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Abstract—A model of a mobile capsule robot that consists of the housing and internal body is consid-
ered. The internal body can move relative to the housing along a straight line. The internal body is
attached to the housing by a spring. The system motion is excited by a force that acts between the hous-
ing and the internal body. The force changes in a pulse-width periodic mode. The robot’s motion
along a straight line on a rough horizontal plane is investigated. It is assumed that the dry Coulomb
friction acts between the housing and the plane. The dependence of the average steady state robot
velocity on excitation parameters is analyzed. It is established that it is possible to control the magni-
tude and direction of the robot motion by changing the period and the duty cycle of the pulse-width
excitation signal. The effect of the variation in the direction of the robot motion due to changing the
excitation period is observed. This effect is associated with the phenomenon of resonance.

DOI: 10.1134/S106423071605004X

INTRODUCTION
A capsule robot is a locomotion (mobile) system that moves in a resistive medium without external

propelling devices (legs, wheels, continuous tracks, and propeller fins) due to the motion of internal bod-
ies in the presence of the force interaction between the robot housing and the environment. Structurally,
the capsule robot consists of a rigid housing (capsule) and internal bodies that can move relative to the
housing under the action of actuators. The actuators provide the interaction of the internal bodies with
the robot housing. The application of a force to the internal body causes a reaction force applied to the
housing. As a result, the the velocity of the housing relative to the medium changes. The housing speed
change leads to a change in the resistance friction force applied to the body from the medium. The forces
generated by the actuators are internal forces for the mechanical system under consideration (the housing
plus internal body), and the medium resistance force is external. Thus by controlling the motion of inter-
nal bodies by internal forces, it is possible to control the external force acting on the robot and, therefore,
the motion of the system as a whole.

The capsule robot has several advantages over the other types of mobile systems. It is structurally sim-
ple, does not require complex mechanisms for the transmission of motion from the drive to the locomo-
tors, easy to miniaturize, its housing can be sealed and smooth without protruding parts. The latter fact
makes it possible to use a capsule robot in “vulnerable” media, particularly in medicine for diagnostic tests
within the human body or for accurate delivery of medication to the affected area. The capsule robot can
also be used for the movement inside thin pipes, for example, in order to inspect their technical state.

Capsule robots belong to the class of vibration-driven mobile systems, which are systems of solid bodies
that in the general case interact with one another and with the environment and oscillate relative to each
other. In the capsule robot, only one body (housing) interacts with the medium; the internal bodies do not
interact with the medium.

Investigations of the dynamics and control processes of locomotion systems moving in resistive due to
the motion of internal bodies are used as a scientific basis for the development of capsule robots. In this
case, system motions with periodically changing velocity generated by the periodic motion of internal
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bodies are of major interest. Here, an important aspect is the optimization of motions with respect to the
velocity and power consumption.

An optimization problem for the motion of a body moving in a resistive medium and controlled by its
interaction with a movable internal body was first stated in [1, 2]. The case where the housing moves along
a straight line in the horizontal plane subject to dry Coulomb’s dry friction is considered. Periodic modes
of control of the internal body’s relative motion, at which the housing moves at a periodically changing
velocity and passes the same distance in a given direction for one period, are constructed. The internal
body is allowed to move within a fixed range. It is assumed that at the beginning and at the end of each
period the housing velocity is zero, and the movable body is at rest in one of the extreme positions. Veloc-
ity-controlled and acceleration-controlled modes are considered for the internal body. In the first case,
the internal body is moving between fixed extreme positions at a constant velocity relative to the housing.
The relative velocity of the internal body is different for the forward (in the desired direction of motion of
the housing) and backward motions. The magnitudes of the internal body velocities are taken as control
variables to be determined. The second mode assumes three intervals of constancy for the relative accel-
eration of the internal body during one period. A constraint is imposed on the acceleration magnitude.
The duration of these intervals and the magnitude of the internal body’s acceleration on each of them are
taken as the control variables. The optimal parameters that maximize the average velocity of the housing
are found for both modes. The above problems are solved in [3] without the assumption that the housing
velocity vanishes when the internal body is in one of the extreme positions. The optimal parameters for
controlling the internal body velocity are found not only for a medium with dry friction but also for media
with piecewise-linear and quadratic laws of resistance of the medium to the housing motion. The optimal
parameters for controlling the internal body’s acceleration in a medium with a piecewise-linear resistance
law were identified numerically in [4].

