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Abstract—We consider the motion of a five-link crawling robot in an environment with obstacles
located discretely. The robot is fitted with special controlled friction elements for the periodic fixation
of links on the surface and has a possibility of the spatial configuration change due to a detachment of
the end links from the surface. One of the possible crawling modes is analyzed as the end links are
detached from the surface and the adjacent links rotate by a given angle in the plane of motion without
interaction with obstacles. As the result of simulating by the numerical method, we establish the
dependence between the average velocity of the plant (and its maneuverability between obstacles) and
control values.
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INTRODUCTION
At present, the number of robots elaborated around principles of the motion of living organisms has

been intensively increased. Devices of this kind have proved their efficiency under a variety of operating
conditions. Among the distributed types of such devices are crawling robots. They consist most often of
several links and hinges that connect them, in which the drives are located [1–12]. Due to such a construc-
tion, the links can move relative to each other and implement variations of a gait.

The motion of multilink systems across a horizontal surface, the interaction with which is described by
the dry or viscous forces, has received much attention in [13–22]. In these works, the inertial method of
motion is considered such that with the slow and fast links' motions relative to the main link it remains
stationary and moves in the required direction, respectively [13–18]. In [19], the optimal control of the
motion of a multilink system is studied; the system consists of the main body and one or two links con-
nected with it by cylindrical hinges, in a resisting environment whose resistance force depends on the
velocity of the links. For the considered system, one estimates the average velocity of its progressive
motion and obtains the control laws of oscillation of the links such that the maximum average motion
velocity is implemented. In [20], the periodic motion of a f lat two-link robot is investigated; the robot is
controlled by the intrinsic moment applied to a hinge that connects the links across a horizontal plane
with the availability of dry friction. The dynamics of the two-link robot is analyzed (the analysis takes into
account the effect of the friction forces and the boundedness of the control moment), the algorithm of the
motion of the two-link robot across the plane is proposed (here, the straight motion is ensured), and the
influence of various geometric and mechanical parameters of the system on the average motion velocity
and on the energy costs in the motion of the two-link robot across the plane is studied. The motion of a
mechanical system that consists of the main body and one or two links connected with it in a resisting
environment is considered in [21]; and the motion is controlled through high-frequency periodic oscilla-
tions of the links. The motion equation of this system is derived and the average velocity of the motion is
estimated; it is found that this velocity is positive if the angular velocity of the detachment of the attached
links is smaller than the angular velocity bringing them to the axis of the body. The research of the con-
trolled motion of f lat multilink robots across a horizontal plane with the availability of the dry friction
forces obeying the Coulomb law is touched upon in [22]. A multilink robot is controlled by intrinsic
moments applied to hinges that connect the adjacent links; methods for control that ensure the motion of
a multilink robot in a given direction are developed.

Investigations in this field are also being pursued by other researchers. In [23], multilink mechanisms
that simulate the gaits of snakes and worms are considered; their movement is carried out through the

ROBOTICS



528

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 3  2017

VOROCHAEVA et al.

interaction with a support surface by changing the configuration of a mechanism. The control algorithms
that allow an operator to control the velocity and the direction of a motion are proposed; here, the change
in a mechanism-configuration that implements the desired motion is performed automatically. In [24, 25], the
results of researching the dynamics of a snake-like three-link robot (the motion across a rough surface)
that can move by changing its geometric configuration are presented.

Another method for moving a three-link robot across a horizontal surface is described in [26–31]. The
motion is performed not by inertia, but by the control of dry friction forces exerted between support ele-
ments of the central link and the surface. In the interaction of the supports by the contact elements with
the large and small friction coefficients, the main link is stationary and moves across the plane, respec-
tively. The mathematical model of the robot motion is constructed; the model describes two possible types
of movements of the mechanism (longitudinal and transverse) such that for them two phases alternate,
namely, the motion across smooth (the friction coefficient is small and tends to zero) and rough (the fric-
tion coefficient is large) surfaces. It is found that such a method of movement allows one to increase the
average velocity of the robot motion in relation to the inertia method, because there is no need for slow
motion.

The attention of researchers has been drawn in particular to the analysis of the controlled motion of
such robots along an assigned trajectory in accordance with the taken mode and the corresponding step-
wise movement of the robot’s links. Here, one of the main problems consists in increasing the average
velocity of the robot’s motion; this can be performed through using contact elements (frictional supports)
with the controlled coefficient of dry friction that are located on particular links [26–31]. Another import-
ant problem is improving the maneuverability of robots that move across a surface with discretely located
obstacles; for this purpose, one often uses devices with reconfigurable links whose mutual location
depends on the terrain through which the motion is performed [32].

In the present paper, we consider the motion of a five-link crawling robot across a plane with discretely
located obstacles, from a certain initial point to a certain end point; the motion is characterized by no
interaction of the robot’s links with obstacles in the periodic sliding of the central link along the axis of
symmetry lying in a horizontal plane and passing through the center of mass of this link normally to it,
without its detachment from the surface. Here, the lateral links perform synchronized antiphase rotations
and the end links are periodically detached from the surface. In order to increase the average velocity, the
construction is equipped by controlled frictional supports, which allow one to change at given instants the
friction coefficient at the contact points with the support surface, while in order to improve the maneu-
verability of the plant, the configuration of the device is changed through the spatial movements of the
links relative to each other.

The basic aim of this work is to develop a dynamic mathematical model of a crawling robot; the model
represents the sequence of steps associated with the differential motion equations with respect to the
imposed connections, the model of the interaction of supports with a surface, and the model of the pas-
sage of obstacles, as well as the design of the motion-control system of the device and the study of the
influence of the control values on the average velocity and the maneuverability across the surface.

