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INTRODUCTION

The decomposition (functional expansion) of Boolean functions has long been known [1]; usually, it is
oriented on the decrease of the number of arguments of functions obtained as a result of the expansion.
Due to the decrease of the number of input variables (i.e., the decrease of the dimensions of the problems
of optimization and logical synthesis), design procedures for the obtained minorant functions (blocks) of
the functional expansion can be used more efficiently. If the initial systems of functions are assigned as dis�
junctive normal forms (two�level ones AND/OR representations of systems of functions) on the general
set of elementary conjunctions, then the problem of decomposing a system of disjunctive normal forms
(DNFs) of Boolean functions in terms of parameters (the number of arguments, functions, conjunctions)
can be interpreted as the decomposition of one large programmable logic array (PLA) into a network of
smaller PLAs. Usually, one PLA is replaced by a two�cascade network of several smaller PLAs with the
aim of reducing the area of the chip of an ordered VLSI; however, such a replacement can also be per�
formed to satisfy the electric parameters of a PLA.

In this work, we use the flow of known examples to compare programs for the decomposition of DNF
systems of Boolean functions; here, these programs implement various decomposition methods. By the
use of a large number of practical examples, it is shown that not only the use of the joint minimization of
functions in the DNF class but also their decomposition can ensure a reduction of the area of PLA cir�
cuits.

The decomposition of Boolean functions is also used in synthesizing circuits from a library of logical
elements. With synthesizing on such a basis, the initial (optimized at the stage of technologically indepen�
dent optimization) systems are often not minimized DNF systems of functions, but multilevel represen�
tations: binary decision diagrams (BDDs) constructed based on Shannon’s expansion. Such representa�
tions are more efficient in synthesizing circuits from library elements, because the minimization of BDDs
often brings about circuits of a lesser complexity. The decomposition can also be useful on such a basis;
however, in this case (by synthesizing in terms of the decomposed systems of functions), it is desirable to
test both versions of the representation of the obtained subsystems of the functions: in the form of BDDs
and in the form of DNFs.

1. FORMS OF ASSIGNING SYSTEMS OF BOOLEAN FUNCTIONS

Boolean functions are binary (0, 1) functions  =  of binary (Boolean) variables
. The vector Boolean function ,  signifies an ordered system of Boolean
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functions  = ( , …, ). Here, the matrix form of representing Boolean functions is widely

known in the literature. This form consists of a ternary matrix  of assigning elementary conjunctions in

the form of ternary vectors and a Boolean matrix  of occurrences in the DNF of component functions

of a system. The representation of a vector Boolean function by a pair of matrices 〈 , 〉 is also called
the matrix form of a DNF system of Boolean functions, or simply a DNF system [2].

An example of a completely defined vector function  = ( , , ), where the component

functions , ,  are assigned as the DNF

 = ;

 = ;

 = ,

is presented in Table 1. In this table, the ternary vector (– 1 0 – 1 –) (the last row of the matrix ) assigns

the elementary conjunction  included in the DNF of the functions  and : the literals  and 
are represented by ones in the ternary vector; the literal  is represented by zero; and the missing literals
of the variables , , and  are represented by the “–” symbol.

As the second form of representing systems of Boolean functions in this work, algebraic multilevel rep�
resentations based on Shannon’s expansion are used.

Shannon’s expansion of a completely defined Boolean function  in terms of a variable  is repre�
sented by

 = . (1.1)

The functions in the right side of (1.1) are called expansion coefficients. They are obtained from the
function  by the substitution of 0 or 1 (respectively) for the variable . A BDD assigns in the form of
a graph a sequence of Shannon’s expansions of the initial function and the obtained coefficients of the
expansion in terms of a certain permutation of the variables. Minimizing the complexity of the BDD rests
on the fact that during the expansion, identical expansion coefficients can appear not only for one but also
for several (or even for all) component functions. The joint BDD�minimizing in this work refers to the opti�
mization of multilevel representations of systems of Boolean functions corresponding to the reduced
ordered BDDs (ROBDDs). The detailed description of ordered BDDs is presented in [3] and of ROBDDs,
in [4].

In order to construct a BDD for the vector function  = ( , , ) (see Table 1) in terms
of the permutation 〈 , , , , , 〉, we perform Shannon’s expansion of the component functions

, , and  in terms of the variable  and compare the obtained coefficients (the minorant
functions). We have

;
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=
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Table 1.  The DNF system of Boolean functions

Tx B f

x1 x2 x3 x4 x5 x6 f 1 f 2 f 3

1 0 – 1 0 1 0 1 0

1 1 1 – 1 0 0 1 0

0 – 0 – 1 – 0 1 0

1 0 1 – 1 – 0 0 1

1 0 1 1 – 1 0 0 1

1 1 0 1 – 1 0 0 1

0 – – 1 0 1 1 0 0

– 1 0 – 1 – 1 0 1
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;

;

;

;

.

The first five different coefficients s1, …, s5 of the multilevel representation are shown on the graph of
the BDD (see Fig. 1). We expand the found coefficients in terms of the variable  and obtain the following

coefficients (that are not degenerate to constants): , , , , . Then, the expansion is performed in
terms of the variable , etc. As the result of Shannon’s sequential expansions, we obtain the multilevel
representation corresponding to the BDD shown in Fig. 1:

, , ,

, , ,

, , , ,

1

2 1 1
0 2 3 4 5 6 4 5 6 2 3 5(0, , , , , )xs f f x x x x x x x x x x x

=

= = = ∨
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Fig. 1. Binary decision diagram.
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, , , , ,

, , , . 

The complexity  of the BDD (Fig. 1), which represents the vector function , is estimated by
using the number of vertices indicated by symbols of functions. In estimating the complexity of BDDs, we
do not take into account vertices–variables and leaf vertices [5]. Such an estimate of the complexity coin�
cides with the “size BDD” estimate accepted in the literature. For example, the complexity of the BDD

shown in Fig. 1  = 19. The main problem in constructing a BDD of the lesser complexity is finding
the variables’ permutation by which the BDD is constructed.

For each form (a DNF, a BDD) of representation of a system of functions, we shall use a particular
estimate of the complexity.

