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INTRODUCTION

In 1931, academician A.N. Krylov published work [1] on the subject that is currently known as Krylov
subspaces, or the Krylov subspaces method. The paper was devoted to the calculation of coefficients of the
characteristic polynomial of a given number matrix. In this work, Krylov discussed, in particular, the effi�
ciency of calculations and defined computational costs as the number of multiplication operations (which
is not typical of a mathematical publication in the 1930s). He suggested a method that war superior to
other computational methods known by that time and, since then, is widely used all over the world, espe�
cially for iterative solving systems of linear matrix equations of high orders.

The Krylov subspaces method is also widely used in the analysis of stability, controllability, and observ�
ability of linear dynamical systems in the state space, as well as in synthesis of feedback control laws (see,
e.g., [2–14] and references therein).

Another application of the Krylov subspaces method is reduction of mathematical models of dynami�
cal systems given, for example, in the form of Markov’s processes. The reduction of mathematical models
of dynamical systems based on the Krylov subspaces method is an alternative to the well�known reduction
method based on the SVD decomposition. It is applied to large�scale dynamical systems with the dimen�
sion of the state space  in the case of sparse system matrices.

The key component of the reduction based on the Krylov subspaces is the so�called moment fitting
(adjustment of Markov’s parameters). The idea of the reduction is to establish correspondence between
the moments of the transfer function (matrix) of the original higher�order system  in its expansion in a
Laurent series and the moments of the lower�order model . In so doing, the controlled and observed
subspaces of the system are used.

This paper is devoted to the analysis of the known approaches to reducing mathematical models of
dynamical systems and numerical algorithms constructed on the basis of the Krylov subspaces method
and to solving complicated problems with the use of the algorithms presented.

1. DESCRIPTION OF DYNAMICAL SYSTEMS

We consider a linear time�invariant (LTI) system  of the form

(1.1)

where  is a state vector,  is an input vector, y =  ∈ �p

is an output vector, and  is an initial state.
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If , (1.1) is a SISO (single�input, single�output) system. If , then (1.1) is a MIMO
(multi�input, multi�output) system. When   or  , we have a SIMO (single�input,
multi�output) or MISO (multi�input, single�output) system, respectively.

For zero initial conditions, we define for system (1.1) the convolution operator  from  to  as [12]

(1.2)

with the kernel having the form of a weight (pulse) function (matrix) . The Laplace transformation of
the function  yields the transfer function (matrix)

(1.3)

where  is the identity matrix of size .

In what follows, we assume that system (1.1) is completely controllable [15], i.e., the controllability
matrix

(1.4)

has full rank,

(1.5)

and completely observable [15], i.e., the observability matrix

(1.6)

is also of full rank,

(1.7)

Let system (1.1) be Lyapunov stable. Then, there exist Gramians  and  given by [5]

(1.8)

such that  and . Moreover, matrices (1.8) are solutions to the corresponding alge�
braic Lyapunov equations

(1.9)

Let us return to the convolution operator  given by (1.2) and, confining its domain and range, intro�
duce the Hankel operator [12] as

(1.10)

Here, speaking in non�strict terms,  are “past” inputs and  are “future” outputs. In other
words, the Hankel operator maps “past” inputs into “future” outputs. Unlike the convolution operator,
the Hankel operator has a finite rank [12], which does not exceed n, and, hence, a finite set of singular
values , which are defined as follows.

Let system (1.1) be completely controllable, completely observable, and asymptotically stable. Then,
the singular values  are positive square roots of the eigenvalues  of the product  of Gramians
from (1.8) or (1.9), i.e.,

(1.11)
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The greatest singular value  of the Hankel operator determines the Hankel norm of system 
(1.1) [12]; i.e.,

(1.12)

Note that the norm  of system  is

(1.13)

and the  norm is

(1.14)

Here, the symbol * denotes conjugation.

2. KRYLOV SUBSPACES

The Krylov subspaces method is widely used for solving various computational problems and, first of
all, in iterative solving high�dimensional matrix equations of the form [17]

(2.1)

where A and b are given  matrix and �dimensional vector, respectively.

Let  be an initial approximation of a solution to equation (2.1), where  or ,

(2.2)

be an initial residual, and

(2.3)

be a subspace of dimension m determined by the matrix  and vector . For subspace (2.3), the inclusion

holds.

The methods relying on subspaces  are iterative ones [18]. By means of these methods, the mth iter�
ation of a solution to equation (2.1) is sought in the form

(2.4)

where  is a matrix polynomial in  of the degree less than or equal to m – 1. If the matrix equation
(2.1) is defined over , then the coefficients of  are also real.