1. DESCRIPTION OF THE ROBOT

We introduce the notion of an environment with obstacles such that a crawling robot moves in it. For
such an environment, we consider a horizontal Oxy-plane with discretely located obstacles A, B, etc.; they
have the shape of parallelepipeds with dimensions lk × bk × hk. Their position in the plane depends on the
xk and yk coordinates along the Ox- and Oy-axes, where k is a letter designation of an obstacle. Figure 1

shows two obstacles A and B, the distance between which is , where  and
.

The considered robot represents a serial chain of five links 1–5 (Fig. 2a); links 1 and 2, along with 4
and 5, are symmetrically attached relative to the middle (central) link 3 [32]. The links of each adjacent
pair are connected together by the hinges equipped with rotary servo drives having integrated reducers (in
order to decrease the rotational velocity and increase the generated moment) and sensors of the rotation
angle, which allow one to measure the relative angles between the links. Hinges 6 installed between links 1
and 2 and between links 5 and 4 generate moments М21 and М45, as well as ensure the rotation of the end
links 1 and 5 about the horizontal axes in the vertical planes. Hinges 7 installed at the ends of the middle
link 3 generate moments М32 and М34, as well as make it possible to rotate adjacent links 2 and 4 about the
vertical axes in a horizontal plane.
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Fig. 1. Environment with discretely located obstacles.
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Fig. 2. (a) Diagram of crawling five-link robot; A and B are obstacles. (b) Diagram of supports of central link. (c) External
appearance of support surfaces; I is contact with small friction coefficient and II is contact with large friction coefficient.
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Contact of the robot with the surface is enabled through four supports, namely, uncontrolled supports 8
(installed on links 1 and 5) and controlled supports 9 (on link 3). To control the friction coefficient in the
interaction of the robot with the surface, supports 9 have the mechanism of varying their frictional prop-
erties (anisotropic supports) by replacing support elements 10 and 11 in the contact area with different
friction coefficients (Fig. 2b). Support 9 is equipped with a drive of progressive motion 12, which includes
an electromagnet and the return springs. The drive makes it possible to move element 10 along the vertical
axis; the surface of this element has a small friction coefficient, whereas the surface of element 11 has a
large friction coefficient. Figure 2c presents the general view of the controlled supports of the robot. It is
clearly seen that support 9 has two contact surfaces, namely, the circle and the ring. The friction coeffi-
cient of the surface of the ring is larger than this coefficient of the surface of the circle. The sizes of sup-
ports 8 and 9 ensure the stable position of the robot when links 1, 2, 4, and 5 rotate.

The robot moves from the initial position in which links 2 and 4 are located at equal angles ϕ01 relative
to link 3, links 1 and 5 interact with the surface, and link 3 comes into contact with the surface by support
elements 10. The motion consists of four stages; during each stage certain movements of the links of the
robot are performed (Fig. 3).

At the first stage, links 1 and 2, as well as 4 and 5, represent a whole entity and synchronously rotate in
antiphase (with respect to the central link), under the action of moments М32 and М34 until the relative
angles become equal to ϕ02. In turn, due to the interaction with the surface by supports 10 with the small
friction coefficient, the central link slides forward; its rotation around the vertical axis is missing. After the
completion of the first stage, support surface 10 moves up by drive 12; here, supports 9 come into contact
by elements 11 with a large friction coefficient, which provides the fixation of the central link on the sur-
face during the second to fourth stages. At the second stage, links 1 and 5 are detached from the surface
by drives 6 due to the rotations with the opposing angular velocities with the use of moments М21 and М45
through equal angles θ0. At the third stage, links 2 and 4, as well as links 1 and 5, which are rigidly con-

Fig. 3. Stages of robot motion.
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nected with them, synchronously rotate in antiphase (with respect to hinges 7) by the corresponding drives
(moments М32 and М34) until their rotation angles relative to link 3 attain values of ϕ01. At the fourth stage,
links 1 and 5 move down until they are located at identical angles (equal to 0°) with the surface due to
drives 6 (moments М21 and М45). After the completion of the fourth stage, the support elements 10 at the
central link move down by drives 12 until contact with the surface is made. After that, the sequence of
stages can be repeated until the robot reaches the required end point.

2. MATHEMATICAL MODEL OF THE ROBOT MOTION

2.1. Kinematic Analysis

The robot motion is considered in the absolute coordinate system Охуz; here, the robot moves across
the Оху-plane. Each link is associated with a relative (local) coordinate system Оixiyizi whose Оixi-axis is
directed along the longitudinal axis of the link. As a result, the Оixi- and Оiyi-axes form with the Оху- and
Oxz-planes angles ϕi and θi, respectively (counted counter-clockwise). It is assumed that each ith link of
the robot represents an absolutely solid bar OiOi+1 of length li and mass mi; here, the center of mass of this
bar coincides with its center of symmetry (point Сi in Fig. 2a). Support elements 8 are placed at points K1
and K4, which are remote from the ends of links 1 and 5 at distance a, whereas supports 9 are located at
points K2 and K3, the distances between which and the end points of link 3 are equal to b.

With the considered mode of motion, links 2–4 always lie in a plane that is parallel to the Оху-plane
and is remote from it at the distance zС3. Links 2 and 4 form with link 3 angles  and links 1 and 5

form with links 2 and 4 angles , respectively. In the general case, link 3 performs a plane-parallel
motion, which is characterized by the linear vC3 and angular  velocities.