2. ESTIMATES OF THE COMPLEXITY OF REPRESENTATIONS
FOR SYSTEMS OF BOOLEAN FUNCTIONS

We estimate the complexity of the matrix form of a DNF system of Boolean functions by the area of the
PLA circuit, whereas we estimate the complexity of superpositions of DNF systems by the total area of
PLAs that implement vector functions of a considered superposition. It is shown in the extensive literature
that such an approach is competent in synthesizing circuits from PLAs, because a PLA structure is ade�
quate for a DNF system implemented on it.

A PLA is intended to implement a DNF system of Boolean functions  assigned on k general ele�
mentary conjunctions and consists of two series�connected subcircuits. Signals corresponding to the vari�

ables  (i = ) of the implemented DNF system are sent to input buses of the PLA. On the matrix first�
level subcircuit (the AND matrix), k general elementary conjunctions of the DNF system are imple�
mented; the second�level subcircuit (the OR matrix), which has m output buses, is intended to implement
disjunctions of the elementary conjunctions [2].

The area SPLA of a PLA circuit is determined at the stage of the logical design in arbitrary units of area
(bits) of the matrix structure by the formula

SPLM = (2nk + mk) (bit), (2.1)

where n is the number of inputs of the circuit, m is the number of outputs of the circuit, and k is the number
of intermediate buses of the PLA (the number of elementary conjunctions in the implemented DNF sys�
tem of Boolean functions).

For example, the PLA (Fig. 2) which implements the DNF system (see Table 2) has the following
parameters: the number of inputs n = 6, the number of outputs m = 3, and the number of intermediate
buses k = 8. The area of this PLA SPLA = 120.
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Fig. 2. Programmable logic array.
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Networks of PLAs implement superpositions of DNF systems. The area of a PLM network will mean
the sum of the areas of PLA elements that form the network. Below we describe the examples of PLA net�
works and determine their areas.

We estimate the complexity of multilevel representations based on Shannon’s expansion by the com�
plexity of a BDD. The complexity of a circuit composed of a library’s logical elements is expressed at the
stage of logical design by the sum of the areas of the elements that form the circuit. Industrial synthesizers
of logic circuits produce (after synthesizing a circuit) the value of this parameter, which is usually called
“area.” Examples of libraries of logical elements are presented in [6].

3. DECOMPOSITION OF SYSTEMS OF BOOLEAN FUNCTIONS

Assume that  is a partition of the set X = {x1, ..., xn} of variables of the vector Boolean function
 into two disjoint subsets  and  ( , ). Suppose  =

 is a vector obtained by the ordering of variables from the set  and 
is a vector obtained by the ordering of variables from the set .

The separate decomposition of a system of Boolean functions  in terms of the assigned partition 
of the set of variables X will refer to the process of constructing the functional expansions (the superposi�
tions)

(3.1)

where  (j = ); in this case, for each component function , the number  of

intermediary variables (components of the vector function ) is minimal.
The joint decomposition of a system of Boolean functions  in terms of the assigned partition  of

the set of variables  will refer to the process of constructing the functional expansion

 =  = , (3.2)

where  is a vector function having the minimum number of components .

Decomposition (3.2) of the vector function is called joint [5], because all the component functions 
of the decomposed vector Boolean function  have common (jointly used) intermediary minorant
functions .

The considered forms of decomposition are called the disjoint decomposition in the literature, because
subsets Y and Z are disjoint (  = ∅), as opposed to the case of the overlapping decomposition, corre�
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Table 2.  The intermediary functions  and  constructed by the BDD function 

Paths from root 
vertex f 1 DNF x1 x2 x3 x5

Code

To vertex 0 1 0 – – 0 0

1 1 1 – 0 0

1 1 0 0 0 0

0 0 – 1 0 0

0 1 1 1 0 0

To vertex 1 1 1 0 1 0 1

0 1 0 1 0 1

To vertex s11 0 0 – 0 1 0

0 1 1 0 1 0

0 1 0 0 1 0

1
1h 1

2h
1f

1
1h 1

2h
1
1Q

1
2Q

1
3Q
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sponding to the case where  ∅. The conditions  and  separate the class of

nontrivial expansions (3.1) of the function , while the condition  separates the class of useful
expansions, i.e., expansions that allows reducing the number  of the recoded arguments  by using the

new variables .

The use of decomposition in synthesizing logic circuits rests initially on searching for the simple parti�
tion of one Boolean function  into two minorant functions g and h (p = 1) with the number of arguments
that is smaller than n [1]; this significantly simplifies optimizing and subsequent synthesizing. However,
soon it appears that the cases of the partition of functions into two minorant functions are rather rare in
occurrence; here, for randomly chosen functions, by increasing the number n of arguments, the probabil�
ity of the partition of functions tends to zero. Therefore, most attention was concentrated on the decom�
position in terms of the two�block partition of variables for obtaining useful expansions. The first works
devoted to this subject matter rest on assigning functions by truth tables [7, 8]. Note that the decomposi�
tion of incompletely defined (partial) functions [9] and systems of functions [10] has also been studied;
for such functions, minimizing the number of intermediary variables is reduced to the coloring problem
of a relationship graph of the incompatibility of the coefficients for Shannon’s expansion in terms of the
subset of arguments . Methods for constructing various types of a joint decomposition of the functions’
systems are also considered in the literature [10].

Significant impetus to the subject matter of the decomposition is given by PLAs (cascade matrix cir�
cuits) whose structure and operation are adequate for DNF systems of functions implemented on these
circuits [2]. Implementing a DNF system by a PLA network of a limited dimension gives rise to the
orthogonalization and generalized orthogonalization methods [10], the method for identity mapping in
the space of intermediary variables [2], the method for covering of ternary matrices [11, 12], etc. The
known decomposition methods of functions’ systems differ in the used mathematical apparatus. The
decomposition of a vector function with the minimum number of intermediary functions is considered in
the literature for the case of assigning vector functions by matrix forms (DNF systems) [10]; here, opera�
tions on matrix forms of DNFs are used. The decomposition of BDD representations of vector functions
is described in [5]. Other formal apparatuses are also used, namely, spectral representations [13], logic
equations [14], matrix logic equations [2], and finite predicates [15]. Reviews of the results obtained in
this field are presented in [11, 14, 16]. The iteratively applied decomposition of form (3.1) and (3.2) can
be used not only for optimizing but also for the technological mapping performed in obtaining structures
of field programmable gate arrays (FPDAs) [17].

