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0. INTRODUCTION

The Sylvester and Lyapunov linear algebraic matrix equations are key equations in the theory of con-
trolled dynamic systems. The Lyapunov equation is used to analyze the stability, controllability, and
observability of dynamic systems. The Sylvester equation is widely used for the stabilization of dynamic
systems.

The majority of methods for solving these equations are numerical. The most practically important
among them are the methods based on the orthogonal transformations of the original matrices because
such methods are numerically stable. Presently, there are two such algorithms for solving the Sylvester and
Lyapunov matrix equations based on reducing their matrices to the real Schur or Hessenberg form—these
are the Bartels–Stuart (BS) algorithm [1] and Golub–Nash–Van Loan (GNL) algorithm [2].

In practical applications of system theory, numerical methods are often insufficient. For example, the
methods mentioned above make it possible to obtain a unique solution only if the equation is uniquely
solvable (consistent). They do not take into consideration various insolvability conditions and the cases
when equations have multiple solutions, which is needed for solving sets of equations arising in systems
theory.

In this paper, we develop a method for the analytical solution of the Sylvester and Lyapunov equations
based on normal forms of numerical matrices. To obtain an analytical form of the sets of solutions (and
conditions for their existence), we reduce the original matrices to the Jordan normal form by analogy
with [3].

It is well known [3–5] that any square  matrix  over the number field  (  or ) can
be represented by the decomposition

, (0.1)

where  is the Jordan normal form or just the Jordan form of the matrix ,  is the invertible matrix of
the right eigenvectors

,

×n n A R =R R =R C

× × × ×=n n n n n n n nA R J L

J A R

[ ]= �1 nR r r

SYSTEMS THEORY
AND GENERAL CONTROL THEORY



2

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 1  2017

ZUBOV et al.

and  is the inverse of the matrix of right eigenvectors (in a special case, this is the matrix of left eigenvec-
tors)

.

The Jordan form of a matrix is a quasi-diagonal (block diagonal) matrix

,

where  is the number of elementary divisors of the matrix.
The diagonal elements  are called Jordan blocks; they have a special structure with the eigenvalues

on the main (principal) diagonal and ones on the superdiagonal (or subdiagonal). Depending on the loca-
tion of the ones, the upper

and the lower

Jordan blocks are distinguished. Up to a permutation of the Jordan blocks, any matrix can be reduced to
a unique Jordan normal form using similarity transformations.

To represent the elementwise structure of the Jordan form of a matrix in the general form, we define
the generalized notation of the Jordan form of a matrix, namely, the upper form

 (0.2)

and the lower form

, (0.3)

where the superdiagonal  and subdiagonal  elements are ones or zeros, depending on the size of
the Jordan blocks corresponding to the th eigenvalue; we have the following obvious equalities:
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Based on these facts, we formulate and prove theorems on the analytical solution of the Sylvester and
Lyapunov equations.

1. CONTINUOUS SYLVESTER AND LYAPUNOV EQUATIONS
Theorem 1. The analytical solution of the continuous Sylvester equation

(1.1)
is given by the formula

. (1.2)

Here  and  are the matrices of the right eigenvectors, and the elements  are
determined by the formulas

 if , (1.3)

 if  and , (1.4)

 if  and , (1.5)

where  and ,  are arbitrary parameters,  are the lower and the upper Jordan

normal forms of the corresponding matrices,  are the eigenvalues on the main diagonal of the
Jordan normal forms, and  is an element of the matrix . If the equation has no solutions, we write

.
A proof of Theorem 1 is given in the Appendix.
Let us analyze the results of Theorem 1 and formulate practically important corollaries.
It is known (see [4, 6]) that, if the matrices  and  are diagonalizable, then their Jordan forms coin-

cide with the matrices of the eigenvalues and all the elements of  are  zero.
Corollary 1. The analytical solution of the continuous Sylvester equation

with simple (diagonalizable) matrices  is given by the formula

.

Here  are the matrices of the right eigenvectors and the elements  are given by the formulas

 if , (1.6)

 if  and , (1.7)

 if  and , (1.8)

where  and ,  are arbitrary parameters, and  are the eigenvalues of the matrices.
If, in addition to the diagonalizability of , conditions (A.9) hold for all i and j, then Eq. (1.1)

has a unique solution, which is obtained from the following corollary [6].
Corollary 2. In the case of the unique solvability of the continuous Sylvester equation

with simple (diagonalizable) matrices A and B, its solution is determined by the formula

, (1.9)
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where , ,  are the matrices of the right eigenvalues, , and
 denotes the elementwise multiplication of matrices.