In the context of kinematic analysis, the problem of the positions is solved; this makes it possible to
identify the coordinates of the characteristic points of the mechanism (centers of mass of the links, as well
as their end points and contact points) with the known values of the generalized coordinates, i.e., to
describe the mode of the robot motion. For this purpose, the rotation matrices are used; the matrix  is
true for links that rotate in the Оху-plane and the matrix  is valid for links that rotate in the Охz-plane:

, i = 2, 3, 4; , i = 1, 5.

The radius vector of point О1 is

.

Link 1 can rotate in two planes (at angles ϕ2 and θ1); therefore, to determine the coordinates of the
points of this link one uses the rotation matrix Т10, which represents the product of two matrices:

,

In the general form, the radius vectors of points K1, С1, and О2 can be presented as follows:

,

where  is the radius vector of point K1 (С1 and О2) about point О1 in the coor-
dinate system О1x1y1z1, , , and .

The radius vectors of points С3 and О3 are presented as follows:

,
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where ,  are the radius vectors of points С3 and О3 about point О2 in the
coordinate system О2x2y2z2, , and .

The radius vectors of points K2, K3, С3, and О4 are

,

where ,  are the radius vectors of points K2 (K3, С3, and О4)
about point О3 in the coordinate system О3x3y3z3, , , , and .

The radius vectors of points С4 and О5 are presented as follows:

,

where  and  are the radius vectors of points С4 and О5 about point О3

in the coordinate system О4x4y4z4, , and .
In the general form, the radius vectors of points K4, С5, and О6 can be presented as follows:

,

where ,  are the radius vectors of points K4 (С5 and О6) about

point О5 in the coordinate system О5x5y5z5, , , and .
Taking into account the connections stemming from the kinematic diagram of the robot and the con-

sideration of the mode of its motion in which the supports of link 3 never detach from the surface and the
rotation of this link in a horizontal plane does not occur, the vector of generalized coordinates is presented
as follows:

.

The solution of the problem of velocities allows one to obtain expressions for velocities of the centers
of mass of the links of the plant; these expressions are used next in the dynamic analysis when determining
the kinetic energies of the links. The velocities of the main points are determined as follows:

,

,

,

,

,

,

where , , , , and  are derivatives of the corresponding rotation matrices.
The problem of accelerations is core to obtain the formulas by which the accelerations of the centers of

mass of the links of the device are determined; this also finds application in the dynamic analysis when
determining time derivatives of the kinetic energies of links. The accelerations of the main points are
determined as follows:

,
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,

where , , , , and  are second derivatives of the corresponding rotation matrices.

2.2. Model of Passage between Obstacles

The considered mode of the robot motion across a horizontal surface in the absence of detachments of
links 1 and 5 from the surface for changing the configuration of the device can be reduced to a f lat trans-
verse gait; this is detailed in [26–28]. Such a plane motion can be used in order to move the robot across
a surface without obstacles (in free space). However, with discretely located obstacles in the path of the
robot, it is necessary to improve its maneuverability. By the maneuverability, here, we mean the ratio of
the largest transversal size of the robot

to the minimum distance between obstacles LАBmin: . For their contactless passage, the larg-
est transversal size of a device must be less than or equal to the minimum distance between the obstacles:

, .
The maneuverability for the proposed robot is improved by reducing the distance LАBmin at the third

stage due to the detachment of links 1 and 5 from the surface while changing the robot’s configuration,

,

with the lifting of links 1 and 5 at angles . This reduces the operating areas of the links (see
Fig. 4) and allows the robot to avoid obstacles under their more dense location on the plane; hence, here

. In Fig. 4, the following designations are used:  is the area outside the links of the robot, 

the operating area of link 1 for θ21 = 0,  the operating areas of links 1 and 2 for θ21 = π/2, 

is the area of the possible location of obstacles within the dimensions of the robot, A is the trajectory of
point О1 for θ21 = 0, B is the trajectory of points О1 and О2 for θ21 = π/2, C is the trajectory of the point О1
in the case where the robot moves forward, I is the position of the links at the beginning of the third stage
and the completion of the first stage, II is the position of the links at the instant of the completion of the
third stage and the beginning of the first stage, and III is the position of the links at the instant of the com-
pletion of the first stage and the beginning of the third stage.
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In the first case, the robot can avoid obstacles that are outside the operating areas of the links .
In the second case, the passage between the obstacles located within the operating areas of the end links
is possible, except for zones bounded by links 1 and 2 (5 and 4) at the instant of the completion of the first

stage (III) and curves В, i.e., the trajectories of points О1 (О6) during this stage: the area . The an-
gle ϕkr is a certain critical angle determined by the design parameters of the robot; this angle is close to π
(and in the limiting case reaches it), and with it the robot can move across the plane with obstacles.

At the third stage, links 1 and 2 (4 and 5) with link 3 fixed on the surface represent a two-dimensional
spatial manipulator; they overcome an obstacle along a certain spatial trajectory from the initial point А
to the end point B (see Fig. 5). Here, the form of this trajectory can vary; it depends upon the combination
of the operation of drives 6 and 7 (sequential or parallel). In this paper, we consider the stepwise operation
of drives 6 and 7: first the lifting of link 1 relative to link 2 by drive 6, then their joint rotation about the
central link by drive 7, and then the lowering of link 1 until it interacts with the surface by drive 6. This is
conditioned by the interest in investigating the influence of the drives’ moments generated in the vertical
planes and a horizontal plane, on the robot motion. The distances between point О3 and an obstacle along
the Ох- and Оу-axes are xpr and ypr.

