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INTRODUCTION

The fundamental difficulty of the classical approach to the optimally accurate nonlinear estimation of
the current state of stochastic logical–dynamical (LD) observation systems, which are also called Markov
jump parameter systems, is well known. This difficulty is due to the infinite dimensionality of the Stra�
tonovich absolutely optimal filter (AOF) [1–7]. The state vector of this filter consists of all posterior
moments (sufficient statistics) of the state to be estimated. For this reason, the AOF cannot be imple�
mented in real time, and implementable finite�dimensional approximations such as the fairly coarse bank
of quasi�linear extended Kalman filters or more accurate normal approximation filters (NAFs) have to be
used. Recently, the difficult to implement particle filter, which is an implementation of the AOF along one
trajectory of the estimated stochastic process, has become popular. This filter uses the sequential Monte�
Carlo method [5, 7] for calculating the integrals in the process of filtering.

The alternative Pugachev conditionally optimal filter [8, 9] makes it possible to construct nonlinear fil�
ters of the given structure with optimal parameters that are finite�dimensional from the very beginning.
The nonparametric developments of this approach are optimal structure filters (OSFs) [10–14]. In contrast
to AOF, the OSF’s state vector is finite�dimensional by definition, and the Monte�Carlo method is used
to construct the OSF before the estimation process is started.

The present paper is devoted to the generalization of the known LD versions of AOF [1, 4] and OSF
[10] for the case of the statistical dependence of measurement errors on the plant disturbances, to the con�
struction of Gaussian approximations of these filters, and to the analytical comparison of these approxi�
mations. Equations of the AOF and OSF and of their Gaussian approximations are presented. It is shown
that these approximations use identical structure functions in the form of characteristics of the statistical
linearization of the system nonlinearities, but they considerably differ in the amount of computer memory
needed. Due to the lower order of the OSF, its Gaussian approximation has numerical parameters, which
are found in advance using the Monte�Carlo method, thus adjusting the filter to the specific observation
system better than the a priory NAF equations.

DATA PROCESSING 
AND IDENTIFICATION

Finite�Dimensional Recurrent Algorithms for Optimal Nonlinear 
Logical–Dynamical Filtering

E. A. Rudenko
Moscow Aviation Institute (National Research University), Volokolamskoe shosse 4, Moscow, 125993 Russia

e�mail: rudenkoevg@yandex.ru
Received April 20, 2015; in final form, June 2, 2015

Abstract—The problem of the most accurate estimation of the current state of a multimode nonlinear
dynamic observation system with discrete time based on indirect measurements of this state is consid�
ered. The general case when a mode indicator is available and the measurement errors depend on the
plant disturbances is investigated. A comparative analysis of two known approaches is performed—the
conventional absolutely optimal one based on the use of the posterior probability distribution, which
requires the use of an unimplementable infinite�dimensional estimation algorithm, and a finite�
dimensional optimal approach, which produces the best structure of the difference equation of a low�
order filter. More practical equations for the Gaussian approximations of these two optimal filters are
obtained and compared. In the case of the absolutely optimal case, such an approximation is finite�
dimensional, but it differs from the approximation of the finite�dimensional optimal version in terms
of its considerably larger dimension and the absence of parameters. The presence of parameters, which
can be preliminarily calculated using the Monte�Carlo method, allows the Gaussian finite�dimen�
sional optimal filter to produce more accurate estimates.

DOI: 10.1134/S1064230715060131



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 55  No. 1  2016

FINITE�DIMENSIONAL RECURRENT ALGORITHMS 37

1. STATEMENT OF THE FILTERING PROBLEM

Let the logic of switching the observation plant structure (mode) and its operational dynamics in each
mode be described in the discrete time  by the Markov system of stochastic difference equa�
tions

, ; (1.1)

and let the indirect (incomplete and (or) inaccurate) structure indicator and state vector measurement of
the plant be determined by explicit formulas

, . (1.2)

Here,  is the structure index;  is the state vector;  is the indicator variable;

 is the vector of measurements;  are discrete white noises with a known joint dis�

tribution function; and ,  and ,  are given pairs of Borel measurable deter�
ministic functions with integer scalar and continuous vector values, respectively. The white noises are
independent of the random initial state of the plant  determined by its joint distribution function

, 

where  is the probability of the discrete component  and  is the con�
ditional probability density of the absolutely continuous component .

Note that Eqs. (1.1) and (1.2) are generalizations of the mathematical model of the ordinary (purely
dynamic) observation system [3, 5, 7, 8], which does not include the discrete variables  and . The dis�
crete components require the extended vector state , measurement , plant dis�
turbances , and measurement disturbances .

We want to obtain at each time  the optimal estimates of the mode index  and the plant’s state

vector  as functions of the whole set of pairs of measurements (of increasing size)  that
is available by this time:

, . (1.3)

The criterion of the best estimation accuracy is the minimum of the Bayesian mean risk

, (1.4)

where  is the expectation operator; and  is the element of the matrix function of joint losses due
to the incorrect identification of the structure index  and inaccurate estimation of the state vector ;

this function ensures that the structure estimate  is an integer and the state vector estimate  is contin�
uous [15]. For definiteness, we will use the two most popular loss functions below—the additive quadrat�
ically simple function

(1.5)

and the simple multiplicative function

. (1.6)

Here,  is the weighting coefficient matrix,  is the Kronecker delta, and  is the Dirac
delta function.