Since the Lyapunov [5, 6] equation is a special case of the Sylvester equation, we have the following
theorem.

Theorem 2. The analytical solution of the continuous Lyapunov equation

(1.10)
is given by the formula

. (1.11)

Here  is the matrix of the left eigenvectors and the elements  are determined by the formulas

 if , (1.12)

 if  and , (1.13)

 if  and , (1.14)

where , ,  is the ith column of the matrix  and  are arbitrary parameters,  is the upper
Jordan normal form of the matrix , and  are the eigenvalues which are located on the main diagonal
of the Jordan normal form.

The proof of Theorem 2 is based on the assertion of Theorem 1 taking into account the obvious change
of notation and the decompositions

, (1.15)

, (1.16)
which are similar to (0.1). It is easy to verify that, for stable (Hurwitz) matrices [4–6], Theorem 2 gives a
unique positive definite solution.

2. THE DISCRETE SYLVESTER AND LYAPUNOVE EQUATIONS
By analogy with the continuous case, we formulate and prove theorems on the solution of the discrete

Sylvester and Lyapunov equations.
Theorem 3. The analytical solution of the discrete Sylvester equation

(2.1)
is given by the formula

.

Here  are the matrices of the right eigenvectors, and the elements  are determined by the
formulas

 if ,

 if  and ,

 if  and ,

where  and ,  are arbitrary parameters,  the lower and upper Jordan normal

forms of the corresponding matrices, and  are the eigenvalues on the main diagonals of the Jor-
dan normal forms.

A proof of Theorem 3 can be found in the Appendix.
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This theorem immediately entails the following corollaries.
Corollary 3. The solution of the discrete Sylvester equation

with simple (diagonalizable) matrices A and B is given by the formula

.

Here  are the matrices of the right eigenvectors, and the elements  are determined by the
formulas

 if , (2.2)

 if  and , (2.3)

 if  and ,

where  and ,  are arbitrary parameters, and  are the eigenvalues of the matrices.
Corollary 4. In the case of the unique solvability of the discrete Sylvester equation

with simple (diagonalizable) matrices A and B, the solution is given by the formula

, (2.4)

where  are the matrices of the right eigenvectors,

,

and  denotes the elementwise (Hadamard) multiplication of matrices.
The reasoning above implies the following result.
Theorem 4. The analytical solution to the discrete Lyapunov equation

(2.5)
is given by the formula

. (2.6)

Here  is the matrix of the left eigenvalues and the elements  are determined by the formulas

 if , (2.7)

 if  and ,

 if  and ,

where  and ,  are arbitrary parameters,  is the upper Jordan normal form of , and

 are the eigenvalues on the main diagonal of the Jordan normal form.
Theorem 4 is an alternative form of the solution to the Lyapunov equation obtained in [7], where this

solution was obtained (under certain restrictions) based on the algebraic spectral approach.

3. GENERALIZATION AND ANALYSIS OF THE RESULTS
To facilitate the analysis of the results obtained above, we summarize the assertions of Theorems 1–4

in Table 1.
It is seen from Table 1 that, in addition to the known unique solvability conditions of the Sylvester and

Lyapunov equations [1–3, 5, 6], we found the conditions for the existence of a set of solutions and insolv-
ability conditions.
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Of special interest is the case of the existence of a set of solutions when the size of the Jordan blocks is
greater than one. Consider how the elements  are formed in the general case when, for example, the
continuous Sylvester equation is solved.

Theorem 1 states that, if the conditions

(3.1)

,i jy

− − − −

⎧λ ± λ =⎪
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− =⎪⎩
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∓, 1 1, 1, , 1

0,

0

A B
i j

A B A B
i j i i i j j j i jl Cr J y J y

Table 1. Solution of the continuous and discrete Sylvester and Lyapunov equations

Solution Condition
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, 

, 
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(we call them the nonuniqueness solvability conditions of the continuous Sylvester equation) hold, then the
element  takes the value of the arbitrary parameter . However, if there are Jordan blocks of a
size greater than one, then additional constraints in the form of the value of the arbitrary parameter 
can be imposed for the solvability of the next equation. We demonstrate this fact by way of example.