Wide acceptance of BDDs instead of DNFs in designing logic circuits allows taking a different look at
many optimization problems, namely, synthesizing, construction of tests, and verification; BDDs repre�
sent efficient means for solving many tasks, including the decomposition of functions. The main problem
in the decomposition is searching for a partition of variables by which the decomposition is performed. It
is shown in [5] that the use of the BDD apparatus in the decomposition of a system of functions simplifies
solving the problem of searching for the separation of variables. In the present paper, decomposition is
concerned with the large�block partition of DNF systems of completely defined functions, as opposed to
the multilevel synthesis line [18] associated with the small�block representation of elements of logic net�
works.

However, in spite of the quite large number of the known decomposition methods, there do not exist
many works devoted to the experimental comparison of programs that implement the proposed methods
and algorithms. The dimensions of logical�synthesis problems in various technological bases have
increased; therefore, the problematic of developing efficient methods for the decomposition and experi�
mental comparison of the corresponding programs of decomposition of functions’ systems represented in
various forms (DNFs, BDDs, parenthesis forms) is topical. In the context of increasing the dimensions of
synthesis problems and the emergence of new methods and algorithms for multicriteria optimization of
functional descriptions of combinational circuits, it is necessary to develop means for the intellectualiza�
tion of computer�aided design systems [19, 20]. The means for the intellectualization can rest on expert
systems and heuristic optimization�algorithms [21], as well as on estimates of the complexity of combina�
tional circuits in various bases (the Boolean basis, the Zhegalkin�polynomials’ basis, the basis of multi�
plexers with various numbers of control inputs, etc.) [22, 23]. In this case, decomposition can be useful
for partitioning circuits of a large dimension into functional blocks, whereas efficiently searching for the
basis and estimating the complexity of implementation can be efficient for the functional blocks of a rel�
atively small dimension.

Y Z∩ ≠ jp r< 2log jn r p− >

( )jf x jp r<

r jp

1 , ...,
j

j j
ph h

f

Y
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4. EXAMPLES OF SEPARATE AND JOINT DECOMPOSITION

Example of Separate Decomposition

The separate decompositions of functions  =  (j = ) are each performed by Shannon’s
shortest expansion constructed in terms of the subset of arguments . Shannon’s classic expansion of the

function  in terms of the subset  has the form

 =     …  . (4.1)

Here, the expansion coefficient  is a completely defined Boolean function representing the result of

the substitution of values of vector y into the function  for the variables of this vector. The values in

question are various binary vectors  (i = ). We group the terms of expansion (4.1) with identical

coefficients  together in one class (set) and obtain Shannon’s shortest expansion

 =     …  . (4.2)

The perfect DNFs  (q = ) are pairwise orthogonal; they can be minimized and represented as

DNFs. We recall that two DNFs  and  ( ;  = ) are orthogonal if and only if  = 0. It is

easy to find the DNFs  by the BDD [5]; then, they are encoded with a minimum�length Boolean code.

As a result, intermediary functions are obtained. The output functions  are constructed by

replacing  with codes that are values of the vector functions  on .

Using the separate decomposition of the vector function  = ( , , ) assigned as the
BDD (see Fig. 1) in terms of the partition of the variables  = { , , , } and  = { , }, we can
obtain six intermediary functions at the first layer (the input block) of the circuit (see Fig. 3). In order to
construct Shannon’s shortest expansion in terms of the subset of arguments  = { , , , }, we use
the BDD (Fig. 1). In the example, Shannon’s shortest expansions of component functions have the form

 =     ( ), (4.3)

 =     ( ) ), (4.4)

 =     ( ), (4.5)

where  =  and  = . The intermediary functions are assigned in Tables 2–4. We

insert the codes ( ) of the DNFs  into formulas (4.3)–(4.5), perform obvious logical rearrange�
ments, and obtain the DNF of the output functions:

 =  = ,

 =  = ,

jf ( )x ( , )jf y z 1,m
Y
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( , )jf y z 1 2... ry y y
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Fig. 3. Separate decomposition.
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 =  = .

In synthesizing circuits on PLAs, the input functions  (the output functions ) are jointly minimized
in the DNF class in order to decrease the number of intermediate buses of a PLA. The input functions
minimized in the DNF class are assigned in Table 5 and the minimized output functions depending on the
variables , as well as on intermediary variables are assigned in Table 6. It is easy to see that with the

separate decomposition each of the functions  = ,  = , and

 =  depends on its subset of intermediary variables.

If we implement all functions of the first (and the second) cascade on one PLA, we obtain a network
of two PLAs (see Fig. 4). Let us determine the areas SPLA1 and SPLA2 for this network: SPLA1 = 2 × 4 × 8 +
6 × 8 = 112, SPLA2 = 2 × 8 × 7 + 3 × 7 = 123, and SPLA1 + SPLA2 = 112 + 123 = 235.

Hence, in this example, the total area of two PLAs of the resulting network is larger than the area of the
initial PLA; the reduction of the area in connection with the separate decomposition is rare, because the
intermediary functions are constructed independently for each component function. The separate
decomposition in the considered example allows decreasing the number of arguments of the implemented
functions; however, with the decomposition, the total complexity of the PLA implementation of two
blocks—input and output—increased. Nevertheless, for other examples (of a practical dimension) that
represent DNF systems, separate decomposition can not only reduce the number of input variables but