Instead of the switching functions  and indication functions , equivalent conditional proba�
bilities of the Markov chain consisting of the structure indices , its indicators 
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and the switching probability improved by using the last measurement  

may be specified. The first two probabilities can be represented by the formulas

, (1.7)

in terms of the known (see [13, 14]) conditional distributions of switching–transition of plant (1.1) from
the current state  to the new state 

, , (1.8)

and the indication–measurement  of its current state

. (1.9)

In (1.7) and below, all the integrals are definite—they are taken over the entire Euclidean space of the
corresponding dimension. Taking into account (1.8) and (1.9), probabilities (1.7) can be found directly as

, . (1.10)

The third probability is determined similarly as  in terms of the improved

(taking into account the last measurement ) conditional distribution of the next plant state  

, (1.11)

where the conditional distribution of the new state and the current measurement  is

. (1.12)

The distributions  and  are partial (marginal) with respect to . Using (1.12), we obtain an
explicit representation of the third probability in terms of functions of the observation system

. (1.13)

R e m a r k. Finding expectations such as (1.12) that include the Dirac delta function with nonlinear

supports  and  is reduced to the parametric (for arbitrary i and x) application of the known solu�
tion of the continuous nonlinear transformation of the random variables  and  with the given proba�
bility distribution. The construction of this solution requires finding the transformation monotonicity
domains, summing over these domains, finding the inverse of each monotone transformation, and calcu�
lating their Jacobians.

2. ABSOLUTELY OPTIMAL FILTER

Consider the classical procedure [1, 4] for finding the optimal form of nonrecurrent dependences (1.3)
of estimates on measurements to compare it with the method for building alternative recurrent finite�
dimensional dependences [10] described in Section 4 and with the two�step analog of the latter
method [13].

2.1. Relationship of the Optimal Estimates with the Posterior Distribution

Plug the explicit dependences (1.3) of the estimates on measurements into the optimality criterion (1.4) to
conclude that finding the estimate functions  reduces to the minimization of the average risk
functional on the set of all measurable functions:

, .
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In order to find this minimum, it suffices to minimize the posterior risk function

(2.1)

with respect to its integer parameter  and continuous parameter . Here and in what follows, the sum�

mation is over all the values of the index, e.g., over , and  is the posterior distribution of the
structure index  and the state vector , which directly takes into account the possible values of all accu�

mulated measurements  whose number increases with time.

To this end, in the case of an arbitrary loss function , the conditionally optimal estimates of the
state vector under the assumption that each ith mode is true are found:

, . (2.2)

Knowing the conditionally optimal estimates, the estimate of the mode index and the unconditional esti�
mate of the state vector are found as

, . (2.3)

In the particular case of the quadratically simple function (1.5), formulas (2.2) and (2.3) have the form
(see [13, 15])

, , ; (2.4)

while in the case of the simple multiplicative function (1.6) more complicated expressions (see [13, 15])

, , (2.5)

hold. In these relations, the posterior probability of mode  and the conditionally posterior probability

density  of the plant state under the assumption the ith mode is true, which represent the posterior
distribution  as the product

, (2.6)

are given in terms of this distribution by the formulas

 . (2.7)

2.2. Equation for the Posterior Distribution

In this section, we derive the well�known Stratonovich–Bukhalev [4] recurrent formula for the general
case of dependent plant and measurer disturbances. To this end, we represent the posterior distribution

 using the Bayes formula

, . (2.8)

Here, the distribution  predicts the joint behavior of the current states  and the observation 

based on the preceding measurements  and the symbol numerator in the denominators of fractions
everywhere denotes their numerators. Using the probability multiplication theorem, the numerator

in (2.8) can be written as the product , which predicts the dis�

tributions of the state  and the corresponding conditional distribution . Since measurer (1.2) is
conditionally Markovian, the latter distribution is independent of old measurements; therefore, it coin�
cides with the known prior distribution (1.9). Hence, the numerator in ratio (2.8) is

, (2.9)

| |( ) ( , )
0 0

1, ,
( ) ( , ) ( , ) min

n

e k i e k
k k k

e L g
i

g y c x g i x y dx
∈ ∈

= ρ →∑∫�
�

e g

1,i L= ()kρ ⋅

kI kX

0
ky

( )()kc ⋅

⋅

Arg |( ) ( ) ( )
0 0

ˆ ( ) min ( )
n

i i k i k
k k k

g
X g Y g Y

∈

= ∈ �
�

1,i L=

Arg |( ) ( )
0 0

1,

ˆ ˆ( ) min ( )k i i k
k k k k

i L
I e Y X Y

=

= ∈ �
ˆ( )ˆ ˆ kI

k kX X=

|( ) ( )
0

ˆ ( )i i k
k kX x x Y dx= ρ∫ Arg ( )

0
1,

ˆ max ( )i k
k k

i L
I Y

=

∈ Ρ
( ) ( )

0
ˆ ˆ( )i k i

k k k

i

X Y X= Ρ∑

Arg |( ) ( )
0

ˆ max ( )i i k
k k

nx

X x Y
∈

∈ ρ

�

Arg |( ) ( ) ( )
0 0

1,

ˆ ˆmax ( ) ( )i k i i k
k k k k

i L
I Y X Y

=

⎡ ⎤∈ Ρ ρ⎣ ⎦
ˆ( )ˆ ˆ kI

k kX X=

( )()i
kΡ ⋅

( )()i
kρ ⋅

()kρ ⋅

| |( ) ( )
0 0 0( , ) ( ) ( )k i k i k

k k ki x y y x yρ = Ρ ρ

|( )
0 0( ) ( , ) ,i k k

k ky i x y dxΡ = ρ∫ | |( ) ( )
0 0 0( ) ( , ) ( )i k k i k

k k kx y i x y yρ = ρ Ρ

()kρ ⋅

| |1 1
0 0( , , , ) ( , , , )k k

k k

i

i x j y y i x j y y numerator dx− −

ρ = ω ∑∫ 1k ≥

()kω ⋅ kX kY
1

0
kY −

| | |1 1 1
0 0 0( , , , ) ( , , , ) ( , )k k k

k k ki x j y y j y i x y i x y− − −

ω = β π

�

()kπ ⋅ ()kβ ⋅
�

| | |1 1
0 0( , , , ) ( , , ) ( , )k k

k k ki x j y y j y i x i x y− −

ω = β π



40

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 55  No. 1  2016

RUDENKO

and the distribution  with respect to the ratio  is marginal:

. (2.10)

Now we represent the current predictive distribution  in terms of the posterior distribution of the
preceding step  (for convenience, we make a one step forward shift). Using the consistency property
of the distributions and multiplication of the distributions, we represent the former (shifted by one step) as

. 