According to (2.4), the residual of a solution to equation (2.1) on the mth step can be written as

(2.5)

where  is a remainder polynomial. Similarly, if  is a solution to (2.1), then

In the course of the iterative construction of basis , any method based on subspaces (2.3) uses on

each iteration one or two multiplications of the matrix by a vector in the form  (or ).
Therefore, the corresponding algorithms can be used both for solving problems with explicit system matri�
ces and for solving problems in which the matrix is available only through the multiplication by a vector
[16]. It should be noted that the convergence of the iteration process is ensured by using an appropriate
algorithm.
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In all methods based on the subspaces , the iteration procedures are initialized by specifying an ini�
tial approximation and the corresponding initial residual (2.2). The mth approximation is found in the
form

Without loss of generality, we may assume that  and . Based on the above, we introduce the
following definition.

D e f i n i t i o n  1. For a system  (1.1) given by a pair , where  and , the kth Krylov
sequence is formed by the following k column vectors:

(2.6)

The linear space spanned by the column vectors (2.6), i.e.,

(2.7)

is called the kth Krylov subspace.
By the Hamilton–Cayley theorem, the Krylov subspaces satisfy the condition

(2.8)

Condition (2.8) yields direct relationship of the Krylov subspaces with the controllability and observ�
ability matrices  (1.4) and  (1.6) of system  (1.1).

The approach is extended to the so�called partial reachability matrix

(2.9)

and partial observability matrix

(2.10)

3. PROJECTORS

A projector  onto a subspace  is defined to be a linear idempotent mapping in  [19]:

(3.1)

From the idempotency of the operator , it follows that

(3.2)

i.e., the kernel of the projector P coincides with the range of the mapping .

Any vector  can be represented as

(3.3)

hence, the space  can be decomposed into the direct sum of the subspaces:

(3.4)

From (3.4), it follows that, for any pair of subspaces ,  whose direct sum of the form (3.4)
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An orthogonal projector P onto a subspace  is also defined as a linear mapping of  satisfying
condition (3.1) and the additional requirement [19]

(3.7)

According to equations (3.5), (3.6), matrix representation of a projector needs two bases:

a basis for the subspace  with the matrix

(3.8)

and a basis for the subspace  with the matrix

. (3.9)

If matrices (3.8) and (3.9) are biorthogonal [20], i.e.,

(3.10)

then the projector P can be represented as

(3.11)

Otherwise, the following more general representation holds:

(3.12)

The set of projectors can be partitioned into two classes: orthogonal (satisfying the condition )
and oblique projectors. The orthogonal projectors satisfy the conditions [20]

 (3.13)

 (3.14)

 (3.15)

 (3.16)

All other projectors are classified as nonorthogonal (oblique) ones.

Returning to the iterative solving equation (2.1), we note that, in the given case, a problem of minimi�
zation of an additional condition is solved as a rule [18].

Let

(3.17)

be a residual on the mth step. Then, for an additional condition, we may consider [17, 18]

(1) the Petrov–Galerkin orthogonality condition
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where  is an m�dimensional subspace; if , then (3.18) is called

(2) the Galerkin orthogonality condition
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(3) the minimum residual condition
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4. MODEL REDUCTION

Let us return to the linear time�invariant system  of form (1.1) and its transfer function (matrix) of
form (1.3) given by

(4.1)

Let us rewrite the transfer function (4.1) as

(4.2)

where  and  are solutions to the linear parametric equations

 (4.3)

 (4.4)

We consider the model reduction (order reduction) problem as search for appropriate approximations

 for  and  for  in the sense of the satisfaction of the Petrov–Galerkin orthogonality
condition (3.18). In this case, the following reduced model can be obtained:

(4.5)

where

(4.6)

and

Without loss of generality, we assume in what follows that  (which is typical of the majority of
practical problems).

Let us introduce the following definition [21].