3( , )f y z 3g 3 3 3 3
1 2 1 2 4 6h h h h x x∨

h g

4 6,x x
1 1 1

1 2 4 6( , , , )g h h x x
1f 2 2 2

1 2 4 6( , , , )g h h x x
2f

3 3 3
1 2 4 6( , , , )g h h x x

3f

Table 3.  The intermediary functions  and  constructed by the BDD function 

Paths from root 
vertex f 2 DNF x1 x2 x3 x5

Code

To vertex 0 0 – 1 – 0 0

0 – 0 0 0 0

1 1 0 – 0 0

1 1 1 0 0 0

1 0 – 1 0 0

To vertex 1 0 – 0 1 0 1

To vertex s11 1 0 – 0 1 0

To vertex s15 1 1 1 1 1 1

2
1h 2

2h
2f

2
1h 2

2h
2
1Q

2
2Q
2
3Q
2
4Q

Table 4.  The intermediary functions  and  constructed by the BDD function 

Paths from root 
vertex f 3 DNF x1 x2 x3 x5

Code

To vertex 0 0 0 – – 0 0

1 0 0 – 0 0

1 1 1 – 0 0

0 1 1 – 0 0

0 1 0 0 0 0

To vertex 1 0 1 0 1 0 1

1 0 1 1 0 1

1 1 0 1 0 1

To vertex s11 1 0 1 0 1 0

1 1 0 0 1 0

3
1h 3

2h
3f

3
1h 3

2h

3
1Q

3
2Q

3
3Q
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also decrease the total area of the two PLAs. Note that further in the experiments with the separate decom�
position, all functions of the first cascade and output functions are implemented on one input PLA and
one output PLA, respectively.

Example of Joint Decomposition

Using the joint decomposition of the vector function  = ( , , ) (see Table 1) in terms
of the partition of the variables  = { , , } and  = { , , }, we can obtain two intermediary func�
tions  and  at the first layer (the input block) of the circuit (Fig. 5).

( )f x 1( )f x 2( )f x 3( )f x
Y 4x 5x 6x Z 1x 2x 3x

1h 2h

Table 5.  Minimized DNF system of functions of the input block in the case of the separate decomposition

x1 x2 x3 x5

1 0 1 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 0 0 1

0 – 0 1 0 0 0 1 0 0

1 1 1 1 0 0 1 1 0 0

– 1 0 1 0 1 0 0 0 1

1 0 – 0 0 0 1 0 0 0

0 – – 0 1 0 0 0 0 0

1
1h 1

2h 2
1h 2

2h
3
1h 3

2h

Table 6.  Minimized DNF system of functions of the output block in the case of the separate decomposition

x4 x6 f 1 f 2 f 3

1 0 – – – – 1 1 1 0 0

0 1 – – – – – – 1 0 0

– – 1 0 – – 1 1 0 1 0

– – – 1 – – – 0 0 1 0

– – 0 1 – – – – 0 1 0

– – – – 1 0 1 1 0 0 1

– – – – 0 1 – – 0 0 1

1
1h 1

2h 2
1h 2

2h
3
1h 3

2h

f 1 f 2f 3

x4

x5

x6

x3x2x1

1
2
3
4
5
6
7
8

h1
1 h1

2 h2
2h2

1 h3
1 h3

2

1
2
3
4
5
6
7

Fig. 4. Implementation of separate decomposition by a PLA network.
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We briefly recall the main stages of the joint decomposition of a DNF system of Boolean functions [5].
In order to perform the joint decomposition, we construct (in one form or another) Shannon’s shortest
expansion of the vector function:

 =     …  . (4.6)

In order to construct this expansion, the orthogonalization of the matrix DNF form in terms of the par�
tition  is performed: elementary conjunctions (intervals, ternary vectors) corresponding to variables

of the subset  are overlapped, the domains of the overlapping are represented as the DNFs  and each
elementary conjunction is represented as the disjunction of some of them. For the considered example,

the elementary conjunctions  are presented in Table 7 and the DNFs , in Table 8. In Table 9, the units

in the corresponding row specify DNFs  whose disjunction produces the elementary conjunction .

The analogous procedure is also performed for the subset of variables : the elementary conjunctions 

are presented in Table 10; the DNFs , in Table 11; and the disjunctive expansion of the elementary con�

( , )f y z 1 1( )Q f z ∨ 2 2( )Q f z ∨ ∨ ( )k kQ f z
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ik П y

i

П y
i

y
ik

Z z
ik

П z
i

f 1 f 2 f 3

g1 g2 g3

h1 h2

x1 x2 x3 x4 x5 x6

Fig. 5. Joint decomposition.

Table 7.  Conjunctions on the variables of the set Y

x4 x5 x6

1 0 1

– 1 0

– 1 –

1 – 1

y
ik

1
yk

2
yk

3
yk

4
yk

Table 8.  Representation of products of conjunctions as the  DNF system

DNF system

x4 x5 x6

0 0 0

0 0 1

1 0 0

0 1 1

1 0 1

0 1 0

1 1 0

1 1 1

П y
i

П y
i

П1
y

П2
y

П3
y

П4
y

П5
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junctions  into the DNFs , in Table 12. As a result, the matrix form (see Table 1) is transformed into

the orthogonalized matrix form (Table 13) of assigning a system of functions on the DNFs  and .

Suppose  =     =        and  =              =

          ; then,  =  and  = .

If the system of functions  is assigned over the entire Boolean space of variables of the vector x, then
by the orthogonalized form, one can easily construct coefficients of Shannon’s expansion of this system
in the form of Table 14 called a compact table in [11, 12].

In the considered example, Shannon’s shortest expansion in terms of the subset of variables  =
{ , , } has the form

 =       , (4.7)
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Table 9.  Disjunctive expansion of elementary conjunctions 
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Table 10.  Conjunctions on the variables of the set Z

x1 x2 x3

1 0 –

1 1 1

0 – 0

1 0 1

1 1 0

0 – –
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Table 11.  Representation of products of conjunctions as the  DNF system 
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because the coefficients  = . Therefore, , , , and . Interme�

diary functions in the joint decomposition are constructed by coding the factors  by using the minimum
by the Boolean length or ternary code; here, the codes of  must be pairwise orthogonal [14]. In the con�

П2
yf

П5
yf П1 1

yQ = П П2 2 5
y yQ = ∨ П3 3

yQ = П4 4
yQ =

iQ

iQ

Table 12.  Disjunctive expansion of elementary conjunctions 
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Table 13.  Orthogonalized form of a DNF system
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sidered example, we have four factors  (i = ); hence, the code’s length ( , ) is equal to two. Coding
the factors  by using the pairwise orthogonal Boolean codes is demonstrated in Table 15.