Here, due to the Markov property of the system of random variables ,  determined by distribu�

tion (1.12), the conditional distribution  is independent of the old part  of all its conditions

, and it coincides with distribution (1.11): . Therefore, the
next predicting distribution is represented in terms of the current posterior distribution as

. (2.11)

As a result, plugging (2.9) into (2.8) and taking (2.11) into account, we obtain the following theorem.
T h e o r e m  1. The Stratonovich–Bukhalev integral recurrent formula for the posterior distribution

generalized for dependent disturbances of the LD observation system (1.1), (1.2) is

. (2.12)

The initial condition for this formula is the similarly derived distribution

, (2.13)

where  is the known distribution of the initial state of the plant.

In the particular case of statistical independence of the plant disturbance  on the noise measurer ,
the prior distribution  degenerates, according to (1.11) and (1.12), into the switching–transition dis�
tribution (1.8). Then, (2.11) takes the simpler form

;

the numerator in (2.12) changes similarly. Such an independent version of the LD�extension of the recur�
rent Stratonovich formula [3] was given by Bukhalev in [4] for the case of the inertial measurer, which is
more general than (1.2); in the absence of the structure indicator and inertia�free measurements, it was
obtained by Klekis in [1].

2.3. Practical Implementation of the Filter

We consider three implementation methods.
1. Finding filtering functions. The difference equation (2.12) and the relations for the optimal estimates (2.2)

and (2.3) completely solve the problem of AOF synthesis. Indeed, knowing the prior distributions (1.9)
and (1.11), as well as the initial posterior distribution (2.13), one can theoretically find the posterior dis�
tribution  for any  as a function of all its arguments using Eq. (2.12). By solving two finite�dimen�
sional optimization problems (2.2) and (2.3), we determine the filtering functions  of the grow�
ing number of arguments. These computations must be performed in the sequence
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and they begin with the known function

. (2.15)

These computations should be performed before starting to process measurements in the AOF synthesis.

The actual filtering process, which must be performed in real time as the new measurements  arrive,
is reduced to their accumulation in a memory array and to the straightforward computation at each step

of the estimates  using (1.3) by plugging the entire measurement sample  into the known func�
tions  of (k + 1)(m + 1) arguments. The expressions for these functions should also be kept in the
filter memory.

However, such a hypothetical filter is almost impossible to implement in real time if the number of

steps k is large due to the rapid increase in the size of the measurement sample  and the complexity of
memorizing nonlinear functions of the growing number of variables. These difficulties are due to the fact
that formulas (1.3) for absolutely optimal estimates are not recurrent.

2. Trajectory�by�trajectory filtering. Another method for the practical implementation of the AOF
with automatic accumulation of measurements can be obtained by using the Stratonovich equation (2.12)
directly in the process of measurement processing. To this end, we plug into it a specific random sample

 and use the notation  for the corresponding realization of the posterior distribu�
tion; this realization is a function of the fixed number of arguments n + 1. Then, Eq. (2.12) and its initial
condition (2.13) for each realization have the form

,

.

As a result, we obtain random realizations of probability and density (2.7)

, 

which allows us to find the quadratically simple estimates using (2.4)

, ,

or
the simple multiplicative estimate using (2.5)

, , .

However, computations by these formulas, among which evaluation of 3L n�dimensional integrals is
the most costly part, in real time when receiving new measurements requires a powerful computer for the
accurate implementation of the AOF. Evaluation of these integrals by the Monet Carlo method yields a
particle filter [4, 7].

3. The method of sufficient statistics. The posterior distributions of the discrete  and continuous 

random variables are replaced with a finite set of posterior probabilities  of the discrete variable and
with an infinite set of conditional numerical characteristics of the continuous variable (its sufficient sta�
tistics in the form of conditional moments, semi�invariants, quasi�moments, etc.). This allows us to
obtain an equivalent filtering algorithm in the form of an infinite system of difference equations for the

random values of these variables such as the probabilities  and their relations to the optimal
estimates. An advantage of the method of sufficient statistics is that the infinite sets of semi�invariants or
quasi�moments can be truncated to obtain a finite�dimensional approximation of the exact but infinite�
dimensional filter. A simple truncation of this kind with the minimally acceptable number of sufficient sta�
tistics is the Gaussian approximation discussed in Section 3. A more general and hence more accurate and
sophisticated method on non�Gaussian two�moment parametric approximation of probability densities is
described in [4].
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3. THE BANK OF NORMAL APPROXIMATION FILTERS

In this section, we obtain the Gaussian approximation of the LD AOF determined by the truncation
of the infinite number of sufficient statistics of the state vector  so that only the first two conditional
semi�invariants that coincide with the conditional expectation (mean value) and covariance remain. This

corresponds to the approximation of the posterior distribution  by the product of the probability 

and the Gaussian approximation of the density  similarly to (2.6):

;

here,  is the density of the normal (Gaussian) distribution of the random vector U with the
parameters  and .

3.1. Equations for the Probabilities and Conditional Densities

We also replace the numerator  in the Stratonovich equation and the predicting distribution 
with the products of the corresponding probabilities and conditional densities

(3.1)

where  is their common condition. Then, the consistency of these two distributions (2.10)
implies the following relationships between their probabilities and densities:

(3.2)

Let us find formulas for the posterior probability and density (2.7) implied by the Bayes formula in
which we also move the discrete argument  to the superscript:

, .

For this purpose, we integrate (2.8) with respect to x and use the product in (3.1). As a result, we obtain

, (3.3)

. (3.4)

Thus, the posterior probability density  is conditional with respect to the jointly predicting density

.