The optimal control problem for the motion of the above-described mechanical system along a straight
line in the horizontal plane provided that the Coulomb friction in [5] acts between the body and the plane
was solved. The acceleration of the internal body relative to the housing is taken as the control variable; a
constraint on absolute value of this variable is imposed. The periodic control with a zero mean and the
corresponding with periodically changing velocity that maximize the displacement of the housing for the
period are constructed motion of the housing. The constructed control can be used to restore the periodic
law of the internal body’s motion that generates the optimal motion of the system. A similar problem is
solved for a system with two internal bodies, one of which performs periodic motions along a horizontal
line parallel to the line of the motion of the housing, and the other, along the vertical line [6]. The pres-
ence of the internal body moving vertically makes it possible to control the normal pressure of the housing
on the supporting plane and, thereby, the magnitude of the friction force acting on the body when it
moves. In [7], the optimal control problem for the motion of a body with a movable internal mass along a
straight line is investigated for a wide class of nonlinear laws of resistance of the environment. The opti-
mality criterion and constraints are the same as in [5]. An algorithm for calculating the optimal control is
proposed and the qualitative characteristics of the optimal motions are examined.

The energy-optimal control modes for a system with one internal body moving in a medium with
power-law resistance to the motion of the housing are constructed and investigated [8]. The energy con-
sumption is measured by the work of the resistance forces during the period of the system’s motion. In
constructing the optimal control, the period of the internal body’s relative motion and the system’s aver-
age velocity are assumed to be given. No other constraints are imposed on the system’s motion.

The capsule robot, the control of which is based on the principles set out in [1, 2], is described in [9].
The prototype of the robot was built and tested at Tokyo Denki University (Japan). The robot has an elec-
tromagnetic (solenoid) actuator. The magnitude and direction of the force applied to the internal body is
controlled by changing the magnitude and polarity of the voltage applied to the solenoid coil.

Various aspects of the planning, simulation, and optimization of the motions of capsule robots are also
considered in a number of works [10–12].

In all the above-cited papers, it is assumed that the only force that acts on the internal mass of the
mobile robot in the direction of its motion is the control force generated by the system actuator. In our
paper, a capsule robot in which the internal body is attached to the housing by a spring is addressed. In
this case, the oscillatory link “housing–spring–internal body” appears in the system. The link is charac-
terized by a natural frequency, which significantly changes the dynamic behavior of the system. In partic-
ular, the resonance phenomenon can be observed in it if the control force changes periodically. A vibra-
tion-driven robot, the bodies of which are connected by a spring, is considered in [13–15]. This robot is
designed to move inside pipes. It consistsof two bodies (modules), both of which are in contact with the
pipe surface. The system is controlled by an electromagnetic actuator that provides the force interaction
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between the modules. Contact surfaces of the modules had stops [13] or countings [14, 15] that cause an
anisotropy of friction against the surface of the pipe so that the friction force that impedes the robot
motion in the desired direction is significantly less than the friction force that impedes its the motion in
the opposite direction. In [13], the principle of the robot’s motion is described in general terms, the for-
mulas for calculating the magnetic interaction force between the modules are given, the physical param-
eters of the robot prototype constructed by the authors are presented, and the results of the experimental
investigations are briefly described. In [14, 15], a mathematical model of a two-module vibration-driven
in-pipe robot with an electromagnetic actuator and an opposing spring is presented; this model allows
analyzing the dynamics of the system. The robot dynamics are investigated by numerical simulation, espe-
cially the robot’s behavior in the steady state when the robot’s bodies oscillate periodically relative to each
other, if the interaction force of the robot’s bodies changes periodically in a pulse-width mode. The
dependence of the robot’s average velocity on the period and the duty cycle of the pulse-width excitation
signal is analyzed. The optimal parameters at which the robot moves inside the pipe at a maximum speed
is found. A physical prototype of the vibration-driven in-pipe robot is developed, and experiments are
conducted; the experimental data agree with a simulation results. The system is considered in this paper
differs from the system discussed in [14, 15] in the fact that one of the bodies is an internal body and does
not have come into contact with the surface on which the robot moves and in the fact that the friction
between the other body (housing) and the surface is classic Coulomb’s dry friction without anisotropy.