Different decomposition methods of DNF systems vary in the ways of representing the orthogonalized

form and the ways of coding the factors , or the ways of coding the conjunctions  and  of the initial
interval form. The most frequently used type of coding is trivial coding analogous to the type presented in
the considered example (see Table 15).

In the identity mapping method [2], the columns of Table 9 are recoded by using the special disjunctive

code; here, the intermediary functions  are assigned in the form of DNF systems on the conjunctions .
Such coding increases the number of conjunctions for the output functions . A specially agreed coding
used to reduce the number of conjunctions in the DNF of the output functions is proposed in [15].

The heuristics for the choice of coding aimed to reduce the number of conjunctions on the DNF of the
output functions  are used in the method of coding the DNFs  by placing codes at the vertices of the
hypercube: if the compact table has few distinctions in its columns of values for coefficients, then it is
appropriate to assign identical codes to these coefficients [24].

The output functions , , and  are constructed by replacing the DNF  with the codes from Table 15:
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Table 14.  Coefficients of Shannon’s expansion
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Table 15.  Intermediary functions in the case of a joint decomposition
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 =  =      

= &0    )  (   )      ) 

=    

=   .

The matrix form of the vector function g = ( , , ) is presented in Table 16. We perform the joint
minimization of the system of functions (Table 16) and obtain the output block (see Fig. 6) implemented
on the PLA having eight intermediate buses. With the joint decomposition, we have two intermediary vari�
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Table 16.  Not minimized functions of the output block in the case of a joint decomposition

h1 h2 x1 x2 x3 g1 g2 g3

0 0 0 0 0 0 1 0

0 0 1 1 0 1 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 1

1 1 1 0 0 0 1 0

1 1 0 0 1 1 0 0

1 1 0 1 1 1 0 0

1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 1

1 1 1 0 1 0 1 1
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Fig. 6. Implementation of joint decomposition by a PLA network.
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ables such that each of them is used as an intermediary variable for each of the component functions ,

, and  of the decomposed vector function. Note that  = .
Let us determine the area of the PLA network (see Fig. 6) implementing the joint decomposition: SPLA1 =

2 × 3 × 3 + 2 × 3 = 24, SPLA2 = 2 × 7 × 8 + 3 × 8 = 136, and SPLA1 + SPLA2 = 24 + 136 = 160. This area is
considerably smaller in relation to the case of the separate decomposition, but at the same time it is larger
than the area of the initial PLA. We often have a different situation for practical examples: the area of a
PLA network is smaller than the area of a decomposed PLA, i.e., of a decomposed DNF system.

This illustrative example demonstrates various forms of decomposition in terms of various partitions of
the set of arguments. Decomposition is not necessarily oriented only to reducing an area: often decompo�
sition is associated with satisfying the limitations on the number of input and output variables and on the
number of intermediate buses. Various methods for such decompositions are considered in [2].

5. PROGRAMS OF MINIMIZATION AND DECOMPOSITION
OF SYSTEMS OF BOOLEAN FUNCTIONS

5.1. The ESPRESSO IIC program for joint DNF�minimizing systems of the Boolean functions  in
the DNF class is a widely known minimization program; monograph [25] is devoted to it.

The input and resulting data of this program are text matrix representations of the initial and mini�
mized DNF systems of Boolean functions, respectively.

5.2. The SEPT_BDD program for the separate decomposition of DNF systems rests on the apparatus
of the BDD representation of systems of Boolean functions and implements the method described in [5].
The initial data are DNF systems and the results are superpositions of functions of form (3.1); here, func�
tions of the input and output blocks are represented as a DNF system and as a BDD, respectively.

For the programs of the joint decomposition that are considered below, the initial data are DNF sys�
tems and the results are superpositions of form (3.2); in this case, each of the vector functions  (the
input block) and  (the output block) is represented as a DNF system.

5.3. The DECU_BDD program for the joint decomposition of DNF systems rests on the apparatus of
the BDD representation of systems of Boolean functions and is described in [5].

Algorithms for choosing the variables’ partition that are implemented in the SEPT_BDD and
DECU_BDD programs are considered in [5].

5.4. The DEC_FT program for the joint decomposition of matrix representations of DNF systems of
Boolean functions implements the decomposition method based on compact tables and is described in [12].

Suppose  is the power of set  and  is the least integer that is bigger than or equal to . The
DEC_FT program finds in the experiments the best partition  such that  =  whereby the
least possible number of intermediary variables  in the joint decomposition is attained. Here, all parti�

tions  are not searched through: with the use of heuristics, one partition  is chosen, this partition is
taken to be the best, and the decomposition is performed by it.

5.5. The DEC_HIE program for the joint decomposition of matrix representations of DNF systems of
Boolean functions is described in [26]. The program receives intermediary variables by the method for
placing codes (values of the intermediary variables) at the vertices of the hypercube [24].

The DEC_HIE program searches through all  nontrivial two�block partitions of the set of
variables and finds the best version of decomposition (3.2); the version is estimated by the formula

, where n is the number of arguments of a functions’ system, r is the number of
arguments in block Y, and p is the number of intermediary variables. Note that with this estimation, the
number of conjunctions on which one assigns functions of the system that appear in the constructed
expansions is ignored. This program is used for systems of functions that depend on  variables.

5.6. The TIE_BDD program for joint BDD�minimizing systems of Boolean functions implements algo�
rithm [27] for minimizing multilevel representations of a system of Boolean functions based on Shannon’s
expansion. The initial data are DNF systems and the results are multilevel formula�based BDD represen�
tations. In conducting the experiments, this program constructs BDDs by nothing more than 5000 ran�
domly taken permutations of variables and chooses the simplest BDD from the considered versions. The
TIE_BDD program was used during the experiments in synthesizing circuits from library logic elements
for optimizing BDD representations of the functions’ systems.

1f
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6. FORMULATION OF PROBLEMS OF EXPERIMENTAL RESEARCH

P r o b l e m  1. By the flow of practical examples of DNF systems of Boolean functions, compare the
efficiency of using the programs of the joint minimization of functions and the programs of decomposition
for decreasing the area of PLAs according to the block diagram of the experiments (Fig. 7).