At the first stage, the passage between obstacles can be implemented in two ways: without the interac-
tion of the links of the robot with the obstacles (the contactless way) and with their interaction (the contact
way). Assume that the location of the obstacles on the surface and their sizes are such that the links of the
robot are not in contact with the obstacles. Figure 6 illustrates the contactless method of overcoming one
or two small obstacles located in such a way that the displacement (in the positive direction) of the axis of
motion, during the slippage of the central link, exceeds the distance at which the lateral links are pushed
back (I–III correspond to the designations used in Fig. 4). In this case, the robot moves along the axis of
motion without rotation about it (the vector  coincides with the axis of motion; ).

2.3. Constructing the Mathematical Model

In the robot motion across a horizontal rough plane, the robot is acted upon by the following forces
and moments: gravity  (i = 1, …, 5), normal reactions  (j = 1, …, 4 is the number of the support),
the friction forces  ( j = 1, …, 4), and the control moments М32 and М34, as well as М21 and М45. The
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Fig. 5. Diagram of overcoming an obstacle by robot in spatial change of configuration of links.
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movement is carried out due to the friction forces , which are controlled by the moments М32 and М34,
together with М21 and М45.

In order to determine the normal reactions  and the friction forces Fj, we assume that they are con-
centrated at points Kj of the contact of the robot with the surface; here, the friction forces are described by
the model of Coulomb dry friction [33]

(2.1)

where F0j is the static-friction force at point Kj, Nj is the normal reaction at point Kj, fj is the coefficient of
sliding friction, and  is the absolute velocity of the support at point Kj.

The projections of the friction forces on the coordinate axes are determined as follows:

, ,
where αj is the angle between the vector of the friction force and the Oх-axis.

At points K1 and K4, at all stages of the motion, the friction coefficient fj = 1,4 = fmin. The friction coef-
ficient of the supports at points K2 and K3 is a controlled value. In the case where link 3 rests on support
elements 10, the friction coefficient fj = 2,3 = fmin, whereas if they are replaced by contact elements 11, the
friction coefficient fj = 2,3 = fmax  fmin. It is assumed that fmax is such that one eliminates the possibility of
link 3 sliding. The diagram of the dependence of the friction coefficients from the stages of motion is pre-
sented in Fig. 7, where t1–t4 are instants of switching between the stages.

Consider a stepwise robot motion across the plane with allowance for the generalized coordinates
introduced previously; each stage of this motion is characterized by constraints imposed on the system and
differential equations that describe the motion in a stage. In order to derive the equations of motion at each
stage, the Lagrange equations of the second kind are used [26–28, 32]. The formulas by which one deter-
mines the normal reactions in the supports and the static-friction forces are obtained using the D’Alem-
bert principle [26–28, 32].

We assume that the system in the initial position is at rest on four supports and the robot is acted upon
by the forces of gravity, the friction forces, and the normal reactions; here,  and , link 3
is located at the angle  about the Ох-axis, links 2 and 4 are located at angles  rel-
ative to link 3, and links 1 and 5 make the angles  with links 2 and 4. Here and in the subse-
quent discussion, the upper index in brackets indicates the number of the state and 0 specifies the initial
position. The contact of link 3 with the surface is made by supporting elements 10.
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Assume that at all stages of the considered mode of motion, the following conditions are fulfilled:

, , , .
If all four supports are at the surface, we consider that

.
Then for the normal reactions in the initial position (Fig. 8a) we have

; (2.2)

in this case, the friction forces

.
The first stage (moving the system forward) is characterized by the displacement of all the links of the

robot in a horizontal plane under the action of moments М32 = –М23 and М34 = –М43: links 2 and 4 are
synchronously rotated in opposite directions (together with links 1 and 5) relative to link 3, which slides
forward along the axis of motion, whereas the lateral links slide back; in this event, . The
motion of the system depends on four generalized coordinates: хС1, уС1, ϕ2, and ϕ4. The corresponding
motion equations can be written as follows:

,

,
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,

,

where  and  ( , , and ) are coefficients which represent the set of the geometric
and mass characteristics of the robot’s links; Fj is determined by formula (2.1) taking into account (2.2),
during which at this stage the friction coefficient fj =2,3 = fmin. At this stage, the formulas of the normal reac-
tions coincide with the determination of the same values in the initial position. The stage ends when angles
ϕ32 and ϕ34 attain the value of ; in this case, , , and . All sub-
sequent steps are carried out with the stationary link 3; this is achieved by the interaction with the surface
of support elements 11 ( fj = 2,3 = fmax @ fmin).

At the second stage (the lifting of the end links), the lifting of links 1 and 5 and the detachment of their
supports from the surface are carried out due to the action of moments M21 and M45, which are equal in

magnitude and opposite in direction. In the process of this stage, link 3 remains stationary: ,
, and , during which . The movement of links 1 and 5 is described by

two equations for the generalized  and  coordinates:

, .

The condition of the completion of this stage is . The normal reactions and the projec-
tions of the friction forces are determined by the formulas (see Fig. 8b)

,

, .

At the stages of the lifting and the lowering of links 1 and 5, of greater importance is the solution of the
stability problem for the plant on two supports 9 of the central link. The minimum required length lP of
support 9 is determined using the ZMP (zero-moment point) method, according to which the zero-
moment point must lie within the support surface 9, and this allows one to avoid the device overturning
[34, 35]. Consider the location of links 2 and 3, as well as 3 and 4 at angles  and 
such that the maximum overturning moment arises. Figure 9 shows the forces applied to links 1–3,
namely, the gravitational forces m1g, m2g, and m3g and the inertial force Ф1и, which depends on the rota-
tion of link 1 in a vertical plane and has the normal Ф1иn and tangential Ф1иτ components. The minimum
required length of support 9 is determined by the formula

,

where .
At the third stage (changing the configuration of the links in a horizontal plane), link 3 remains sta-

tionary: , , and . Links 1 and 2, along with links 4 and 5 rotate due to the action
of moments  and , which are equal in magnitude and opposite in direction, until the condition

 (the condition of the stage’s completion) is fulfilled; here, . The robot
motion is described by two equations for the generalized ϕ2 and ϕ4 coordinates:

, .
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The normal reactions are determined as follows (see Fig. 8b):

.