1. MECHANICAL MODEL OF THE CAPSULE ROBOT

The robot consists of a rigid body with a shape of a cylinder or parallelepiped and an electromagnetic
(solenoid) actuator inside. The actuator consists of an electric coil (solenoid) rigidly secured to the hous-
ing and the core made of a ferromagnetic material. It can move axially inside the solenoid. The core is
attached to the housing by a spring the axis of which is oriented along the solenoid axis. The solenoid axis
is parallel to the housing axis. The housing interacts with a resistive environment in which the robot
moves. The robot is driven by the force that acts on the core when an electrical voltage is applied to the
solenoid. The actuator is designed so that the force is directed to one side drawing the core into the coil.
The core returns to the initial position by the spring when the electromagnet is turned off. The described
system is schematically shown in Fig. 1.

In this paper, we consider a model in which the force applied to the solenoid core is the control vari-
able. The solenoid’s electrical circuit dynamics are not taken into account. We will investigate the robot’s
motion along a horizontal line parallel to the axis of its housing.

Let us introduce the following notation:  is the total mass of the housing and a solenoid coil,  is
the core mass,  is the force with which the solenoid acts on the core,  is the force of the medium resis-
tance to the housing motion,  is the spring stiffness coefficient,  is the coordinate that determines the
position of the housing center of mass relative to a fixed (inertial) reference system, and  is the coordinate
that determines the position of the core center of mass relative to the housing. The coordinate  is selected
so that for  the spring is not deformed. Note that the force  is internal with respect to the housing–
solenoid–core system, whereas the force  is external. We assume that the force of the medium resis-
tance to the housing motion depends on velocity of the housing relative to the medium, i.e., .

By applying Newton’s second law separately to the housing and to the core, we obtain the equations of
motion of the system under consideration in the following form:

(1.1)
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Let us introduce the new variable

(1.2)

which represents the coordinate of the center of mass of the entire system in a fixed reference system, and
reduce system of equations (1.1) to the following form:

(1.3)

Let us proceed to the dimensionless (primed) variables

(1.4)

where  is a parameter that has the dimension of length taken and is as the unit of measurement; this
parameter is identified below. In the dimensionless variables, Eqs. (1.3) can be represented as follows (the
primes are omitted; the dot denotes the derivative with respect to the dimensionless time):

(1.5)

Let dry friction obeying Coulomb’s law act between the housing and the medium in which it moves.
Then

(1.6)

where  is the maximum absolute value of the static friction force.
The force  generated by the actuator is modeled by the periodic piecewise constant function

(1.7)

where  is the period,  is a positive constant of the dimension of force, and  is a positive dimensionless
constant which belongs to the interval  and represents a part of the period in which the control force
is not zero; the braces denote the fractional part of the enclosed expression. In physics and electronics, the
excitation mode of the (1.7) type is called the pulse-width mode, the parameter  is called the duty cycle
of the pulse-width signal Equations (1.6) and (1.7) are represented in the original dimensional variables.

Let us proceed to the dimensionless variables by selecting constant  in Eqs. (1.4) as follows:

(1.8)

This selection means that the spring’s static deformation by the force  is taken as the unit of length
in the nondimensionalization procedure. Then the expression for  that is occurs on the right-hand
sides of (1.5) can be represented in the following form:

(1.9)
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where  and the dimensionless expression for the force  is defined by formula (1.7) for .
In the case where the control force and the friction force are modeled by Eqs. (1.7) and (1.9), dimen-

sionless dynamics equations (1.5) involve the five dimensionless parameters, respectively: , , , ,
and . Among these, four parameters are independent because .

2. MODELING AND ANALYSIS OF THE ROBOT’S STEADY-STATE MOTION
For the type of robots under considiration, of most interest is the motion mode, in which the core

oscillates with a period  relative to the housing and the housing moves relative to the medium at a veloc-
ity that changes periodically with the same period . This motion mode is called a steady state mode. In
the case of steady state motion, functions  and  are -periodic. One of the most important char-
acteristics of the steady state robot motion is its average velocity  defined as

(2.1)

The quantity  is the average velocity of the robot’s center of mass with respect to the medium. It coin-
cides with the average velocity  of the housing relative to the medium, which is defined by the following
equation:

(2.2)

The equality of the quantities  and  follows from relation (1.2) and the -periodicity of the function 
in the case of the steady state motion.

