING A GRID MODEL

To solve the stated problem similarly to [5], we construct the grid , where V1 is the set of
nodes, E1 is the set of arcs (see Fig. 1). The set V1 consists of the following vertices:  are the
sources,  are the sinks, and  j = , k =  are the internal vertices. The set E1 consists
of the arcs  j = ,   j = , k = ;  for all 
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Fig. 1. Fragment of grid G1.
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and k1, k2 such that  = 1;  j = ,  The node 
corresponds to the beginning of the execution of the job i and the node  corresponds to the end of the
execution of the job i. The node  corresponds to the processor j and the beginning of the kth cycle, while
the node  corresponds to the processor j and the end of the kth cycle. The arc  in the grid G1
means execution of the job i can be started at the beginning of the kth cycle by the processor j, while the
arc  means execution of the job i by the processor j can be finished at the end of the kth cycle. The
arc  corresponds to some task being executed by the processor j in the kth cycle, while the arc

 corresponds to switching the execution of some job from the processor j1 at the end of the k1th
cycle to the processor j2 (it may be the same if ) at the beginning of the k2th cycle. Note that

 and 

5. NECESSARY AND SUFFICIENT EXISTENCE CONDITIONS
FOR AN ADMISSIBLE SCHEDULE

We assume that each arc  of the grid G1 has the length l(a, b) specified as  = 0,
    Then, an

arbitrary path  from ui to wi corresponds to some execution schedule of the job  according to
which it is executed within its execution interval . If  the task i is executed in the
cycle k by the processor j, and the structure of the grid G1 is such that  i.e., the job i is executed
within its execution interval. The workload of the processor j associated with executing the task i in the
cycle k is sj. If  it means that after it was executed in the cycle k1 by the processor j1, the
job i was switched to the processor j2 at the beginning of the cycle k2. The total workload of the processors
associated with executing the task i is decreased by the value . The length  of the path 
is the total workload of the processors associated with executing the task i. If , the execution
schedule for the task i that corresponds to this path is admissible. Two nonoverlapping paths  and ,
i1, , correspond to the execution schedules of the jobs i1, i2 that can be implemented in par-
allel. Thus, we arrive at the following proposition.

Lemma 1. For the admissible execution schedule for the jobs N to exist, it is necessary and sufficient
that there exist n pairwise disjoint paths  in the grid G1 such that

, (5.1)

Proof. Necessity. Suppose there exists an admissible execution schedule for the jobs N. Then, for each
task  there exists the path  from ui to wi such that inequality (5.1) holds for it. Since one processor
cannot execute more than one job in one cycle, these paths are pairwise disjoint.

Sufficiency was proved at the beginning of this section. The lemma is proved.
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Table 1. Parameters of grid G2

Arcs L U

1 1 0

1 1 0

0 1 0

0 1 sj

0 1

0 1 0

C

0( , )i iu u

0( , )i iw w

( , )i jku x

( , )jk jkx y

1 1 2 2
( , )j k j ky x −τ 1 1 2 2( , , , )j k j k

( , )jk iy w
The path  specifies the admissible execution schedule for the job i and the set of paths 
specifies the admissible execution schedule for the jobs N.

We state the original problem as a f low one. We define the grid , where V2 is the set of

nodes and E2 is the set of arcs, by adding the grid G1 with the nodes ,  and the arcs , 

 In the grid G2, we consider an integer n-product f low. The nodes  and  are, respectively, the
source and sink of the ith product. Each arc  has three parameters—the lower L(a, b) and upper
U(a, b) boundaries of the f low and the cost  of the f low unit. The values of these parameters for the
arcs of the grid G2 are given in Table 1,   

Suppose g is the integer n-product f low in the grid G2 and suppose  is the f low of the ith product.
We introduce the designation

.

Then,  is the cost of the f low . Note that since the f low g is integer (i.e.,  is
integer for all arcs ), by the definitions of the lower and upper boundaries of the f lows over the
arcs (see Table 1), the variables  and  take the values 0 and 1 for each arc .