The friction forces are determined by the formulas of the second stage.

At the fourth stage (the lowering of the end links), link 3 lies stationary on the surface: ,
, and . The stage consists in the rotation of links 1 and 5 relative to links 2 and 4 in the
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Fig. 8. Diagrams of determining normal reactions and friction forces: (a) four contact points and (b) two contact points.
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vertical planes due to the action of moments  and , which are equal in magnitude and opposite in
direction, until the equality for the relative angles  is fulfilled. Here, the contact points K1
and K4 interact with the surface and the normal reactions have the same values as at the first stage:

. The directions of moments М21 and М45 are opposite to the specified directions

for the second stage, while the equations correspond to the second stage; in this case, .
The normal reactions and the friction forces are determined in the same way as in the second stage. At the
instant the stage ends, the robot is found in the initial position; link 3 comes into contacts with the surface
by support elements 10.

3. CONTROL SYSTEM

The robot moves due to the control system (see Fig. 10). Assume that the system generates piecewise
constant voltages , , , , , and , which are applied to the drives of the robot during
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Fig. 9. Diagram of forces applied to links 1–3 for determining length of support 9 by ZMP method.
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certain time intervals determined by the relative angles , , , and  of the rotation of the links
and their angular velocities , , , and . In accordance with the relative angles , , , and

 of the rotation of the links and their angular velocities , , , and , one finds the instants t1–t4 of
switching between stages of motion:

t1: ϕ32(t1) = ϕ43(t1) = ϕ02, θ21(t1) = θ54(t1) = 0,

t2: θ21(t2) = θ54(t2) = θ0, ϕ32(t2) = ϕ43(t2) = ϕ02, t2 > t1,

t3: ϕ32(t3) = ϕ43(t3) = ϕ01, θ21(t3) = θ54(t3) = θ0, t3 > t2,

t4: θ21(t4) = θ54(t4) = 0, ϕ32(t4) = ϕ43(t4) = ϕ01, t4 > t3;

here, the following time intervals of the stages are formed:

,

The control system consists of the control unit, which includes the comparator and the logical control-
ler, and the control plant, which represents the crawling robot. The input of the comparator receives set-
ting actions, which represent the relative rotation angles of links 2 and 3, 4 and 3, 2, and 1, along with 5

and 4 ( , , , and ), as well as the relative angular velocities , , , and . The values of
the setting actions are presented as follows:

 

The comparator compares the setting values with the controlled values, namely, the factual values of
the rotation angles , , , and  of the links and their angular velocities , , , and . The
mismatch errors between signals

, ,

, ,

, ,

,

arrive at the logical controller, which contains two units. One of them exerts control depending upon the
mismatch errors of the angular values in a horizontal plane , , , and , while the
second unit, exerts control in the vertical planes: , , , and . The controller deter-
mines the instants t1–t4 of switching between the stages and forms time laws for varying voltages , ,

, , , and  at each stage. In this case, the first unit of the controller is responsible for voltages
, , , and , whereas the second unit is responsible for voltages  and .
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The algorithm of forming the voltages we present as follows (the diagram is shown in Fig. 11):

The voltages represent piecewise constant functions of time; their level is chosen from specific con-
structive considerations and can be optimized depending upon the chosen criterion (the maximum aver-
age motion velocity, the minimum power consumption, etc.). The signals in question arrive at the drives
of the robot and we form the moments and the forces there:
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Fig. 11. Voltage diagram.

U34

U32

U32max

U32min

U21

U45

Uop2

Uop3

t1 t2 t3 t4 t

t

t

t

t

t

First
stage

Second
stage

Third 
stage

Fourth
stage

0



542

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 3  2017

VOROCHAEVA et al.

, ,

,

proportional to the motors’ currents , , , , , and , which are determined by the equation of
an electric drive [36]. The obtained moments arrive at the links of the device and provide their rotations
relative to each other in the horizontal and vertical planes at the angles , , , and  with the
angular velocities , , , and , while the forces arrive at the supports of link 3 of the robot and
change the coefficient of friction fmin/fmax between them and the surface.

4. SIMULATION OF THE ROBOT MOTION
The robot motion across the plane is simulated numerically by a specifically developed algorithm,

which provides switching between the stages of the motion when the links' rotation angles take their end
values. Here, a counter n that takes values from one to four and corresponds to the number of a stage is
used. The simulated robot has the following parameters: the lengths of the links l1 = l5 = 108 mm, l2 =
l4 = 0, and l3 = 100 mm; the masses of the links m1 = m5 = 45 g, m2 = m4 = 0, and m3 = 70 g (i.e., it is
assumed that the lengths and the masses of links 2 and 4 are negligibly small in comparison to the lengths and
the masses of the other links); the amplitudes of the moments generated by drives  N m
and  N m; and the height of the supports zC3 = 0.

4.1. Testing
In order to check the adequacy of the developed mathematical model, it was tested by constructing and

analyzing the graphs of the time dependences of the generalized coordinates and their derivatives for three
variants of the attained angles: (1) ϕ01 = π/2, ϕ02 = –π/2, and θ0 = π/4; (2) ϕ01 = π/2, ϕ02 = 0, and θ0 =
π/2; and (3) ϕ01 = 0, ϕ02 = –π/2, and θ0 = π/2. The curves in Figs. 12–14 correspond to the following
values of the angles: 1, 3, and 5 fit ϕ01 = π/2, ϕ02 = –π/2, and θ0 = π/4; 1', 3', and 5' fit ϕ01 = π/2, ϕ02 = 0, and
θ0 = π/2; and 1 '', 3 '', and 5 '' fit ϕ01 = 0, ϕ02 = –π/2, and θ0 = π/2.