3.2. Gaussian Approximations of the Optimal Estimates

We approximate the conditional probability density in (3.1) by the Gaussian density

. (3.5)

As the proximity measure of these densities, we use the equality of their conditional expectations

, (3.6)

(3.7)
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and conditional covariances

(3.8)

(3.9)

As a result, the Gaussian approximation of the distribution  is

; (3.10)

i.e., it is completely determined by the probability  and two moments (3.6)–(3.9).

Then, we conclude from (3.5) that both marginal densities with respect to  are also approximated
by the Gaussian densities as

, (3.11)

. (3.12)

The conditional (with respect to (3.5)) posterior probability (3.4) is also approximated by the Gaussian
one as

; (3.13)

moreover, the parameters of the Gaussian density are found using the normal correlation theorem (see [16])

(3.14)

where  is the Moore–Penrose matrix pseudoinversion operation. According to (3.3) and (3.12), the pos�
terior probability has the fractional Gaussian approximation

. (3.15)

As a result, the filter state is determined by probabilities (3.15) and moments (3.14).
Since the Gaussian density is symmetric and unimodal, the conditional quadratically simple and sim�

ple multiplicative estimates of the state vector in (2.4) and (2.5) have the same approximation

as a random value of the conditionally posterior mean value in (3.14). This function corrects the corre�

sponding value of the prediction function  using the last measurement and its prediction functions

. The Gaussian quadratically simple estimates are found, according to (2.4), by the
formulas

, ; (3.16)

the Gaussian simple multiplicative estimates are found, according to (2.5), by the formulas

, . (3.17)

Here, for brevity we use the notation , .
Thus, we have proved the following result, which is similar to Proposition 2 in [14].

L e m m a  1. Let finite conditional moments (3.6)–(3.9) of the random variables  and  exist at any

time , and let their joint conditional probability density  have the Gaussian approximation (3.5).
Then, the optimal estimation functions (2.4) and (2.5) are represented in terms of these moments and the
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conditional probability  in (3.1) by the approximate formulas (3.16) and (3.17), respectively, with
functions (3.14) and (3.15).

3.3. Relations between the Measurement and State Predictions

Due to approximation (3.5), the prediction probability according to (3.2), (3.11) has the poly�Gauss�
ian approximation

. (3.18)

Here and in what follows, the summation is over . This relation and dependence (2.9) of distribu�

tion  on  allows us to represent the conditional prediction functions  and  of

the measurement vector in terms of the conditional prediction functions  and  of the state vector.

Indeed, we can plug the fraction  into (3.7) and (3.9) and use
products (2.9) and (3.1) to obtain

(3.19)

where  and  are the first and the second initial moments of the indication–measurement distribution

, .

Using (1.9) and the rule for the Dirac function integration, we can explicitly represent these moments in
terms of the measurement functions (1.2) as

(3.20)

We will call them conditional means of the indicator–measurer.
Now, take into account the poly�Gaussian approximation (3.18) to finally obtain

(3.21)

where , , and  are the structure correction functions. Two of them are determined as the result of
Gaussian averaging of the conditional means (3.20)

(3.22)

the third function  can be represented in terms of  and its partial

derivative with respect to the first arguments using the property of the Gaussian density

 as the sum

. (3.23)
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We formulate this result as the following lemma.
L e m m a  2. Under the assumptions of Lemma 1, the functional parameters of the measurement pre�

diction (3.7) and (3.9) are analytically represented in terms of the parameters of the state prediction (3.6)

and (3.8) and the conditional probability  by formulas (3.21) with the functions of Gaussian means
(3.22) and (3.23).

3.4. Dependence of the State Prediction Functions on Estimates

Since the prediction distribution  is determined by formula (2.11) in terms of the preceding pos�

terior , the next state prediction functions , , and  can be represented in terms of the

current estimation functions , , and .

To this end, we represent the desired functions (3.1), (3.6), and (3.8) in terms of the distribution  as

,

,

.

With regard to (2.9) and (1.7), the inner integral here can be represented in terms of the indication prob�

ability (1.10) and the prediction distribution as . Therefore, for

time k + 1, we have an explicit dependence of these functions on the distribution :

(3.24)

Plug (2.11) into these expressions and interchange the order of integration to obtain

(3.25)

where the other conditional means are

,

,

.

Using (1.11), (1.2), and the rule for the integration of the Dirac function, these conditional means can be
explicitly represented in terms of the known functions of the entire observation system

(3.26)
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where the common factor  is

.

We formulate this result as the following lemma.

L e m m a  3. If the finite conditional moments (3.6) and (3.8) exist, then the state prediction functions are
represented in terms of the posterior distribution  by formulas (3.25) with the conditional means (3.26).

Now, let us take into account the Gaussian approximation of the posterior distribution

, (3.27)

which follows from (2.6) and (3.13).

Plug it into (3.25) to finally obtain

(3.28)

where the common argument  and the structure prediction functions ,

, and  are the results of the Gaussian averaging of the conditional means (3.26)

(3.29)

L e m m a  4. If the Gaussian approximation (3.27) holds for the posterior distribution , then the
state prediction functions (3.1), (3.6), and (3.8) are analytically represented in terms of its functional
parameters (3.14) and (3.15) by formulas (3.28) with the Gaussian means (3.29).

As a result, instead of the chain of integral transformations of distributions (2.14), we have the algebraic
sequence of computations of characteristics and their Gaussian approximation

, (3.30)

by formulas (3.14), (3.15), (3.21), and (3.28). After the three components of the filter state vector

 have been obtained, the estimates  are found by formulas (3.16) or (3.17).