This section is dedicated to the analysis of the dependence of the robot’s average velocity on the exci-
tation parameters  and .

The average velocity of the steady state motion was determined on the basis of computer simulation of
the robot’s motion, which consisted in the numerical integration of Eqs. (1.5), where the function  was
defined by (1.9). The integration was carried out for zero initial conditions , , ,
and  up to the time at which the relations , , 
hold with a given accuracy. The occurrence of these relations means that the system reaches a steady
state motion mode. Thereafter, the average velocity  was calculated from the formula

. The modeling shows that the steady state mode is reached at any values of the
excitation parameters, if the coefficient of friction between the robot’s housing and the surface on which
it moves is nonzero ( ).

The modeling was carried out with the following values of the nonvariable robot parameters:

(2.3)

These parameters correspond to the prototype of a miniature vibration-driven in-pipe robot developed
at the Institute for Problems in Mechanics of the Russian Academy of Sciences [15]. The in-pipe robot
differs from the capsule robot under considiration in the fact that its core has a rod projecting beyond the
housing with a contact device at the end, by means of which the core and the housing interact with the
pipe’s wall. The contact surfaces of the housing and the rod have a coating. The coating ensures an anisot-
ropy for friction of these modules against the pipe’s wall; i.e., the force of friction that prevents the motion
of the housing and the rod in the desired robot motion direction is significantly less than the force of fric-
tion that prevents the motion in the opposite direction.

The dimensionless parameters , , and  for the model under consideration are as follows:

(2.4)

Let us investigate the dependence of the average steady state system velocity  on the parameter  that
characterizes excitation law (1.7).
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Figures 2 and 3 show the typical dependences of the quantity  on the parameter  in dimensionless
units. Figure 2 corresponds to  and Fig. 3, to . Let us note that for excitation
periods  and , the inequalities  hold, and that  is the dimensionless period of the free
oscillations of the robot caused by the elasticity of the spring that connects the housing with the internal
body. Therefore, the excitation mode with a period of  can be called above resonance mode and the exci-
tation mode with the period , below resonance mode.

Both curves demostrate a significant dependence of the average speed of the robot’s steady state
motion on the duty cycle of the pulse-width excitation signal making it possible to control the robot’s
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motion by changing only the parameter . In the case of , , and , the robot’s average
velocity is zero. Both curves have the property of central symmetry with respect to the point  of the
coordinate plane . It means that the change in the duty cycle of the excitation signal from  to  at
the same period leads to a change in the direction of the capsule robot’s motion, while maintaining the
absolute value of its velocity.

The latter property holds for all systems that obey Eqs. (1.5) and (1.9) for the pulse-width excitation
mode (1.7). Let us prove the corresponding mathematical proposition. We will mark the dependence of
the quantities  and  on the parameter  by the superscript in brackets; i.e., instead of  and ,
we will write  and , respectively.

The definition of (1.7) for the function  for  implies the relation

(2.5)

Proposition. The average velocities  and  are related by the following equation:

(2.6)

Proof. Let us subject in Eqs. (1.5), where  to the change of variables,

(2.7)

Given the oddness of the function  with respect to the argument  and Eq. (2.5), we
obtain

(2.8)

Thus, it is shown that if the functions  and  provide the solution of (1.5) for , then
the functions  and  provide the solution of the same system for . If the functions 
and  are -periodic, then the functions  and  are also -periodic. The differentiation of the
first equation from (2.7) gives the relation , from which in the case of the -periodicity
of the function  the following equations are obtained:

(2.9)

Since

(2.10)

from Eqs. (2.9) we obtain Eq. (2.6). This completes the proof of the proposition.

Corollary. For , the average steady state system velocity is zero: .
A significant qualitative difference between the curves in Figs. 2 and 3 is that for  the mag-

nitude  in Fig. 2 reaches a maximum, and this maximum is positive, and in Fig. 3 it reaches a minimum,
and this minimum is negative. Recall that Fig. 2 corresponds to the above-resonance excitation mode
( ) and Fig. 3, to the below-resonance mode ( ). This observation allows us to hypothesize
about the resonance effect expressed in the change of the direction of the system’s motion when the exci-
tation period  passes certain critical values close to the magnitudes that are multiples of the period of the
free elastic oscillations of the system.