Let, in the case , conditions (3.1) hold:

(3.2)

Then, Theorem 1 implies that  takes the value of an arbitrary parameter, e.g., :

. (3.3)

However, already at the next step ( ), when it holds that

,

we must satisfy the condition ; hence, taking into account (3.3), we obtain
constraints on the arbitrary parameter , which, actually, takes a quite definite value of

.

Under the corresponding conditions on the Jordan blocks, a similar constraint can be imposed when
the row index  is increased.

The analysis of the second condition in (3.1) shows that the element  must take its final value taking
into account the solvability of the following equations.

1. In the case ,

(3.4)

and, therefore,  is found by the formula

(3.5)

2. In the case ,

(3.6)

and, therefore,  is found by the formula

(3.7)

3. In the case  and, , both formula (3.5) and (3.7) can be used; however, additional

constraints on the matrices  are imposed, which are determined by the conditions for the
equivalence of transformations. For example, if

,

then the equation has a solution only if the condition

(3.8)

is satisfied. We believe that this feature is the cause of the fact that the issues concerning multiplicity of
solutions (existence conditions and formulas for the solutions) are poorly studied and not implemented in
computer software.

Based on Table 1, we can write algorithms for solving the continuous and discrete Sylvester equations
(by analogy, algorithms for solving the Lyapunov equations can be easily written).
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3.1. Algorithm for Solving the Continuous Sylvester Equation

1. Reduce the matrices  and  to the Jordan normal form:

. (3.9)

2. Redefine the right-hand side:

. (3.10)
3. Solve the equation (the block diagram in Fig. 1)

. (3.11)

3.1. For each , calculate .

3.2. If , then

. (3.12)

3.3. If , then do the following:
3.3.1. Check the solvability condition

; (3.13)

if (3.13) is not satisfied, then the equation is not solvable.

3.3.2. If , then the element  takes the value of the arbitrary variable.

3.3.3. If , then

. (3.14)

3.3.4. If , then

. (3.15)

4. Calculate the desired matrix:

. (3.16)

3.2. Algorithm for Solving the Discrete Sylvester Equation

1. Reduce the matrices  and  to the Jordan normal form:

. (3.17)

2. Redefine the right-hand side:

. (3.18)
3. Solve the equation (the block diagram in Fig. 2)

. (3.19)
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3.2. If , then

. (3.20)

A B

→ →
� �

( , , ), ( , , )A A A B B BA L J R B L J R

� = A BC L CR

�+ =
� �A BJ Y YJ C

,i j λ + λA B
i j

λ + λ ≠ 0A B
i j

�

− − − −− −
=

λ + λ

� �

, , 1 1, 1, , 1
,

A B
i j i i i j j j i j

i j A B
i j

C J y J y
y

λ ± λ = 0A B
i j

�

− − − −− − =
� �

, , 1 1, 1, , 1 0A B
i j i i i j j j i jC J y J y

+ += =
� �

1, , 1 0A B
i i j jJ J ,i jy

+ ≠
�

1, 0A
i iJ

� + − + −= −
�

1,, 1, 1, 1
B

i ji j j j i jy C J y

+ ≠
�

, 1 0B
j jJ

� + − − += −
�

, 1, , 1 1, 1
A

i ji j i i i jy C J y

= A BX R YL

A B

→ →
� �

( , , ), ( , , )A A A B B BA L J R B L J R

� = A BC L CR

�+ =
� �A BJ YJ Y C

,i j λ λ + 1A B
i j

λ λ + ≠1 0A B
i j

�

− − − − − − − −− λ − λ −
=

λ λ ±

� � � �

, , 1 1, 1, , 1 , 1 1, 1, 1
,

1

A B B A A B
i j i i j i j j j i i j i i j j i j

i j A B
i j

C J y J y J J y
y
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3.3. If , then:
3.3.1. Check the solvability condition

; (3.21)

if (3.21) is not satisfied, then the equation is not solvable.

λ λ + =1 0A B
i j

�

− − − − − − − −− λ − λ − =
� � � �

, , 1 1, 1, , 1 , 1 1, 1, 1 0A B B A A B
i j i i j i j j j i i j i i j j i jC J y J y J J y

Fig. 1. Algorithm for solving the continuous matrix equation .