3.5. Initial Conditions

The chain of transformations of the Gaussian characteristics (3.30) begins by finding the parameters of
the Gaussian approximation (3.10) of the unconditional initial distribution (2.15)

; (3.31)

this approximation is similar to (3.10). The meaning of these transformations is as follows:

(3.32)

and they can be found using the Monte�Carlo method.
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In order to find analytical approximations of parameters (3.32), we represent them in terms of the ini�
tial data. At k = 0, we obtain from (3.1) by straightforward integration, taking into account (1.7) and (2.15)

.

Similarly, we obtain the following expressions, which are similar to (3.19) and (3.24), from (3.6)–(3.9):

,

,

,

,

,

where  and  are the known conditional means of indicator–measurer (3.20).

If the initial state vector  of plant (1.1) is conditionally Gaussian

, , , (3.33)

then, some of them can be represented, as in (3.21), in terms of the known Gaussian correction functions (3.22)
and (3.23):

(3.34)

The other functions are determined by the algebraic formulas

(3.35)

where the Gaussian means of the conditional indication probability :

(3.36)

and its products with the condition variable

,

are used. There are relationships between them, which are similar to (3.23), that represent the two last
quantities in terms of (3.36):

(3.37)

L e m m a  5. Let the initial state  of plant (1.1) be conditionally Gaussian with the probability den�
sity (3.33). Then, the parameters of the Gaussian approximation (3.31) of the initial probability density

 are determined by the algebraic formulas (3.34) and (3.35) with the Gaussian mean functions
(3.22), (3.23), (3.36), and (3.37).
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3.6. Equations of the Suboptimal Filter

The relations obtained above allow us to write equations of the Gaussian approximation of the AOF,
which is also called NAF. The functions  used in these relations must be found
in advance as characteristics of the statistical linearization (3.22) and (3.29) of the corresponding condi�

tional means (3.20) and (3.26). In what follows,  and , and the random values of deter�
ministic functions at random points are denoted by the same symbols as the functions themselves, e.g.,

.
T h e o r e m  2. Under the assumptions of Lemma 1, the following equations of the LD NAF hold.

First, the initial conditions  are specified, which are found exactly using (3.32)
or approximately using (3.34), (3.35) and functions (3.22), (3.36), and (3.37). Next, at each time ,
the following quantities are computed.

1. Characteristics of the conditional predictions of measurement (if ) using (3.21):

(3.38)

2. Characteristics of the conditional predictions of state and measurement specified by the indicator  

, , , , , . (3.39)

3. The elements of the current filter state determined by the measurement  by formulas (3.14)
and (3.15):

, 

, ;

its quadratically simple estimates by formula (3.16)

, ;

and its simple multiplicative estimates by formula (3.17)

, .

4. Characteristics of possible conditional predictions of the next states by formula (3.28):

(3.40)

Next, all these computations are repeated by setting  and returning to Step 1.
By eliminating the intermediate variables from the equations written above, we obtain a closed system

of stochastic difference first�order equations in all the probabilities , expectation vectors , and the

covariance matrices , where . The total number of these equations  determines

the order of the Gaussian LD AOF. For a monostructured observation system, where L = 1 and ,
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the filter state is determined by two moments  and , so that its order is reduced to  as is the
order of the NAF.

3.7. The Case without a Structure Indicator

If measurers (1.2) do not include the indicator, then its equation can be formally considered as the

identity , so that the probability of indication is degenerated: . This allows us to drop
the variables , , and  in all the preceding expressions. Then, even the basic recurrent formula (2.12)
becomes simpler with a lower number of integer arguments of distributions:

.

In the case of independent noises, when , it coincides with [1, (2.8)].
The number of initial conditions in the equations of the NAF is by a factor of М lower; these are

; moreover, in the Gaussian case (2.31), some of them are known: ,

, and . Instead of (3.38), the characteristics of the conditional measurement predic�
tions are found without summation over the possible values of the indicator variable:

(3.41)

relations (3.39) are not used any more, and the characteristics of the conditional predictions of the next
state are found by the formulas

(3.42)

rather than by (3.40).
In addition, the computation of the conditional means both of measurer (3.20)

, (3.43)

and of the whole observation system (3.26)

(3.44)

is simplified; here, the common factor  is , and the denomi�
nator is equal to the conditional probability density of the measurement

.
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C o r o l l a r y  1. If there is no structure indicator, relations (3.38) and (3.40) take a simpler form (3.41)
and (3.42), respectively; to find the structure correction (3.22) and prediction functions (3.29), simpler
conditional means (3.43) and (3.44) are used.

Other significant simplifications due to various independences of the white noises in the system can be
found in [14]. In that paper, even simpler linearized approximations of the conditional means and, as a
consequence, of their Gaussian means are considered, which yields the bank of extended Kalman filters [2].
However, this does not affect the order of such a filter, which remains high.

4. OPTIMAL STRUCTURE FILTER

Now we abandon the complex construction of the AOF by finding the posterior distribution by (2.12)
and estimates by (2.4) or (2.5). To obtain simpler dependences (1.3) of estimates on the accumulated mea�
surements that can be implemented in real time, we impose the following recursiveness constraints on
these estimates:

, .

4.1. Filter Equations

In [10], it was proposed to seek the difference equation for the LD OSF of an order hn, where 
is the factor multiplying the dimension n of the state vector of the dynamic part of the observation
plant (1.1). Below, we consider for simplicity only the fastest such filter—the OSF of a low order n with

the multiplicity h = 1. The state vector of this filter is the n�dimensional estimate vector  itself, and the
equation of state is sought in the form

, , , (4.1)

where  as before, and the estimate of the structure index is given by the formula

, , . (4.2)

Both structure functions of this filter  and  are found based on the optimality criterion (1.4), which
suggests its name the optimal structure filter. Note that filter (4.1) and (4.2) is an LD� generalization of the
ordinary (purely dynamic) OSF [11, 12].