Lemma 2. For an admissible schedule to exist, it is necessary and sufficient that the integer n-product
flow g exists in the grid G2 such that  and  are, respectively, the source and sink of the ith product and

C(gi) ≥ Qi (5.2)

for all .
Proof. Necessity. Suppose there exists the admissible execution schedule A for the jobs N. By (3.1),

 We specify the flow g by the following rules (1)  = 1;
(2)  = 1; (3) if  then ; and (4) if 

 then . We put the f low of the ith product over all other arcs 
of the grid G2 to be zero: . According to rules (1)–(4), the f low unit of the ith product originates

from the node , follows the arcs , , then the arcs  that correspond to the cycles
and processors, on which the task i is being executed, the arcs  that correspond to its switches

(there are no switches if ), and the arcs  and . A f low specified in such a way is inte-

ger, the preservation conditions are met at internal grid nodes for each product, and the nodes  and ,
respectively, are the source and sink of the ith product. The upper and lower restrictions on the values of
the f lows  over the arcs are not violated since  take the values 0 or 1; moreover, one processor in one
cycle cannot execute more than one job. In addition, inequality (5.2) holds for each  N. Indeed, the
flow unit over the arc  increases the variable  by , and the f low unit over the arc 
decreases the variable  by . Since, according to the admissible schedule, the total work-
load of the processors to execute the task i is not less than , inequality (5.2) holds for all  N.
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Sufficiency. Suppose in the grid G2 there exists an integer n-product f low such that its ith product orig-

inates from the source , it enters the sink , and inequality (5.2) holds for all . Since
 = 1, then . Similarly, . Since the f low  is integer, its value

over each arc of the grid G2 is 0 or 1. Since the f low  is preserved at each internal node, there exists the

unique path  from  to , the value of the f low over which is 1. It follows from (5.2) and the structure
of the grid G2 that the path  specifies the admissible schedule for the job i. It follows from the restrictions
on the capacity of each arc that the paths  are pairwise disjoint. Hence, this totality of the
paths specifies the admissible execution schedule for the jobs N. Thus, if , the job i is exe-
cuted on the kth cycle by the processor j; if , the job i is switched from the processor j1 to
the processor j2 at the end of the cycle k1, where it is resumed at the beginning of the cycle k2 (there is no
switch if j1 = j2). The lemma is proved.

Thus, to construct the admissible execution schedule for the jobs N, we need to find in the grid G2 the
multiproduct f low that satisfies the hypotheses of Lemma 2 and, if it exists, construct the schedule in the
way described during the proof of sufficiency in Lemma 2. If there is no such flow, there is also no admis-
sible schedule.

Now, we describe the necessary and sufficient existence conditions for the admissible schedule, which
were stated in Lemma 2, as an integer system of linear restrictions. Find nonnegative integer values , ui),

      
    that satisfy the following restrictions:

, , (5.3)

, j = , , (5.4)

(5.5)

(5.6)

, (5.7)

, j2 = , (5.8)

, j1= , (5.9)

. (5.10)

Equalities (5.3) ensure the f low unit of the ith product is delivered from the source  to the sink .
Inequalities (5.4) and (5.5) ensure the upper restrictions on the f lows over the arcs are met, equali-
ties (5.6)–(5.9) ensure the f lows of each product are preserved in all internal nodes of the grid G2, and
inequalities (5.10) are equivalent to inequalities (5.2) from Lemma 2. Note that system (5.3)–(5.10)
includes  variables and  linear restrictions.

6. NECESSARY EXISTENCE CONDITIONS FOR AN ADMISSIBLE SCHEDULE
In this section, we obtain the necessary existence conditions for an admissible schedule in the problem

involved. They are significantly easier to check than the necessary and sufficient conditions from Section 5.
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We consider the grid  constructed from the grid G1 with the addition of the nodes  (the
source) and  (the sink) and the arcs  and , . The values of the parameters of the arcs

 and  are   = 1,  The
values of the parameters of the rest of the arcs of the grid G3 are the same as in the grid G1. In the grid G3, we
consider the one-product flow g from the source  to the sink  and suppose  is its cost,

.

Lemma 3. For an admissible schedule to exist in the problem involved, the grid G3 should have a f low g
such that

. (6.1)
Proof. We assume that there is an admissible schedule in the problem involved. Then, by Lemma 2,

there exists the integer n-product f low gi in the grid G2 such that inequality (5.2) holds for all  (gi is
the f low of the ith product in the grid G2). We specify the f low g in the grid G3 as 
for all ,  for all other arcs  of the grid G3. Obviously, g is the f low. Inequal-
ity (6.1) holds due to (5.2). The lemma is proved.