Figure 12 presents the graphs of the time dependences of the projections of the coordinates for the cen-
ters of mass of the links along the Ох-, Оу-, and Оz-axes. Figure 12a shows that along the Ох-axis the cen-
tral link 3 remains stationary and links 1 and 5 move symmetrically about the origin. Here, the centers of
mass of links 1 and 5 move along the Ох-axis at the first stage independently of the values of angles ϕ01,
ϕ02, and θ0, while at the third stage, they move only in the case where θ0 ≠ π/2 (graphs 1 and 5), as the
rotation of links located normally to the surface about a vertical axis does not cause a change of the coor-
dinates of their centers of mass. At the second stage, the lateral links do not move along the Ох-axis only
when ϕ02 = –π/2 (graphs 1 and 5, together with 1 '' and 5 ''), while at the fourth stage, when ϕ01 = π/2
(graphs 1 and 5, along with 1 ' and 5 '), i.e., in the case where the links are located in a horizontal plane
along the axis of motion. According to Fig. 12b, link 3 moves in the positive direction of the Оу-axis only
at the first stage. In parallel, the end links of the robot move in the opposite direction; here, the distance
covered by them is less than the distance covered by the central link. At all other stages, link 3 remains
stationary and links 1 and 5 move forward along the Oy-axis: at the second stage, due to their lifting; at
the third stage, due to the rotation relative to link 3; and at the fourth stage, due to being lowered to the
surface. The central link covers the largest distance along the Оу-axis at the largest range of the rotation
angle of the lateral links in a horizontal plane ϕ01–ϕ02 = π (graph 3); in the two other cases, ϕ01 – ϕ02 =
π/2 and the distances covered by the central link are identical.

The graphs of the time dependences along the Оz-axis (Fig. 12c) demonstrate that link 3 never comes
off the surface, during which links 1 and 5, in the process of the first stage, are located on the surface, move
up at the second stage and attain angle θ0 to the time of the completion of the stage, remain at a fixed
height during the third stage, and move down during the fourth stage until the angles of their inclination
to the horizon become 0 rad.

Also note that under the equal ranges of the change in the rotation angle of the lateral links in a hori-
zontal plane, the durations of the first stages are almost identical; this stage is completed slightly faster
when ϕ01 = 0 and ϕ02 = –π/2. The time ranges of the other three stages in both cases are identical. When
ϕ01 – ϕ02 = π, the first and third stages continue for a longer time, whereas the second and fourth stages
continue for a shorter time, because θ0 = π/4 and not θ0 = π/2.

=21 21 21M k i =45 45 45M k i

=2 2 2op op opF k i =3 3 3op op opF k i

32i 34i 21i 45i 2opi 3opi
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The graphs in Fig. 13 confirm the correctness of the mathematical model in relation to the rotation
angles of the links: the central link does not rotate in the horizontal and vertical planes during the entire
movement, while the rotation angles of links 1 and 5 change with time in inverse manner relative to 0 rad;
i.e., the values of their rotation angles at each instant are equal in magnitude and opposite in direction.
The values attained by the angles at each stage also illustrate the justice of the performed simulation,
because they correspond to the values specified in the model.

Figure 14 shows that the angular velocities of the rotation of links 1 and 5 in a horizontal plane and ver-
tical planes are equal in magnitude and opposite in direction, while for link 3, these velocities are zero.
Here, the lateral links rotate in the horizontal plane during the first and third stages and in the vertical
planes, during the second and fourth stages. The angular velocities at the beginning of the stages always
have zero values, increase in magnitude by proportional or curvilinear laws, attain the largest values by the
instants of the completion of the stages, and are sharply zeroized.

According to Fig. 15, the relative rotation angles of the lateral links in every simulated case are changed
by the same laws (1 and 5 for ϕ01 = π/2, ϕ02 = –π/2, and θ0 = π/4; 1 ' and 5 ' for ϕ01 = π/2, ϕ02 = 0, and
θ0 = π/2; and 1 '' and 5 '' for ϕ01 = 0, ϕ02 = –π/2, and θ0 = π/2). In a horizontal plane, the angles at the first
stage decrease according to certain curves, the convexities of which are directed upwards from the initial
values equal to ϕ01, and take values of ϕ02 by the time of the completion of the first stage; they remain con-
stant at the second stage; they increase at the third stage by the curves, which represent arcs of the circles,
from ϕ02 to ϕ01; and they also remain fixed at the fourth stage. In the vertical planes, the angles at the first
and third stages are equal to 0 rad and θ0, respectively; during the second stage, they gradually increase
from 0 to θ0; and during the fourth stage, conversely, they gradually decrease from θ0 to 0.

Note that the time of the first and third stages is significantly longer than the time of the second and
fourth stages. In addition, all the presented graphs demonstrate that the values of, first, the coordinates'

Fig. 12. Graphs of time dependences of projections of coordinates for centers of mass of links: (a) xСi(t), (b) yСi(t),
and (c) zСi(t).
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Fig. 13. Graphs of time dependences of rotation angles of links: (а) ϕi(t) and (b) θi(t).
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projections of the centers of mass of the links, second, the angles of their rotation, and, third, the angular
velocities at the initial instant of the simulation and after four stages are identical.