P r o b l e m  2. By the flow of practical examples of DNF systems of Boolean functions, compare the
efficiency of using the BDD representations of systems of functions and the programs of decomposition
in synthesizing circuits from library logical elements according to the block diagram of the experiments
(Fig. 8).

In order to solve Problem 1 and Problem 2, we conduct Experiments 1–5 and Experiments 6–10,
respectively.
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Fig. 7. Organization of experiments 1–5.
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Fig. 8. Organization of experiments 6–10.
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7. EXPERIMENTS

As the initial data for the experiments, 62 examples of DNF (PLA) systems from the Berkeley PLA Test
Set library of examples are taken [28]. The system of functions in Experiments 1–5 is minimized and
decomposed by the ESPRESSO program and the decomposition programs (Section 5), respectively. In
addition, the decomposability (the existence of a useful functional expansion) for the collection of prac�
tical examples and the efficiency of various algorithms for choosing the  partition are investigated.

The result of the operation of all the compared decomposition programs represents the superposition
of functions’ systems that is implemented by two�element PLA networks.

E x p e r i m e n t  1 (ESPRESSO). The joint minimization of the initial functions’ system of the
ESPRESSO program and estimation of the area of one PLA that implements the minimized system of
DNF functions.

E x p e r i m e n t  2 (SEPT_BDD+ESPRESSO). The separate decomposition of the initial functions’
system by using the SEPT_BDD program [5], which implements the decomposition method based on a
BDD, and then the integration of functions of the input cascade into one system and their joint minimi�
zation by using the ESPRESSO program; here, all functions of the output cascade are also jointly mini�
mized. The analogous minimization after the decomposition is performed in Experiments 3–5.

E x p e r i m e n t  3 (DECU_BDD+ESPRESSO). The joint decomposition of the initial functions’
system by using the DECU_BDD program [5], which implements the decomposition method based on
a BDD.

E x p e r i m e n t  4 (DEC_FT+ESPRESSO). The joint decomposition of the initial functions’ system
by using the DEC_FT program [12], which implements the method based on the basis compact�tables’
method [11].

E x p e r i m e n t  5 (DEC_HIE+ESPRESSO). The joint decomposition of the initial functions’ sys�
tem by using the DEC_HIE program [26], which implements the method based on the compact�tables’
method [11].

E x p e r i m e n t s  6–10 are conducted to estimate the efficiency of using BDD representations in the
synthesis of circuits from library logic elements for the library of designing Russian CMOS VLSIs; the
contents of the library are presented in [29]. Each circuit from library elements is synthesized five times in
the Leonardo Spectrum synthesizer (version 2011a.4) [6]. The synthesis in Experiment 6 is performed in
terms of the BDD representation of an entire circuit, while the synthesis in Experiments 7–10 is carried
out in terms of the decomposed representation of a circuit as two blocks; here, each block (input and out�
put) is assigned by logic equations corresponding to its BDD representation.

The results of all experiments are verified with the use of the FormalPro system [30] of formal verifica�
tion. In order to verify, the initial examples and the results of the decomposition (the superposition of the
functions’ systems) were transformed into descriptions represented in VHDL [6].

8. DISCUSSING THE RESULTS OF THE EXPERIMENTS

The results of Experiments 1–5 are presented in Table 17, where n is the number of input variables, m is
the number of implemented Boolean functions, and k is the number of general elementary conjunctions
in the DNFs of the functions of the initial system. The best decisions in Table 17 (and in Table 18) are
marked with asterisks.

Minimizing the area. The main result of Experiments 1–5 is that in two�thirds of the examples
(40 examples out of 56), the decomposition allows one to decrease the area of a PLA network better than
the ESPRESSO program. This program outperforms the decomposition in one�third of cases; i.e., it
allows one to implement the minimized functions’ system on one PLA of the area, which is smaller than
the area of two PLAs obtained by the decomposition. For six examples, namely, ALU1, NEWALPA,
NEWAPLA1, NEWCPLA1, NEWCPLA2, and NEWTPLA, neither minimization nor decomposition
allowed one to decrease the area of one PLA or a network of two PLAs. These examples are not presented
in Table 17.

Choosing the partition of variables. The heuristic choice of one partition is unreasonable: the number of
decisions that allow decreasing the area of the PLAs obtained in Experiment 4 is significantly smaller than
the number of decisions obtained in Experiment 3 by the heuristic algorithm for searching for  parti�
tions of variables of the set  with various powers of the set . The DECU_BDD program had found the
variables’ partitions by which useful decompositions were constructed for 38 examples. The DEC_FT
program found such partitions for 30 examples. The heuristic search for a larger number of partitions by
the DECU_BDD program allows one to find a larger number of decomposable examples than the
DEC_FT program.

/Y Z

/Y Z
X Y
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Table 17.  Results of experiments 1–5