Thus, we can propose the following algorithm to check whether the hypothesis of Lemma 3 is met. In
the grid G3, find the f low g of the maximal cost. To do this, we can use Orlin’s algorithm [21] or the out-
of-kilter algorithm [22]. If relation (6.1) holds for the found flow, the necessary existence condition for
the admissible schedule is met. As applied to the grid G3, the complexity of the out-of-kilter algorithm is

.
We consider the grid  obtained from the grid G1 by adding the latter with the nodes  (the

source) and  (the sink) and the arcs , , i = 1, 2, …, n – 1, and . These arcs have
the following parameters: L(u0, u1) = U(u0, u1) =  = 1,

 = 0. The values of the parameters of the rest of the arcs of the grid G4 are
the same as in the grid G1. We consider the one-product f low g from the source  to the sink  in the
grid G4 and suppose  is its cost.

For the grid G4, the proposition holds that coincides with what Lemma 3 states. To check whether the
hypothesis of Lemma 3 holds for the grid G4, we can also use the out-of-kilter algorithm.

Note that the structure of the grid G4 and the parameters of its arcs are specified so that one unit of the
flow from the source  will be delivered to the sink . The out-of-kilter algorithm operates so that if we
choose the initial f low to be integer while searching for the f low g, the resulting f low will be also integer.
The lower and upper f lows over the arcs of the grid G4 are specified so that the f low over each arc is 0 or
1. Thus, the arcs the f low over which is 1 form the path from  to , with its length being greater than or
equivalent to Q (the length of the arc in this case coincides with its cost). Thus, we proved the following
proposition.

Lemma 4. For the admissible schedule to exist, the grid G4 should have a simple path from  to  with
its length greater than or equivalent to Q.

7. PROBLEM WITH ADDITIONAL RESOURCES
In this section, we assume that, apart from the processors, the system has P types of additional nonre-

newable resources. The total amount of the pth type of this resource is Rp, p = . If the task i has  units
of the additional resource of the pth type allocated to it,  p = , the workload Qi of the processors
associated with execution of the task i is

,

where

p = ; (7.1)
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, p = ; (7.2)

, , and  are the given variables; , ; ;  is the workload of the processors to execute
the task i if there are no additional resources allocated to it; and . Thus, . Find the
allocation of resources  p =  such that there exists an admissible schedule or establish that
there exists no such resource allocation. This resource allocation should satisfy restrictions (7.1) and (7.2).
We can find examples of similar problems in [8]. In this case, the lemmas we proved above can be stated
as follows.

Lemma 5. For an admissible execution schedule for the jobs N to exist, it is necessary and sufficient
that there exist the allocation of resources  satisfying restrictions (7.1) and (7.2) and n pairwise disjoint
paths  in the grid G1 such that , 

Lemma 6. For the admissible schedule to exist, it is necessary and sufficient that there exist the alloca-
tion of resources  satisfying restrictions (7.1) and (7.2) and the integer n-product f low g in the grid G2

such that  and  are, respectively, the source and sink of the ith product and , 
Now, we describe the necessary and sufficient existence conditions for the admissible schedule, which

were stated in Lemma 6, as an integer system of linear restrictions. Find such allocation of resources ,

 p =  and the nonnegative integer variables    

, wi),      
and  that satisfy restrictions (5.3)–(5.9), (7.1), (7.2), and the inequality

.

This system includes  variables and  linear restrictions.
We introduce the designation

Lemma 7. For an admissible schedule to exist in the problem involved, resources  should be allocated
in such a way that satisfies restrictions (7.1) and (7.2) and the f low g in the grid G3 for which .

Lemma 8. For the admissible schedule to exist, resources  should be allocated in such a way that sat-
isfies restrictions (7.1) and (7.2) and the simple path from  to  in the grid G4, with a length greater than
or equivalent to 

CONCLUSIONS
We studied an admissible multiprocessor preemptive scheduling problem for the given execution inter-

vals and under a number of additional restrictions—interprocessor communications are arbitrary and may
vary in time; costs for processing interruptions and switches from one processor to another are taken into
account; and apart from the processors, additional resources are used. We proved this problem to be NP
hard. We developed the algorithms based on reducing the original problem to the problem of searching for
paths of a specific length in the graph, a f low problem, and an integer system of linear restrictions.
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