4.2. Investigation of the Average Velocity

Figures 16 and 17 present the results of investigating the influence of the control parameters on the
average velocity of the robot motion; here, the control parameters are the largest values of the angles of
the links’ rotation in the horizontal ϕ01 and ϕ02 and vertical θ0 planes, as well as of the amplitudes of the
moments , , , and  of the drives in the form of dependences of the distance
covered during the four stages by the center of mass of link 3, the time spent on this, and the average veloc-
ity of the varied values. The average velocity is determined by the formula , where  is the
distance covered by the center of mass of the robot along its transverse axis for one cycle (four stages) and

 is the time of one cycle.

The character of changing the average velocity of the robot from the values of ϕ01, ϕ02, and θ0 is demon-
strated in Fig. 16. The graphs show that with values of angles ϕ01 and ϕ02 increasing from 0 to 7π/9, the
average velocity of the robot increases and then decreases. In this case, at angles  the

32 maxM 34 maxM 21maxM 45maxM

= /Csr CS Tv CS

T

≤ ϕ ϕ ≤ π01 020 , 4 /9

Fig. 16. Graphs of (a) distance SC, (b) time Т, and (c) average velocity vCsr against amplitudes of rotation angles of links:
(1) ϕ01 = ϕ02 for θ0 = π/2, (2) ϕ01 for ϕ02 = π/2 and θ0 = π/2, (3) ϕ02 for ϕ01 = π/2 and θ0 = π/2, and (4) θ0 for ϕ01 =
ϕ02 = π/2.
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dependence is proportional and at  the graph is curvilinear, during which its con-
vexity is directed upwards; starting from , the increase in the average velocity with increasing
ϕ01 and ϕ02 is insignificant. Besides, it is seen that in the cases where ϕ01 or ϕ02 is π/2, the average velocity
varies according to almost the same law, depending upon the varied parameter ϕ02 (ϕ01). If ϕ01 = ϕ02, then
in the area of the proportional increase of the average velocity, this curve is positioned significantly below
the two curves considered earlier; for ϕ01 = ϕ02 = 4π/9, all three curves take almost the identical values;
and on the interval , the third curve is positioned slightly higher. Hence, it can be
concluded that in order to increase the average velocity of the robot motion, it is necessary that one of the
two angles, ϕ01 or ϕ02, takes the value π/2 and the second angle does not exceed 4π/9, or one or two angles
take the value 7π/9.

For ϕ01 = π/2 and for ϕ02 = π/2, the distances covered by the center of mass of the central link in the
four stages are identical, whereas the time spent on the passage of the stages in the first case is slightly
shorter; here, SC increases proportionally to the increase of the angles until they attain the value of π/3,
after that the graph has a break and the increase becomes curved. We also have an analogous dependence
for ϕ01 = ϕ02; however, the covered distance here is substantially smaller. The time T spent on the passage
of the four stages in all three cases increases proportionally to the rotation angles of the links.

We have the following dependences of all these values from the angle θ0 of the lifting of the end links:
the distance SC does not change with increasing θ0, the time T increases proportionally, and the average
motion velocity  decreases according to the hyperbolic law.

π < ϕ ϕ ≤ π01 024 /9 , /2
ϕ = π0 4 /9

π < ϕ ϕ ≤ π01 024 /9 , /2
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Fig. 17. Graphs of (a) distance SC, (b) time Т, and (c) average velocity vCsr against control moments: (1) М32max and
М34max as well as (2) М21max and М45max.
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Figure 17 shows that the average velocity of the robot motion is almost proportional to the amplitude
of the moment of the drive that provides the rotation of links 2 and 4 in a horizontal plane. This is caused
by the fact that for faster implementation of the first stage, during which link 3 is “ejected” forward along
its transverse axis, and for increasing the distance covered by this link, the so-called “fast” movements of
links 2 and 4 are required [13–22]. The faster the relative movements of the links the larger the distance
covered by link 3 and the shorter the time in which this distance is covered. In this case, the distance SC
increases and the time spent on the passage of the four stages decreases

The amplitude of moment М21max has an insignificant effect on the average velocity of the robot
motion. At first, with the increase of М21max (up to 0.06 N m), the value of vCsr slightly increases and then

Fig. 18. Areas I and II such that it is impossible to overcome obstacles if they are located in these areas, for ϕ02 = π/2:
(a) ϕ01 = 0, (b) ϕ01 = π/6, (c) ϕ01 = π/4, (d) ϕ01 = π/3, and (e) ϕ01 = π/2.
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remains almost fixed; the time of the motion decreases according to the hyperbolic law; and the dis-
tance SC remains unchanged the whole time.

Thus, in order to increase the average velocity of the robot motion, it is necessary to take drives 7 that provide
the lateral links’ rotation relative to the central link in a horizontal plane, with a large rotation moment, while
drives 6 can have a small rotation moment sufficient to move up links 1 and 5 in the vertical planes.

4.3. Investigation of the Robot’s Maneuverability
In order to estimate the maneuverability of the device when moving across a plane with obstacles, the

criterion of maneuverability ξ is used. With the allowance made for the lengths of the links of the consid-

Fig. 19. Areas I and II such that it is impossible to overcome obstacles if they are located in these areas) for ϕ01 = π/2:
(a) ϕ02 = 0, (b) ϕ02 = π/6, (c) ϕ02 = π/4, (d) ϕ02 = π/3, and (e) ϕ02 = π/2.
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ered robot, the criterion of maneuverability ξ = 3.16 (L = 316 mm and LABmin = 100 mm); this value is
3.16 times larger than the same criterion in the f lat transverse robot motion, where ξ = 1, L = 316 mm,
and LABmin = 316 mm; i.e., the lifting of links 1 and 5 during the change in the robot’s configuration allows
one to more than triple the maneuverability of the device.