Initial data Experiments

Name 
of example n m k Area of ini�

tial PLA

1 2 3 4 5

Area of one 
PLA Area of two PLAs

ADD6 12 7 1092 33852 11005 4246 8816 6187 *3637
ADDM4 9 8 512 13312 5200 7096 5394 *5170 6762
ADR4 8 5 256 5376 1575 978 1230 1623 *919
B12 15 9 431 16809 *1677 2229 1971 3105 1701
B2 16 17 110 5390 *5194 34240 7123 6468 –
B9 16 5 123 4551 4403 *3478 10580 11577 –
BR1 12 8 34 1088 *608 1139 612 842 748
BR2 12 8 35 1120 *416 846 416 656 536
CLPL 11 5 20 540 540 692 *291 1068 397
CO14 14 1 47 1363 406 *280 287 *280 504
DC2 8 7 58 1334 *897 1367 1103 1248 1240
DIST 8 5 256 5376 2583 3257 2574 2610 *2230
EX7 16 5 123 4551 4403 *3478 8020 11577 –
F51M 8 8 256 6144 1848 *1463 2094 1896 –
Gary 15 11 442 18122 *4387 14744 5765 6788 8391
IN0 15 11 138 5658 *4387 14744 6023 5536 8878
IN1 16 17 110 5390 *5194 34240 9778 6468 –
IN2 19 10 137 6576 6528 11538 8912 *6480 –
INTB 15 7 664 24568 23347 22957 42688 52236 *21597
LIFE 9 1 512 9728 1596 770 *607 1021 711
LOG8MOD 8 5 47 987 798 978 *738 897 761
M1 6 12 32 768 *456 1196 468 501 506
M181 15 9 430 16770 *1638 2265 1971 3555 1701
M2 8 16 96 3072 1504 3524 *1426 1552 1487
M3 8 16 128 4096 2112 4408 2116 2092 *1907
M4 8 16 256 8192 *3360 9374 3437 3440 3710
MAX1024 10 6 1024 26624 7124 8964 7348 *7095 7294
MAX46 9 1 46 874 874 *792 963 973 805
MAX512 9 6 512 12288 3480 4458 3516 *3384 3492
MLP4 8 8 256 6144 *3072 4184 3270 3168 –
MP2D 14 14 123 5166 *1302 1872 1854 4060 1530
NEWAPLA2 6 7 7 133 133 280 *124 187 135
NEWBYTE 5 8 8 144 144 336 *133 – –
NEWCOND 11 2 31 744 744 *580 604 1060 676
NEWILL 8 1 8 136 136 *131 188 193 156
NEWTAG 8 1 8 136 136 *80 85 115 98
NEWTPLA 15 5 23 805 805 824 1405 1155 *701
NEWTPLA1 10 2 4 88 88 80 *73 88 150
P82 5 14 24 576 *504 3168 546 516 –
RADD 8 5 120 2520 1575 978 1239 1223 *881
RD53 5 3 32 416 403 298 291 265 *199
RD73 7 3 147 2499 2159 *673 836 836 821
ROOT 8 5 256 5376 1197 1579 1230 1245 *1059
RYY6 16 1 112 3696 3696 *423 *423 840 –
SEX 9 14 23 736 *672 1995 1277 1144 734
Soar 83 94 529 137540 *91780 99260 766920 – –
SQN 7 3 96 1632 646 1034 683 673 *392
SQR6 6 12 64 1536 *1176 3468 1266 1203 –
SYM10 10 1 837 17577 4410 1015 1362 1070 *817
T3 12 8 152 4864 *1056 1382 1267 2375 1068
TIAL 14 8 640 23040 20916 59813 42822 57396 *19977
vtx1 27 6 110 6600 6600 *3930 7352 25710 –
x9dn 27 7 120 7320 7320 *4898 9673 21305 –
Z4 7 4 128 2304 1062 644 *440 1089 *440
Z5XP1 7 10 128 3072 *1560 3276 1863 1587 –
Z9SYM 9 1 420 7980 1634 838 794 794 *716
Number of the best decisions. 0 19 12 9 5 14
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Table 18.  Results of experiments 6–10

Name 
of example

Experiments

6 7 8 9 10

     

ADD6 *60 20222 65 *18414 86 32587 67 24502 66 21689

ADDM4 *189 89269 316 141754 237 97047 195 *86747 468 212034

ADR4 *29 *7661 39 10931 45 13180 35 *7661 39 11740

ALU1 *18 *7109 33 *7109 74 31471 142 65107 139 56391

B12 *56 *16617 87 25194 107 34886 189 86412 84 24898

B2 *560 *197967 1079 370752 831 268738 683 259682 736 259766

B9 *71 *24770 95 30338 221 86557 390 168287 220 80246

BR1 *78 *27911 95 32464 89 31449 112 39880 106 32978

BR2 *72 *21634 90 26868 80 24435 94 35729 86 25969

CLPL *16 *2929 33 7806 19 *2929 44 12572 20 *2929

CO14 *27 12449 32 13353 32 12895 32 13353 35 *11779

DC2 *62 *21946 89 33982 71 25132 103 45644 116 43502

DIST *146 68601 211 92572 149 69956 152 *67501 190 89793

EX7 *71 *24770 95 30338 195 76792 390 168287 220 80246

F51M 64 25344 *63 *23637 71 31812 70 26131

gary *303 *98911 345 122258 447 155861 482 200517 424 170251

IN0 *303 *98911 345 122258 418 147864 442 170759 444 177868

IN1 *560 *197967 1079 370752 1154 353962 683 259682 688 243695

IN2 *257 *92410 420 128586 339 109535 408 149550 733 257238

INTB *617 *227848 731 285344 891 377342 1204 563184 814 337902

LIFE *26 14977 30 *13961 39 16617 37 18353 35 15574

LOG8MOD *62 *25953 74 32933 71 29741 79 34959 65 29602

M1 *47 18715 60 20004 52 *18554 58 23330 58 20825

M181 *57 *17225 87 24714 107 35600 205 87796 84 24379

M2 *129 61095 140 54851 130 60515 133 55448 134 59438

M3 *141 60325 191 75944 173 78332 169 75358 155 *59818

M4 *206 82266 314 127486 214 83081 212 *82232 292 129138

MAX1024 *297 *140862 414 182031 315 146564 304 142050 521 237513

MAX46 *74 36878 81 *35980 86 37587 96 41621 83 41376

MAX512 *175 *71446 227 98855 189 83761 181 *71446 265 120801

MLP4 *136 *71854 199 81953 176 84197 142 *71854

MP2D *71 *17968 85 19011 110 20819 239 101997 107 36125

NEWAPLA 53 *10189 62 13292 *51 13760 84 31109 56 14078

NEWAPLA1 *23 *6869 29 *6869 28 8119 35 9062 39 11300

NEWAPLA2 *20 *4944 24 *4944 22 *4944 26 8030 25 5569

NEWBYTE 21 *5569 25 *5569 *19 *5569 25 *5569

NEWCOND *29 *13414 45 14541 40 14687 79 35321 47 15657

NEWCPLA1 *82 28045 106 28598 97 32431 102 34256 90 *24831

NEWCPLA2 *60 *17438 96 27671 68 22582 70 18141 65 17778

NEWILL *16 5312 18 *5028 26 5134 27 7985 26 7840

NEWTAG *10 *2126 12 *2126 12 *2126 16 3036 14 *2126

NEWTPLA *52 *14229 64 16863 81 25919 96 33681 68 19156

BDDS f
circS

BDDSh+g
circS

BDDSh+g
circS

BDDSh+g
circS

BDDSh+g
circS
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The exhaustive search of all nontrivial partitions in Experiment 5 shows that we have useful expansions
for all examples from the considered collection. The DEC_HIE program finds the partitions of variables
that produce useful expansions for 53 examples; here, decomposition is not performed by this program for
9 examples. The DECU_BDD program finds 4 decomposable examples of the above 9 examples, which
are not considered. Hence, the decomposability for 57 examples of 62, which represent the entire collec�
tion of practical examples, is corroborated. This fact demonstrates the advisability of developing decom�
position methods for synthesizing circuits.