D e f i n i t i o n  2. Let a transfer function of the original LTI system be given as

, (4.7)

and let its transfer function  be expanded into the Laurent series in a neighborhood of a given point
:

(4.8)

The coefficients  are called moments of the transfer function of the system at point . It can be shown
that the moments  are equal to the values of the transfer function  and its derivatives at the point

. The moments  of the transfer function of the reduced system are introduced in a similar way.
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Let . Then, the moments  are called Markov’s parameters. These parameters may be viewed as
coordinates of a point in the n�dimensional space that represents the transfer function. Then, instead
of (4.8), we can write

(4.9)

where

(4.10)

Further, let . Then, if matrix  is nonsingular, we have the following expansion:

(4.11)

In this case, the moments of the transfer function are given by

(4.12)

In a more general case, when expansions of the form

(4.13)

are considered, the moments of the transfer function are given by

(4.14)

Possible results of the approximation are presented in the table.
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In other words, the frequency characteristic of the reduced system must coincide with that of the original
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Let us consider these methods in more detail.
L a n c z o s’  m e t h o d. Let us assume that

and apply the LU decomposition to the Hankel matrix :

(4.17)

where matrices  and  satisfy the condition

Let us introduce the mappings

 (4.18)

 (4.19)

assuming that . Then, it follows that  is an oblique projector. Hence, we can define the
reduced system  in the form

(4.20)

The following theorem from [22] is valid.
T h e o r e m  1 (L a n c z o s’  p r o c e d u r e). For a given full�order model  of form (4.7), the

reduced�order model  satisfying the correspondence conditions for  Markov’s parameters

corresponds to the triple ( ), where  is a tridiagonal matrix and multipliers  and  coin�
cide with the unit vector  the first entry of which is one and the others are zeros.

Bellow, we consider a nonsymmetrical algorithm from [21] implementing Lanczos’ procedure. Origi�
nally, this algorithm was designed for computing eigenvalues of symmetric and nonsymmetrical matrices.
This algorithm can also be used for constructing controlled and observed subspaces for linear systems [24].

Consider model (1.1) under the condition . Suppose also that  is a sparse matrix of great size.
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N o n s y m m e t r i c a l  L a n c z o s’  a l g o r i t h m:

1. ; 

2. ; ; ; ;
3. for  to :

;

; ;

; ;

;

if :
stop;

end;

4. 

5. ; .
Functioning of the nonsymmetrical Lanczos’ algorithm on the kth step is shown schematically in Fig. 1.
A r n o l d i  m e t h o d. The Arnoldi method has been known since 1950. However, until 1970, it was

seldom used as a computational method. The essence of the Arnoldi method can be explained as follows [25].
Let the reachability matrix  for system (1.1) have form (2.9). Then, the identity
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(4.29)

is the companion Frobenius matrix [26] and
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Fig. 1. The kth step of the Lanczos algorithm.
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Let us apply the QR decomposition [19]

(4.30)

to the matrix , where  is an orthogonal matrix and  is an upper�triangular nonsingular matrix.
Using (4.28), (4.29), we can write the following chain of assertions:

(4.31)

where

(4.32)

Since  is an upper triangular matrix,  is also an upper triangular matrix. Note that (4.32) is an
upper Hessenberg matrix.

Recall that a matrix M is said to have an upper Hessenberg form if it has the following block triangular
from [19]:

where  are square blocks of order 1 or 2.
On the basis of the QR decomposition (4.30), with regard to the condition

(4.33)

we define the mapping

(4.34)

where

(4.35)

Since (4.35) is an orthogonality condition, we have an orthogonal projection of the form

(4.36)

The following theorem from [21] is valid.
T h e o r e m  2 (t h e  A r n o l d i  p r o c e d u r e). For a given full�order model  of form (4.7), the

reduced�order model  satisfying the correspondence conditions for  Markov’s parameters

corresponds to the triple ( ), where  is an upper Hessenberg matrix and multipliers  and 
coincide with the unit vector  the first entry of which is one and the others are zeros.

An algorithm based on the Arnoldi method (procedure) is described below [21]:

1. ;

2. for  to 
for  to :

(a) Calculate ;

(b) ;

(c) ;

(d) if  stop

(e) ;
3. end.
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The orthogonalization coefficients here are indexed by two subscripts, with regard to which the inter�
nal loop of the Arnoldi algorithm can be written by the following formula [25]:

(4.37)

The orthogonalization coefficients  on the kth step can be written in the form of the following matrix Hk

if we replace the lacking positions by zeros:

(4.38)

For a given dimensionality k of the space, k + 1 vectors are generated. The last vector  (possibly,
zero one) in the matrix notation means the extension of basis  by one additional column:

The coefficient  corresponding to vector  denotes the extension of matrix  by one additional row
(possibly, zero row). Note that, if vectors

(4.39)

are linearly dependent, then ; otherwise, .