The cause of the change in the direction of the system’s motion associated with the phenomenon of
resonance can be explained based on Eqs. (1.5) and (1.9) for low values of the coefficient of friction
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( ). In this case, the second term on the right-hand of the second equation in (1.5) can be neglected
in comparison with . Let us represent a -periodic function  by its Fourier series:

(2.11)

where , , and  are constant coefficients (Fourier coefficients). Then the periodic solution of the sec-
ond equation in (1.5) for  can be represented by the series

(2.12)

the differentiation of which provides

(2.13)

For , resonance is observed in the system. In this case, there is no periodic solution to the second
equation in (1.5) for . In the vicinity of the resonance, the variable  can be represented by the
asymptotic expression

(2.14)

The first equation in (1.5) is invariant to the change of variables , . In the first approx-
imation, from asymptotic expression (2.14) it follows that if the frequency  is replaced by  in
expression (1.5), the function  changes in sign. Consequently, the function  also changes in sign,
and same occurs for the average velocity  of the steady state motion of the system. The detunings of the
frequencies  and  from the resonance frequency, which is equal to unity, are equal in magnitude
but opposite in sign.

In terms of the excitation period, the resonance condition is expressed by the relation ,
 Consequently, at least in the case of low friction ( ), it is possible to expect multiple

changes in the direction of the system’s motion as the excitation period increases.
The change in the direction of motion of a vibration-driven mobile system associated with the phe-

nomenon of resonance was previously observed in [16]. In this paper, a two-module locomotion system
moving along a straight line on a rough horizontal plane is considered. The system consists of two identical
modules, modeled as rigid bodies, each of which has an unbalanced vibration exciter. The unbalanced
vibration exciter is a rotor the center of mass of which doest not lie on the axis of rotation. The modules
are connected by a spring with a linear characteristic. Dry Coulomb’s friction acts between the modules
of the system and the plane on which it moves. The friction force is assumed to be small. The system is
excited by the rotation of the two rotors with the same constant angular velocities but with a phase shift
(the perpendiculars dropped from the centers of mass of the rotors onto their rotation axes are not paral-
lel). In the described system, the direction of the motion changes when the excitation frequency passes
through the resonant value equal to the frequency of the free oscillations of the modules connected by a
spring in the absence of friction. The motion of locomotion systems consisting of two bodies connected
by a spring and controlled by interaction forces between adjacent bodies is investigated in [17]. In partic-
ular, the behavior in the vicinity of resonance is analyzed. However, unlike the model described in this
paper, in [17] it is assumed that both bodies of the system interact with the medium, the control forces
change sinusoidally, and the friction between the bodies of the system and the environment is relatively
small.

The phenomenon of the resonant change in sign of the average robot velocity manifests itself clearly
on the curve representing the dependence of  on the excitation period . Figure 4 shows this dependence
for . Here, the velocity sign changes at the point . In the vicinity of this point, extreme
values of the quantity  are reached, a minimum of  for  and a maximum of  for

. The shift of the point of change of the velocity  from the resonant period  can be
explained by the effect of dry friction between the robot housing and the plane along which it moves on
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the oscillations of the internal body (core). Qualitatively, the same pattern can be observed for other
. According to the proposition proved above, the graphs of the dependence of  on  corre-

sponding to the values  and  of the duty cycle of the pulse-width excitation signal are symmetrical to
each other relative to the  axis.

Thus, by changing the excitation period  or the parameter , it is possible to control both the magni-
tude of the velocity and the direction of the motion of the capsule robot. Figure 5 shows a graph for the
quantity  as a function of the parameters  and  in the region . Accord-

< τ <0 1/2 V T
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ing to (2.6), in the region , the graph of this function is obtained by rotat-
ing the graph shown in Fig. 5 by an angle of 180 degrees about the straight line  in the coor-
dinate space .

Important characteristics of the capsule robots are the maximum  and minimum  velocities of
the robot that can be provided by an appropriate choice of the excitation parameters.

Calculations for the robot with parameters (2.3) in dimensionless units give the following results (see
also Fig. 5):

(2.15)

Here, , , , and  are the values of the parameters at which the extreme values of the average
velocity of the robot in the steady state motion mode are achieved.

In the initial dimensional units, Eqs. (2.15) can be represented as follows:

(2.16)

Note that

(2.17)

These relations hold for the considered type of robot with any parameters, not only with parameters
(2.3) for which the modeling was carried out. Relations (2.17) follow from the general relation (2.6).