4.2. Relation between the Structure Functions and the Estimating Distribution

Substitution of (4.1) and (4.2) into the optimality criterion (1.4) yields the finite�dimensional minimi�
zation problem (which is similar to (2.1)) for the conditional risk function

, , (4.3)

where  is now the estimating (truncated posterior) distribution of the extended plant state . This
distribution takes into account possible values of a constant number of conditions  consisting of the

preceding estimate  and the last two measurements . As a result, the structure OSF
functions (4.1) and (4.2) are generally found similarly to (2.2) and (2.3) by the formulas

, ; (4.4)

in these formulas, each conditional estimation function is determined by

, . 
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The quadratically simple and simple multiplicative OSF estimates are also found by (2.4) and (2.5), but

with the replacement of the argument  with ; they also use different not posterior probabilities and
densities

, . (4.5)

4.3. Finding the Estimating Distribution

In order to find the conditional distribution , we represent it using the Bayes formula as the ratio

, , (4.6)

where the numerator , as in (2.9), is the product

. (4.7)

Here, the prediction distribution  can be represented, as (2.11), in terms of the conditional distribu�
tion  of the random variables corresponding to the preceding time. For the next time point, we have

, (4.8)

where the conditional distribution  can be easily represented in terms of the unconditional distribu�

tion  of the group  consisting of five variables as the ratio

. (4.9)

These random variables form a Markov vector because they are determined by the closed system of dif�
ference equations of plant (1.1), measurer (1.2), and filter (4.1) disturbed by white noises. Therefore, there
is a recurrent formula for their distribution, which can be written as a chain of relations generalizing the
ordinary dynamic case [11]. Indeed, knowing the distribution  for  of the preceding group ,

one can find the distribution of another group , which differs from the former group only in
the first pair  by the formula

; (4.10)

then, the distribution of seven random variables

(4.11)

becomes known. As in (4.6), given this distribution, we easily find the estimating distribution

, (4.12)

where , and obtain the optimal functions  and  using (4.3) and (4.4). Finally, knowing 
and , we can obtain the following distribution of the Markov vector :

; (4.13)

here, the summation is over all .

The initial condition for the recurrent chain (4.10)–(4.13) is the distribution , which is obtained
given the known distribution  of the initial state of the observation plant (1.1):
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. (4.15)

As a result, the initial estimating distribution  is also found by (2.13), so that the initial estimates 
in the AOF and the OSF are identical.

T h e o r e m  3. The optimal structure functions (4.4) of the OSF (4.1) and (4.2) are found recurrently,
along with the required distributions of probabilities using chain (4.6)–(4.15).

4.4. Algorithms for the Filter Synthesis

The relations obtained above make it possible to find the optimal structure functions of the finite�
dimensional OSF in advance because the number of arguments of these functions is constant. For this
purpose, given the preceding distribution  for each current time , we should successively find
the following distributions: unconditional  and  using (4.10) and (4.11) and the estimating distri�
bution  using (4.12). Then, the structure functions  should be obtained using (4.3) and (4.4),
after which we can determine the new distribution  using (4.13). The scheme of these computations is

, . (4.16)

This sequence of computations begins with finding the initial functions  and the distribution 
by formulas (2.13), (4.3), (4.4), (4.14), and (4.15), which can be illustrated by the scheme

(4.17)

Algorithm (4.16), (4.17) uses only one conditional distribution ; therefore, it is convenient for the
numerical synthesis of the OSF, e.g., by the Monte�Carlo method. However, this procedure is fairly com�
plicated because it requires histograms of the unknown structure functions to be constructed. To obtain
numerical�analytical approximations of the OSF, it turned out to be more convenient to additionally use
other conditional distributions (see [12]) by performing in (4.16) the transition from the joint distribution

 to the conditional distribution  by formulas (4.6)–(4.9) according to the scheme

. (4.18)

Let us make algorithm (4.18) more specific by replacing in it the distributions with probabilities and
conditional densities. To this end, we introduce additional notation for groups of variables
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Then, we easily obtain from (4.6) the following analogs of relations (3.3) and (3.4):
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these relations are found using expressions implied by (4.7):
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In turn, formula (4.8) represents the next prediction distribution  in terms of the conditional distri�
bution . For its probability and density, we obtain the following formulas for the transformation of the

joint probability  and density  to the conditional ones

(4.21)

; (4.22)

these formulas are similar to (4.19) and (4.20).

5. THE GAUSSIAN OPTIMAL STRUCTURE FILTER

To simplify the procedure for the synthesis of the exact OSF described above and make it use only alge�
braic relations, we approximate two probability densities.

5.1. Approximation of the Conditional Probability Density

First, we approximate the joint conditional density in (4.20) by a Gaussian one:

. (5.1)

It differs from (3.5) only in the replacement of the condition  with , while the relations between their
parameters, which are similar to (3.6)–(3.9), remain the same. Then, accurate to the form of this condi�
tion, Lemma 1 holds with relations (3.14)–(3.17). Therefore, the estimating probability and density (4.5)
have the analytical approximations

, (5.2)

;

and the parameters of the density are determined by the formulas

(5.3)

Estimates of the Gaussian OSF are also found using (3.16) or (3.17) but with the argument  replaced

with , so that now we have in these formulas

, , . (5.4)

According to (4.7), the prediction distribution  is marginal with respect to the distribution 
and also in the case of the OSF similarly to (2.10); hence the poly�Gaussian property of the prediction
density is preserved accurate to its condition:

.

Therefore, Lemma 2 with expressions (3.21) also holds with the same difference, so that the Gaussian
means (3.22) and (3.23) also allow us to represent the measurement prediction functions in terms of the
state prediction functions by the formulas

(5.5)
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Here, similarly to (3.24), we have the following representations for the state prediction functions:

(5.6)

L e m m a  6. If the Gaussian approximation of the conditional probability density (5.1) holds, then
elements (5.4) of the OSF estimates (3.16) or (3.17) are represented by the algebraic formulas (5.2) and
(5.5) in terms of the state prediction functions (5.6).