Start

Y = Y0

Y

i = 1, m
j = 1, n

k = 0

k = 1

There is no
solution

End

No

Yes

Yes

Yes

No
No

Yes

No

1

2

3

4

6

10

11

12

13

14

8

15

16

9

5

7

, ,
A BJ J C
� � �

, , 0
A B

i i j jJ J+ =
� �

, , 1 1,

1, , 1 0

A
i j i i i j

B
j j i j

C J y
J y

− −

− −

−
=

�� ∓
�
∓

, , 1 1, 1, , 1
,

A B
i j i i i j j j i j

i j A B
i j

C J y J yy − − − −− −
=

λ + λ

� ��

, 1 0
B
j jJ + ≠
�

, , 1 , 1 1, 1
A

i j i j i i i jy C J y+ − − += −
��

1, 0

1

A
i iJ
k
+ ≠
≠

�

, 1, 1, 1, 1
B

i j i j j j i jy C J y+ − + −= −
��

�+ =
� �A BJ Y YJ C
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3.3.2. If , then the element  takes the value of the arbitrary variable.

3.3.3. If , then

. (3.22)

+ += =
� �

1, , 1 0A B
i i j jJ J ,i jy

+ ≠
�

1, 0A
i iJ

� + − + −= −
�

1,, 1, 1, 1
B

i ji j j j i jy C J y

Fig. 2. Algorithm for solving the discrete matrix equation .

 Start

There is no
solution

End

No

Yes

Yes

Yes

Yes

No

No

No

1

2

Y = Y0

i = 1, m
j = 1, n

3

4

5

6

7

Y 15

k = 0

k = 1 12

13

8

14

16

9

10

11

, ,
A BJ J C
� � �

, 1 0
B
j jJ + ≠
�

, , 1 , 1 1, 1
A

i j i j i i i jy C J y+ − − += −
��

1, 0

1

A
i iJ
k
+ ≠
≠

�

, 1, 1, 1, 1
B

i j i j j j i jy C J y+ − + −= −
��

1 0
A B
i jλ λ + =

, 1 1, 1, , 1 , 1 1, 1, 1
,

1

A B A B B A A B
i j i i j i  j          j j i i j i i j j i

i j A B
i j

l Cr J y J y J J yy − − − − − − − −− λ − λ −
=

λ λ ±

� � � �

, 1 1, 1, , 1

, 1 1, 1, 1 0

A B
i j

A B B A
i i j i j j j i i j

A B
i i j j i j

l Cr

J y J y

J J y
− − − −

− − − −

−

− λ − λ −

− ≠

� �

� �

�+ =
� �A BJ YJ Y C



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 1  2017

GENERAL ANALYTICAL FORMS FOR THE SOLUTION 11

3.3.4. If , then

. (3.23)

4. Calculate the desired matrix:

. (3.24)
In conclusion of the theoretical part of this paper, we would like to note the main directions of future

research related to the topics discussed above.
1. The use of the Matlab  function is a significant drawback of the software implementation of

the algorithms described above. This function is resource-hungry because it uses symbolic computations
for constructing the Jordan decomposition. The cause of using the symbolic computations is that the algo-
rithms for finding the eigenvectors are not numerically stable. We plan to develop a special algorithm for
finding the eigenvectors.

2. Another drawback of the use of the Jordan decomposition, which was mentioned in [5], is the dete-
rioration of the numerical stability of the solution when nonorthogonal transformations are used. The
analysis of numerical stability of the proposed algorithms and the comparison of their stability with that
of the known methods, as well as the investigation of ways for improving the stability of the algorithms
(some of them were described in [6]) is another direction of research.

3. In addition, we are going to use similar approaches with the necessary improvements for finding the
analytical solution of the two-term matrix equation

, (3.25)
which is a natural generalization of the continuous and discrete Sylvester and Lyapunov equations.

4. EXAMPLES OF SOLVING EQUATIONS
To verify the efficiency of the proposed algorithms, we discuss a few examples. In addition to test

examples, we also compare the solutions obtained using the implementations of the proposed algorithms
(the solvers  and ) with those produced by the solvers of the continuous and discrete Sylvester and
Lyapunov equations  and  included in Matlab in the 2011 version.1

Example 1. The set of solutions of a continuous Sylvester equation. Suppose we need to find all the
solutions to the equation of form (1.1)

(4.1)

with the given matrices :

.