The perfomed analysis makes it possible to draw the conclusion about the feasibility of the control of
the capsule robot by changing the parameter  for fixed . The variation of the param-
eter  within the range from  to  makes it possible to implement any possible velocity in the range
from  to .

In addition to the average velocity, the nature of the steady state motion of the housing and the core of
the capsule robot is also of interest. Especially interesting is the motion of the housing , in particular,
whether there exist time intervals during which the housing is moving “backward” (in the direction oppo-
site to the average velocity). Note that the housing cannot always move in one direction with a nonzero
velocity, since, in this case, the dry friction force applied to the housing would be constant and nonzero,
and, therefore, the velocity of the system’s center of mass would be a linear function of time. This contra-
dicts the -periodicity of the change in the velocity of the system’s center of mass in the steady state
motion mode resulting from the -periodicity of the change in the relative position of the core  and
absolute velocity  of the housing. Thus, if during the period, the robot’s housing never moves back-
ward, it should be at rest relative to the medium for some time.

The simulation shows that the motion of the robot’s housing relative to the medium can vary depend-
ing on the parameters  and  as illustrated by Figs. 6–12. In these figures, the dimensionless variables
represent the time histories of the velocity of the robot’s housing relative to the medium ( , solid
curves), the velocity of the core relative to the housing ( , dashed curves), and the velocity of the sys-
tem’s center of mass relative to the medium ( , dashed-dotted curves) for certain values of  and

. Let us note the fact that steady state motions are considered for large values of the dimension-
less time . These values can be different in different figures. This fact reflects the real simulation history:
a steady state mode is set after a relatively long transient process, the duration of which depends on the
excitation parameters. Figures 6 and 7 correspond to the motion for sufficiently small . In this case, the
housing moves in the direction of the average velocity during one time interval and is at rest during the
remaining part of the period. Figure 6 corresponds to the below-resonance mode ( ) and
Fig. 7, to the above-resonance mode ( ). The curves in Figs. 8 and 9 correspond to the
motion for  close to 0.5 under the below-resonance (Fig. 8, ) and above-resonance
(Fig. 9, ) modes. Here, it is possible to select the period that is divided into two intervals.
On one of these intervals, the housing moves forward and, on the other, backward. There are no intervals
where the housing is at rest. Steady state motions are also observed in which at each period the housing
has forward and backward motion intervals, as well as one (Fig. 10, ) or more (Fig. 11,

) intervals of rest. Figure 12 shows the curves corresponding to the optimal parameters (2.15).
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Fig. 7.
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Fig. 8.
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As can be seen from this figure, the period of the robot’s steady state motion can be defined so that each
period contains a time interval during which the housing moves forward, two time intervals during which
the housing moves backward, and a time interval during which the housing rests.

Fig. 10.
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CONCLUSIONS
The direction and magnitude of the capsule robot velocity, in which the internal body is attached to the

housing by a spring, can be controlled by periodically changing the interaction force between the housing
and the internal body in the pulse-width mode. In this mode, the control force is constant in sign, and the
period and duty cycle of the control signal are adjustable parameters. The duty cycle is defined as the rel-
ative duration of the active portion of the period for which the control force is nonzero. The monotonic
change of the period with a constant duty cycle implies a continuous change in the average velocity of the
robot in the steady state motion. At certain critical values of the period, the velocity changes in sign. The
change in the velocity sign is associated with the resonance phenomena in the oscillatory link of the sys-
tem. The change of the duty cycle for a constant period also leads to a change in the magnitude and direc-
tion of the velocity of the robot’s motion. If the duty cycles are  and , the robot moves at the same
speed but in opposite directions. Thus, the system can be controlled by both a change in the period and a
change in the duty cycle of the control signal. The control perfomed by changing the duty cycle for a fixed
period corresponding to the absolute maximum of the robot’s average velocity seems to be the most rea-
sonable way. In this case, the change of the duty cycle makes it possible to cover the entire range of possible
robot velocities. The dependence of the velocity of the robot housing relative to the medium and the core
velocity relative to the housing on time in the steady state motion mode has a different shapes for different
values of the excitation parameters. In particular, the robot housing may or may not have motion intervals
in the direction opposite to the average velocity, and in the presence of motion intervals in both directions,
it may or may not have the intervals during which the housing is at rest relative to the medium.
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