In addition, we constructed the areas to make it impossible to overcome obstacles if they are located in
them; angles ϕ01 and ϕ02 of the rotation of the lateral links in a horizontal plane are used as variable param-
eters. The graphs in Figs. 18 and 19 show two areas. Area I is bounded by the trajectory of the endpoint of
link 1 О1 at the first stage and the straight line that connects the position of this point at the time of the
completion of the first stage with the position of point О3 at the beginning of this stage (this straight line
shows the position of links 1 and 2 at the beginning of the first stage). Area II is bounded by the above-
described straight line and the straight line that connects the position of point О1 at the time of the com-

Fig. 20. (a) Level lines of θ0 in plane hk(xk) and (b) graphs of θ0(hk) for (1) хk = 0.02 m, (2) хk = 0.04 m, (3) хk = 0.06 m,
(4) хk = 0.08 m, and (5) хk = 0.1 m.

0.2

0.4

0.6

0.02

(a)

0.04 0.06 0.08 0.10
xk, m

hk, m

θ0 = π/6 θ0 = π/18

0

4π/9 

π/3

2π/9

π/9

0.2 0.4 0.6

(b)

5

43
1

2

hk, m

θ21, rad

θ0 = 4π/9

θ0 = 7π/18

θ0 = 5π/18

θ0 = 2π/9
θ0 = π/9

θ0 = π/3

0



550

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 3  2017

VOROCHAEVA et al.

pletion of the first stage, with the end position of point О3 at the first stage (this straight line shows the
position of links 1 and 2 at the time of the completion of the first stage). In Figs. 18 and 19, the following
designations are used: 1 and 4 are the trajectories of points О1 and О6 at the first stage and 2 and 3 are the
trajectories of points О3 and О4 at the first stage.

Here, for ϕ01 = ϕ02, these areas are symmetrical about the axis that is normal to the direction of the
robot motion. The obtained areas are the smallest at small angles ϕ01 and ϕ02, and largest at ϕ01 = ϕ02 =
π/2; hence, the robot’s maneuverability is improved in the case of moving at small angles of rotation of
the lateral links.

Besides, we estimate the effect of the sizes of an obstacle and its location in the plane on the angles of
the lifting of the end links. If a considered obstacle has the shape of a parallelepiped, angle θ0 is acted upon
by height hk of the obstacle and distance xk to which it is moved from the end point О3 of link 3 in the direc-
tion opposite to the axis of motion. For this purpose, the level lines corresponding to the angles of the lift-
ing of the end links in the plane of parameters hk and xk are constructed; these lines demonstrate that the
value of angle θ0 is proportional to both values (see Fig. 20a). The curves in Fig. 20b show that angle θ0 of
the lifting of the end links increases with an increase of the height of an obstacle according to the curvi-
linear laws; here, with an increase of the distance хk to which the obstacle is moved from the end point of
the central link, the same angle θ0 will be required at the larger height of the obstacle.

CONCLUSIONS

In this work, we consider one of the modes of moving a five-link crawling robot across a rough plane
with discretely located obstacles: the motion along the transverse axis of the central link. The robot differs
from analogs by the controlled friction in supports of the central link and the changeable configuration in
vertical planes. In order to increase the average motion velocity, the friction coefficients in the supports of
the central link varies in such a way that at the stages of changing the configuration of the plant, this link
remains stationary on the surface (the friction coefficient is large), whereas in stages of motion the con-
sidered link moves in a given direction (the friction coefficient is small). To improve the maneuverability
in overcoming obstacles without contact, the device structurally possesses the property of detaching the
end links from a surface; this reduces the minimum distances between obstacles at the same transverse size
of the robot and allows the robot to overcome obstacles that are spaced more densely. The design scheme
of the robot is developed and the sequence of the stages of its motion is proposed; for each step, systems
of differential equations are written with allowance made for the restrictions applied on the plant and for
the conditions of switching between them, an automatic control system of the robot motion is designed,
and operation algorithms of the logical controller are presented. Besides, considerable attention is paid to
the robot’s contactless passage between obstacles.

As a result of the simulation by the numerical method, the graphs of the time dependences of, first, the
coordinates for the centers of mass of the links, second, the rotation angles, and, third, the angular veloc-
ities are obtained; these graphs allow one to test the operation of the software package and study the fea-
tures of the movement of the robot’s links at each stage.

In addition, the dependences of the average velocity of the device’s motion on the control parameters
are presented. It is found that in order to increase this velocity, it is necessary to implement the plant’s
motion with small angles ϕ01 and ϕ02 of the rotation of the links in a horizontal plane (no larger than 4π/9);
with minimum possible angles θ0 of the lifting of the end links; with the largest amplitudes of the moments
М32max (М34max), which provide the rotations of the lateral links relative to the central link in a horizontal
plane; and with amplitudes of the moments М21max (М45max), which lift the end links, close to the mini-
mum amplitudes.

We also estimated the maneuverability of the device that moves across a surface with discretely located
obstacles. For this purpose, the criterion ξ is introduced, which represents the ratio of the largest trans-
verse dimension of the robot to the minimum distance between obstacles. It is found that the change in
the robot’s configuration due to the lifting of the end links more than triples its maneuverability. As a result
of the simulation, areas of the surface are found such that it is impossible to overcome obstacles without
contact if they are located in these areas. In addition, it is found that these areas are expanded with a
decrease of angles ϕ01 and ϕ02. Besides, a correspondence is established between the minimum required
angle of the lifting of the end links θ0 and the size of an obstacle, together with its location in the plane.
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