Decreasing the area under decomposition that is not useful. In some cases, decomposition (r = p) that is
not useful makes it possible to decrease the area of a PLA: this is an example of the efficient symbolic
recoding of the set of input variables by one multivalued variable. For instance, one cannot decrease the
number of intermediary variables by using the DEC_FT program for the Max512, max1024, and addm4
examples; nevertheless, the resultant area of the PLA network decreased compared to the area of the
initial PLA.

Dimension of problems. Using the decomposition based on the BDDs, one can solve problems whose
dimension is larger than the dimension of problems that can be solved by using the decomposition based
on the compact�tables’ method. In some examples, the DEC_FT and DEC_HIE programs cannot per�
form the decomposition, because in order to represent intermediate information, large computer memory
and a long time are required for searching all  partitions.

The results of experiments 6–10 are presented in Table 18, where  is the complexity of the BDD

that implements the vector function ;  =  +  is the sum of the complexities of two BDDs
that represent the vector functions  and , respectively; and  is the complexity (the sum of the ele�
ments’ areas) of the circuit composed of library elements.

/Y Z

BDDS f

f BDDS +h g
BDDS h

BDDS g

h g circS

Table 18.  (Contd.)

Name 
of example

Experiments

6 7 8 9 10

     

NEWTPLA1 *13 3577 16 *3342 15 3577 20 3510 24 3566

NEWTPLA2 *30 7310 37 9296 34 10970 31 9068 34 *6808

P82 *59 *19971 100 32213 68 22270 63 *19971

RADD *29 *8465 39 10083 47 14614 38 9157 35 10496

RD53 23 9843 28 7912 26 7399 26 7483 *21 *5312

RD73 43 15925 44 13766 *39 13046 *39 *12734 *39 13046

ROOT *75 *26717 103 39172 81 28692 81 *26717 105 42241

RYY6 *17 4224 19 *3197 19 3298 26 5814 26 5563

SEX *47 *13928 70 16539 65 16762 72 25065 52 14106

soar *648 *167484 727 188063 4978 2268666

SQN 50 23743 88 36298 58 24887 55 23124 37 *12990

SQR6 *70 *27069 114 40550 76 30099 75 *27069 0 0

SYM10 *38 *19882 46 24825 49 18966 46 24279 43 20088

T3 *56 *19223 71 20055 75 22387 135 52965 68 26505

TIAL *708 *295952 757 350441 909 369708 1319 690358 914 362109

vtx1 *87 *20216 106 24011 186 66145 550 199580

x9dn *91 *22342 111 23899 238 89224 447 169548

Z4 *26 *6992 34 9519 *26 7405 31 *6992 *26 7405

Z5XP1 *67 *26499 103 40589 81 30690 72 26862

Z9SYM *33 18018 35 *14614 44 16333 44 17544 37 17767

Number of the 
best decisions

53 41 5 13 9 6 2 12 3 7

BDDS f
circS

BDDSh+g
circS

BDDSh+g
circS

BDDSh+g
circS

BDDSh+g
circS
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The analysis of experiments 6–10 shows that for the considered collection of practical examples, pro�
gram�implemented algorithms of a large�block decomposition are weakly effective as a means for prelim�
inary optimization in synthesizing circuits from library logic elements. The global technologically inde�
pendent BDD�minimizing benefits the majority of cases by synthesizing on such a basis. The use of vari�
ous kinds of decomposition makes it possible to obtain circuits that are better for the areas than in the case
of preliminary BDD�minimizing only in 15 of the 62 examples of circuits (these results are indicated in
bold in Table 18). Nevertheless, it is necessary to develop the means of decomposition, because the dimen�
sionality of the solved problems increases; here, in the practice of designing, the number of examples of
circuits of large dimensionality also increases (in the cases where industrial synthesizers construct ineffi�
cient circuits or cannot synthesize circuits from library elements).

Estimates of the complexity of the system of functions that are expressed in the number of the vertices
of a BDD are feasible, because synthesizing a circuit from the representation corresponding to a BDD of
the minimum�attained complexity makes it possible, as a rule, to obtain circuits of smaller areas. It is
notable that for several examples (ADR4, RADD, RD53, RD73, ROOT, and Z9SYM) the TIE_BDD
program found BDDs of minimum complexity (the complexities of the BDDs presented in [31] for these
examples can be compared), although for finding the optimal permutation this program had tested only
5000 randomly generated permutations of variables. Note that the number of all permutations is n! for a
function that depends on n arguments. For the Z9SYM example, we have n = 9 and the number of all per�
mutations 9! = 362880. The results of solving these examples show that in the process of a random search
one can stumble on the global optimum.

CONCLUSIONS

Decomposition can be efficiently used in practice to decrease the area of circuits in the basis of PLAs.
By decreasing the number of arguments of the minorant functions, the decomposition allows decreasing
the number of sought permutations in finding the best permutation of arguments, which ensures the least
complexity of a BDD. The representation of the systems of functions as BDDs allows solving decompo�
sition problems of larger dimensionality due to the more compact representation of BDDs compared to
orthogonalized matrix representations of the systems of functions.

An interesting line of the future experimental research is studying the efficiency of the use of decom�
position for solving problems of large dimensionality (hundreds of variables and functions) such that the
global BDD optimization of an entire circuit and the subsequent synthesis are very laborious, while the
local optimization of blocks obtained after the decomposition can be efficiently performed. Examples of
such experiments for circuits of large dimensionalities are presented in [32].
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