5.2. Approximation of the Unconditional Probability Density

Finally, we find the algebraic dependences of functions (5.6) on their common argument . Now, the
prediction distribution , in contrast to (2.11), is determined by (4.8). Substitute it into (5.6) and use
Lemma 3 to obtain for the state prediction functions the following representations with the conditional
means (3.26):

(5.7)

however, with the conditional distribution (4.9) whose factors have the form (4.21) and (4.22).
Therefore, in order to obtain algebraic dependences from (5.7), we also approximate the unconditional

density by the Gaussian one as

; (5.8)

as the proximity measure of these two densities, we also choose the equality of all their expectations and
covariances

, , .

Then, the conditional probability (4.21) has the fractional Gaussian approximation

, (5.9)

and the conditional density (4.22) is also approximated by the Gaussian one by the same normal correla�
tion theorem as

. (5.10)

The expectation of this approximation is a linear function of its condition

, , (5.11)

and the covariance is independent of the expectation; along with the parameters of function (5.11), it is
determined by the formulas

. (5.12)

Due to (5.10), the conditional distribution (4.9) has the approximation
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Substitute it into (5.7) similarly to (3.25) to find the algebraic expressions

(5.13)

with the known Gaussian means (3.29).

L e m m a  7. If the Gaussian approximation of the unconditional probability density (5.8) holds, then
the state prediction functions are analytically expressed by (5.13) in terms of characteristics (5.9) and

(5.11) of the preceding measurement  and estimate , which are found using the numerical parameters

of the filter , , , and (5.12).

5.3. Equations of the Gaussian Filter

We summarize the above reasoning in the following theorem.

T h e o r e m  4. If the approximations of the probability densities (5.1) and (5.8) are valid, then we have
the following equations of the Gaussian approximation of the OSF (these equations are written as a chain

of formulas below). Upon specifying the same initial conditions  as in the
NAF, the following quantities are computed for each .

1. Characteristics of possible conditional measurement predictions (if ) using (5.5):

(5.14)

2. Characteristics of the conditional state and measurement predictions specified by the indicator  

, , , , , , 

and the numerical filter parameters

, , , , , . 

3. Parameters of the Gaussian approximation of the estimating distribution, which are determined by
the measurement , using (5.2) and (5.3):

quadratically simple estimates using (3.16)

simple multiplicative estimates using (3.17)
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and the characteristics of the state vector  modified using the parameters of filter (5.12) and the
repeated account for the measurement  by formulas (5.9) and (5.11):

(5.15)

4. Characteristics of possible conditional predictions of the next state using (5.13):

(5.16)

5. Set  and go to Step 1.

5.4. Finding the Numerical Parameters

All the parameters of the Gaussian OSF (GOSF) are numerical characteristics of the random state of

the plant , its measurer , and the filter state  in the form of the probability 

of their discrete components  , the first conditional moments , and  of their absolutely con�
tinuous components; alternatively; they can be represented in terms of such moments by (5.12). There�
fore, all these characteristics can be easily determined using sufficiently large samples of these random
variables using direct statistical simulation of the observation system (1.1) and (1.2), and the filter (5.14)–(5.16)
itself, in the same way as this is done for the monostructure OSF in [12] and for the two�step LD OSF
in [14]. Simultaneously, the sample value of the optimality criterion (1.4) can be easily obtained at each k,
thus analyzing the GOSF accuracy.

C o r o l l a r y  2. An algorithm for the computation of the GOSF parameters using the Monte�Carlo
method can be described by the scheme

Here, the braces  denote sets of impelementations of the corresponding random variables, the square

brackets denote sets of deterministic parameters in the form of probabilities , con�

ditional means , the covariance  of the vector , and parameters (5.12) obtained
from these realizations. All these computations begin with the generation of the plant initial state

 based on the given distribution .

6. COMPARISON OF THE GAUSSIAN FILTERS

The difference of the GOSF equations presented in Subsection 5.3 from the equations of the NAF
(3.38)–(3.40) is as follows:

the second part of Step 2—the presence of six numerical parameters , …, ;

the second part of Step 3—the new relations (5.15);
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step 4—the use in the state prediction equations (5.16) of two new random variables  and 

obtained in (5.15), along with the deterministic parameter  instead of the three variables of the NAF

, , and  in expressions similar to (3.40), respectively.
The comparison of the relations in Subsections 3.6 and 5.3 shows that the considerable reduction in

the computer memory used by the GOSF compared with the NAF (reduction in the filter order) does not
materially speed up the measurement processing because the estimates are computed by almost identical
formulas that involve the same structure correction functions (3.22) and (3.23), and the prediction func�
tions (3.29). However, the use of the preliminary determined numerical parameters (5.12) in the GOSF
equations allows one to better adjust it to the problem under consideration, as was the case with the mono�
structure GOSF in [12].

An example of comparing the NAF with the GOSF and with its two�step version for LD systems, which
illustrates this fact, can be found in [14]. In that paper, the Gaussian approximation of another LD low
order filter—two�step OSF (2OSF) [13], which also produces the optimal predictions  and —was
obtained. The Gaussian 2OSF turned out to be simpler than the NAF and the GOSF because its equations

do not require the computation of the covariances of the prediction errors , which are computed

in (3.40) and (5.16) using a complex analytical matrix function  defined in (3.29). The random

covariance  in the arguments of the 2OSF functions is replaced with its deterministic parameter.
Note that, in the absence of the structure indicator, the equations of the Gaussian OSF and 2OSF are

simplified not only as NAF equations (see Subsection 3.7) but the number of their numerical parameters

is reduced by a factor of М. Indeed, instead of  and  in this case, only  and  remain.

CONCLUSIONS

A generalization of the two known methods for the optimal estimation of the state of an LD observation
system with discrete time for the case when the measurement errors depend on the plant disturbances is
proposed. Constructive Gaussian approximations of the corresponding filters are found, and the compar�
ison of these algorithms is performed.