To solve Eq. (4.1), we use the algorithm for solving the continuous Sylvester equation.
1. Reduce the matrices  and  to the Jordan normal form:

,

.

1 The modern versions of Matlab do not significantly differ from the version of 2011 in the part concerning the equations consid-
ered in this paper.

+ ≠
�

, 1 0B
j jJ

� + − − += −
�

, 1, , 1 1, 1
A

i ji j i i i jy C J y

= A BX R YL

jordan

± =AXC BXD Q

silv dsilv
lyap dlyap

+ =AX XB C

, , andA B C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1 1 1 0 0 3 2 5
0 0 1 , 1 0 1 , 3 0 3
0 1 0 1 0 1 2 1 2

A B C

A B

⎡ ⎤− −⎡ ⎤− ⎢ ⎥−⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= − − = = − −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦− ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

�

11 1 0 10 21 0 02 2 10 1 1 , 0 1 0 , 1 0
21 1 0 1 1 11 1 02 2 2

A A AL J R

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = = − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�

0 1 1 0 0 0 0 0 1
1 0 1 , 0 1 1 , 1 1 1
1 0 0 0 0 1 0 1 1

B B BL J R
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2. Redefine the right-hand side of the equation:

.

3. Solve the equation .

For each i and j, calculate . For convenience, the results of the calculations are summarized in
Table 2.

Since

,

the element  is found by formula (3.12):

.

Since

,
we check the solvability condition (3.13):

.

Therefore, the equation is solvable for .
Since

,

the element  is found by formula (3.15):

. (4.2)

The identity

requires us to check the solvability condition (3.13):

.

Therefore, the equation is solvable for .
Since

�

⎡ ⎤ ⎡ ⎤− −−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = − − − − = −
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 1 1 10 03 2 5 0 0 12 2 2 2
0 1 1 3 0 3 1 1 1 1 6 1

1 1 2 1 2 0 1 1 3 71 4
2 2 2 2

A BC L CR

�+ =
� �A BJ Y YJ C

λ + λA B
i j

λ + λ = − ≠1 1 1 0A B

11y

�

= =
λ + λ

11
11

1 1

1
2A B

Cy

λ + λ =1 2 0A B

� �

− − − −− − = =
� �

, 12, 1 1, 1, , 1 0A B
i j i i i j j j i jC J y J y C

12y

+ = = ≠
� �

, 1 2,3 1 0B B
j jJ J

12y

�= =1312
1
2

y C

λ + λ =1 3 0A B

� �

− − − −− − = − = − =
� �

, 12, 1 1, 1, , 1 12
1 1 0
2 2

A B
i j i i i j j j i jC J y J y C y

13y

+ =
�

1, 0A
i iJ

Table 2. Computational results
1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3

–1 –1 –1 1 1 1 1 1 1

0 1 1 0 1 1 0 1 1

–1 0 0 1 2 2 1 2 2

i
j

λ A
i

λB
j

λ + λA B
i j
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and the element  does not exist, the element  takes the value of the arbitrary variable (e.g., ):

. (4.3)

For all other combinations of i and j, it holds that

;

therefore, the elements  are found by formula (3.12):

, , 

, 

.

4. Calculate the desired matrix by formula (3.16):

.

Substitution of the result into the original equation (4.1) transforms it to the identity

. (4.4)

Example 2. The unique solution of a discrete Sylvester equation. Suppose we need to solve the equation
of form (2.1)

(4.5)

with the given matrices :

.

To solve Eq. (4.5), we use the algorithm for solving the discrete Sylvester equation.

1. Reduce the matrices  and  to the Jordan normal form:

,

+
�

, 1
B
j jJ 12y 13x

=13 13y x

λ + λ ≠ 0A B
i j

,i jy

�

= = =
λ + λ

21
21

2 1

1 1
1A B

Cy
�

= = =
λ + λ

22
22

2 2

6 3
2A B

Cy
� − − −= = = −

λ + λ

�

23 23 22
23

2 3

1 3 2,
2

B

A B
C J yy

� − −= = =
λ + λ

�

31 32 21
31

3 1

3/2 1 1
1 2

A

A B
C J yy

� − −= = =
λ + λ

�

, 32 22
32

3 2

4 3 1,
2 2

A
i j

A B
C J yy

�

−− − − + −= = = −
λ + λ

� �

33 , 1 23 23 32
33

3 3

7/2 2 1/2 1
2

A B
i i

A B

C J y J y
y

⎡ ⎤− − ⎡ ⎤⎢ ⎥ −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = − − − − − = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎢ ⎥− ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

13

13

13

10 1 1 1
2 0 1 1 0 1 12 211 0 1 3 2 1 0 1 1 1 1
2 1 1 1 0 0 0 11 11 0 2 22

A B

x

X R YL x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + ≡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
������������ ������������ �����

13 13

13 13

1 1 1 0 1 1 0 1 1 1 0 0 3 2 5
0 0 1 1 1 1 1 1 1 1 0 1 3 0 3
0 1 0 0 1 0 1 1 0 1 2 1 2

A X X B C

x x
x x

+ =AXB X C

, , andA B C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 1 0 0 0 0 0 2 2
1 0 1 , 0 1 1 , 1 2 2
0 0 0 0 1 1 0 0 1

A B C

A B

⎡ ⎤
−⎢ ⎥ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

�

0 0 1 0 0 0 1 1 1
1 1 1 , 0 1 0 , 0 1 1
2 2 2 0 0 1 1 0 01 1 1
2 2 2

A A AL J R
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.

2. The analysis of the eigenvalues of the matrices  and  shows that the equation is uniquely solvable
because

.

Then, by Corollary 4, the solution can be written by formula (2.4) as

,

where in this case

.

Hence, we have

and, upon simplification, we obtain

.

The substitution of the matrix into Eq. (4.5) confirms the validity of the result:

. (4.6)

Example 3. A continuous Sylvester equation (comparison of results). Let us solve Eq. (4.1) with the
coefficient matrices

using the Matlab lyap solver and the silv solver, which implements the algorithms proposed in this paper
and was developed by the authors.

⎡ ⎤
−⎢ ⎥−⎡ ⎤ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥−
⎢ ⎥⎣ ⎦

�

1 0 10 1 1 0 0 0
1 10 1 1 , 0 2 0 , 0
2 21 1 1 0 0 0 1 1 0
2 2

B B BL J R

A B

λ λ + ≠1 0A B
i j

= Λ �( ( ))A AB A B BX R L CR L

⎡ ⎤
⎢ ⎥λ λ + λ λ + λ λ +⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Λ = = −
⎢ ⎥ ⎢ ⎥λ λ + λ λ + λ λ +

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥λ λ + λ λ + λ λ +⎣ ⎦

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1/3 1

1 1 1
1 1 1

A B A B A B

AB
A B A B A B

A B A B A B

Λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎜ ⎟− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎜ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎜ ⎟= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎜ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎜ ⎟⎜
⎝ ⎠⎝ ⎠

�

����� �����

����� ��������

1 1 1 0 0 1 1 0 11 1 1 0 2 2
1 1 1 1 1 10 1 1 1 1 1 2 2 0
3 2 2 2 2 21 0 0 0 0 11 1 1 1 11 01 1

2 2 2 2 23A

A BAB

CR

L R

X

⎟
−⎡ ⎤⎟

⎢ ⎥⎟
⎢ ⎥⎟ − −⎢ ⎥⎣ ⎦⎟

⎟
⎟

�����

0 1 1
0 1 1
1 1 1

BL

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0
1 1 1
0 0 1

X

X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ≡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
��������������� ����� �����

0 1 0 0 0 0 0 0 0 0 0 0 0 2 2
1 0 1 1 1 1 0 1 1 1 1 1 1 2 2
0 0 0 0 0 1 0 1 1 0 0 1 0 0 1

A X B X C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0 0 0 1 0 1 1 0
1 1 1 , 0 0 0 , 1 2 2
0 1 1 1 1 0 0 0 1

A B C
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1. The Matlab solver  produces the solution

.

The verification of this result shows that the solution is inaccurate because

. (4.7)

2. The solver proposed in this paper  yields the set of solutions

(4.8)

in which each element turns Eq. (4.1) into the identity

. (4.9)

Note that, in addition to producing the incorrect result, the Matlab solver  failed to detect the exis-
tence of a multiplicity of solutions, which it usually reports about.

Example 4. A continuous Lyapunov equation (the stability of solution). Suppose we want to solve the
equation of form (1.10)

(4.10)
with the coefficient matrices

.