First, the classical recurrent formula for the posterior probability distribution of the plant state is gen�
eralized (Theorem 1), and the ways of its use in real time are analyzed. Properties of the Gaussian approx�
imation of the posterior distribution are established (Lemmas 1–5) and used to find equations of the bank
of NAFs (Theorem 2), which, however, have a large order. A simpler version of the NAF is also considered
for the case when there is no structure indicator (Corollary 1).

Next, the synthesis procedure of the structure of a finite�dimensional filter with the order equal to the
dimension of the state vector is described. An algorithm for the integral recurrent computation of the fil�
ter’s structure functions is obtained (Theorem 3), which is reduced to a form that is convenient for finding
their analytical�numerical approximations. Based on the two proposed Gaussian approximations (Lem�
mas 6 and 7), an approximation of the OSF (Theorem 4) is constructed, which is similar to the NAF, and
an algorithm for the numerical computation of the parameters of this approximation by the Monte�Carlo
method is described (Corollary 2). Finally, similarities between the Gaussian OSF and the NAF and their
fundamental differences are analyzed.

The results provide a foundation for the construction of more accurate approximations of the AOF,
OSF, and 2OSF. However, the use of segments of the Gauss�like Gram–Charlier and Edgeworth series
(which account for higher moments) not only increases the complexity of the structure functions of the
corresponding approximations of the AOF but also drastically increases its order compared with the NAF
[8]; however, it is difficult to obtain a good approximation of the posterior distribution, especially a poly�
modal one, in this way. The poly�Gaussian approximation is more promising due to its polymodality, and
the order of such an approximation of the AOF is equal to the product of NAF order with the number of
Gaussian terms. The application of the two�moment parametric approximation [4] transforms the AOF
into another suboptimal filter of the same order as that of the NAF but with different prediction and cor�
rection functions. In order to obtain them, it is sufficient to replace in (3.5) the joint Gaussian probability
density  with the multidimensional two�parametric probability density  and then use

its marginal ,  and conditional  modifications. As a result, all the Gaussian
means (the statistical linearization coefficients) such as (3.22) automatically turn into two parametric

means of the type .
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The orders of all similar approximations of the OSF and 2OSF remain equal to the number of compo�
nents of the state vector to be estimated; only the form of the structure functions and the number of the
numerical parameters of the suboptimal filter vary. A fundamentally different method of improving the
accuracy of the OSF and 2OSF, which proved to be effective, is the construction of Pugachev’s condition�
ally optimal modifications of their Gaussian or linearized approximations [11, 17]. They differ in terms of
the additional correction parameters introduced in the suboptimal equations already obtained; these
parameters have the form of amplification matrices and offset vectors, which are also optimized. As a
result, they are computed along with the basic parameters (5.12) using similar formulas by the Monte�
Carlo method.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Education (project no. 1.1191.2014K) and by
the Russian Foundation for Basic Research (project no. 15�08�01902�a).

REFERENCES

1. A. Nemura and E. Klekis, Estimation of State and Parameters of Systems: Systems with Jump�like Varying Prop�
erties (Mokslas, Vilnus, 1988) [in Russian].

2. S. Ya. Zhuk, “Joint filtering of mixed Markov discrete time processes,” Izv. Vyssh. Uchebn. Zaved., Radioele�
ktron., No. 1, 33–39 (1988).

3. V. I. Tikhonov and V. N. Kharisov, Statistical Analysis and Synthesis of Radio Engineering Devices and Systems
(Radio Svyaz’, Moscow, 1991) [in Russian].

4. V. A. Bukhalev, Recognition, Estimation and Control in Systems with Random Jump Structure (Nauka, Moscow,
1996) [in Russian].

5. A. Doucet, N. Freitas, and N. Gordon, Sequential Monte�Carlo Methods in Practice (Springer, New York, 2001).

6. Markovian Estimation Theory in Radio Engineering, Ed. by M. S. Yarlykov (Radiotekhnika, Moscow, 2004) [in
Russian].

7. A. Bain and D. Crisan, Fundamentals of Stochastic Filtering (Springer, New York, 2009).

8. I. N. Sinitsyn, Kalman and Pugachev Filters (Logos, Moscow, 2007) [in Russian].

9. A. V. Bosov and A. R. Pankov, “Conditionally minimax filtering of process in system with switching observation
channels,” Autom. Remote Control 56, 835 (1995).

10. E. A. Rudenko, “Recurrent finite algorithms for operating mode recognition and state estimation of intelligent
management systems,” Inform., Ser. Avtomatiz. Proektir., Nos. 2–3, 79–91 (1992).

11. E. A. Rudenko, “Optimal structure of discrete nonlinear filters of low order,” Autom. Remote Control 60, 1261
(1999).

12. E. A. Rudenko, “Optimal discrete nonlinear filters of the object’s order and their gaussian approximations,”
Autom. Remote Control 71, 320 (2010).

13. E. A. Rudenko, “An optimal discrete nonlinear logical�dynamical filter�predictor,” J. Comput. Syst. Sci. Int.
52, 354 (2013).

14. E. A. Rudenko, “Analytical�numerical approximations of the optimal recurrent logical–dynamical low order
filter�predictor,” J. Comput. Syst. Sci. Int. 54, 691 (2015).

15. A. P. Trifonov and Yu. S. Shinakov, Joint Discrimination of Signals and Estimation of their Parameters against an
Interference Background (Radio Svyaz’, Moscow, 1986) [in Russian].

16. A. N. Shiryaev, Probability (Nauka, Moscow, 1980) [in Russian].

17. A. V. Panteleev, E. A. Rudenko, and A. S. Bortakovskii, Nonlinear Control Systems: Description, Analysis and
Synthesis (Vuzovsk. Kniga, Moscow, 2008) [in Russian].

Translated by A. Klimontovich


		2016-02-16T16:41:22+0300
	Preflight Ticket Signature