1. The solver  outputs the message Warning: Matrix is close to singular or badly
scaled. Results may be inaccurate. RCOND = 5.114818e–018:

. (4.11)

This message implies that, in Matlab’s opinion, the result is inaccurate due to the poor conditioning
of the matrices.

2. The solver proposed in this paper  produces the exact solution formula in the
form of the set of matrices

. (4.12)

( )= −, ,lyapX lyap A B C

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

5656 45891 1
195 58

13969 26331507148789265460000
42 195

17702 28281507148789265460500
51 195

lyapX

⎡ ⎤
⎢ ⎥+ − ≈
⎢ ⎥
⎢ ⎥⎣ ⎦

0 29 0
0 38 0
0 179 0

lyap lyapAX X B C

( )= , , ', 'silvX silv A B C x

⎡ ⎤
−⎢ ⎥

⎢ ⎥
= + + ∈⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

R

22

22 22 23 22

22 23

0 1 2 1
1 1 ,
4

1 0
4

silv

x

X x x x x

x x

⎡ ⎤
⎢ ⎥+ − =
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0
0 0 0
0 0 0

silv silvAX X B C

lyap

+ =ТA X X A C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 0 0 0 0 0
1 1 1 , 2 3 3
0 1 1 1 3 4

A C

( )= −,lyapX lyap A C

⎡ ⎤
⎢ ⎥≈ −
⎢ ⎥

−⎢ ⎥⎣ ⎦

0 0 0
1 11.7 12.7
0 12.7 10.7

lyapX

( )= , ', 'silvX silv A C x

⎡ ⎤
⎢ ⎥
⎢ ⎥

= + − + ∈⎢ ⎥
⎢ ⎥
⎢ ⎥− + +
⎢ ⎥⎣ ⎦

R11 11 11

11 11

0 0 0
1 11 ,
2 2
1 30
2 2

silvX x x x

x x



16

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 56  No. 1  2017

ZUBOV et al.

Here we may set

,

because, at , solution (4.11) belongs to set (4.12), i.e.,

.

Thus, in addition to the set of solutions, the silv solver produced the exact result even though the matrix
 is indeed ill conditioned:

.

Here  is the 2-norm of the matrix [4].

CONCLUSIONS

A method for the analytical solution of the Sylvester and Lyapunov equations is developed; this method
is based on the representation of numerical matrices in normal forms. To obtain an analytical form of the
set of solutions, it is proposed to reduce the given matrices to the Jordan normal form.

APPENDIX

Proof of Theorem 1. Taking into account decomposition (0.1), we can write the original equation (1.1)
in the form

. (A.1)

Multiply Eq. (A.1) by the invertible matrices  and on the left and on the right, respectively:

. (A.2)

Define the intermediate variable

; (A.3)

then, Eq. (A.2) can be written as

. (A.4)

Therefore, the continuous Sylvester equation (1.1) is reduced to Eq. (A.4) of the same form in which the
given matrices are represented in the Jordan normal form.

Taking into account the generalized notation of the Jordan normal forms (0.2) and (0.3) of the
matrices  and 

, (A.5)
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, (A.6)

consider the equation corresponding, e.g., to the th row and th column of Eq. (A.4):

; (A.7)

hence, we explicitly write the equation for :

. (A.8)

Depending on the eigenvalues , and the right-hand side of Eq. (A.8), three cases are possible.
1. The equation has no solutions:

if

and

.

In this case we conclude that the given equation is unsolvable.
2. The equation has a unique solution

if

. (A.9)

3. The equation has multiple solutions

(the element  takes the value of an arbitrary parameter) if

and

. (A.10)

In this case, condition (A.10) simultaneously provides a restriction on the choice of the preceding ele-
ments  and .

Having found the elements of the matrix , we find the desired solution to the continuous Sylvester
equation from Eq. (A.3):

. (A.11)
Proof of Theorem 3. The proof of Theorem 3 is similar to the proof of Theorem 1 (A.1)–(A.11). In this

case, we have the sequence of transformations

, (A.12)
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, (A.13)

, (A.14)

, (A.15)

, (A.16)

. (A.17)

Here,  and  are matrices (A.5) and (A.6), respectively.
1. The equation has no solutions, i.e.,

if

and

.
2. The equation has the unique solution

 (A.18)

if .
3. The equation has multiple solutions

if

and

. (A.19)
The desired solution is obtained from (A.14):

. (A.20)
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