Let  be a matrix of orthogonalization coefficients  of size  supplemented by the last row
at the expense of , and let Hk be the same matrix of size  without the last row. Then, from the
description of the Arnoldi algorithm and from (4.37), it follows that Hk is actually an upper Hessenberg
matrix and that it satisfies the equations

 (4.40)

 (4.41)

 (4.42)

As an example, we consider the approximation of eigenvalues of matrix  by means of the Arnoldi pro�
cedure [25]. Let , , and  satisfy relations (4.40)–(4.42). Let  be an eigenvalue of matrix Hk and

 be the corresponding eigenvector satisfying the normalization condition . Let  and
. Then,

(4.43)

where  denotes the last (mth) component of vector . The less the orthogonalization coefficient ,
the closer the eigenvalue  of matrix Hk to the eigenvalue  of matrix . Ideally, instead of (4.43), we have
the equation

i.e., solution of equation .

Functioning of the Arnoldi algorithm on the kth step is shown schematically in Fig. 2.
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5. MULTIPOINT RATIONAL INTERPOLATION

Let us return to the definition of moments of the transfer function of an LTI system (1.1) at point 
and consider generalized reachability and observability matrices (2.9) and (2.10). The assertion below is
applicable to SISO systems [21]. It allows one to construct projectors V and W ensuring efficient multi�
point interpolation based on the generalized reachability and observability matrices.

T h e o r e m  3. If

(5.1)

and

(5.2)

where  and  is a number such that matrix  is invertible for all , then the
moments of the LTI systems  and  satisfy the equalities

, (5.2)

and matrices  are invertible.
Based on Theorem 3, the so�called dual Arnoldi algorithm can be formulated [27]:
1. initial parameters: m = 0, empty matrices  ;
2. for  to :

(а): for  to :
(i) if ,

  
 else,

  
 еnd;

 (ii)   

 (iii)   

 (iv) ;

3. .
In the case of a SISO system, the dual Arnoldi algorithm ensures full rank of matrices  and  upon

minimal implementation in the system state space (in this case, generalized reachability (2.9) and observ�
ability (2.10) matrices have full rank by themselves, which guarantees full rank of matrices  and ).
However, for MIMO systems, trivial readjustment of the Arnoldi algorithm consisting in just replacement
of the corresponding matrices does not lead to the desired result. The basic difficulty here consists in
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Fig. 2. The kth step of Arnoldi’s algorithm.
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impossibility (in the general case) to construct systems of linearly independent vectors (bases) associated
with the Krylov subspaces . This problem can be solved by applying the following procedure:

“basis generation → completeness check → exclusion of linearly dependent vectors (deflating vectors) →
generation of new vectors → … .”

Extensions of the Lanczos and Krylov algorithms to MIMO systems are well studied [28]. To exclude
linearly dependent vectors, the QR factorization is used.

Consider an LTI system of form (1.1) with K interpolation points  of multiplicity , where .
Let us also introduce the following definitions:

where

Then, the Arnoldi algorithm presented in Section 4 can be used for calculating an orthogonal full�rank
matrix  such that

This is true because all vectors  satisfy the equation

The fulfillment of condition (5.1) is guaranteed in this case; hence,  is an appropriate matrix. The above�
specified algorithm is called vector Arnoldi’s algorithm with exclusion [29].

Below is the block Arnoldi algorithm, which can also be used for reduction of a MIMO system [21].
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Fig. 3. Eigenvalues of large�scale matrix A (6.1).
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else,

  

(b)  (QR factorization);

(c) for  to :

(i) ;

(ii) Gram–Schmidt orthogonalization of  with respect to  ;
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Fig. 4. (a) Approximation of eigenvalues of large�scale matrix A (6.1) of size , (b) approximation of eigenval�
ues of large�scale matrix A (6.1) of size , (c) approximation of eigenvalues of large�scale matrix A (6.1) of size

, (d) approximation of eigenvalues of large�scale matrix A (6.1) of size .
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(iii) ;

(iv) ;

(v) if ,

;

else,

 (the th block is filled);
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2. for  to  (if  is linearly independent) perform Gram–Schmidt orthogonalization
;

3. matrix  found is a full�rank projector.

A similar computational process can be implemented by means of Lanczos’ procedure; in this case, it
is possible to estimate �norm of the approximation error by applying the following lemma [30].

L e m m a. Let a reduced Markov’s chain  be obtained on the r th step of Lanczos’ procedure. Then,
the norm of the error  is given by

(5.3)

where

 is the transfer matrix of the original system and  is the transfer matrix of the reduced system.

6. NUMERICAL EXAMPLES

Consider reduction of a dynamical system with the large matrix

. (6.1)

The matrix is dense (all 106 entries of the matrix are nonzero), and its entries are uniformly distributed
random numbers (obtained by the generator ).

In the given case, vector y of the LTI system (1.1) coincides with the state vector  of dimension n = 1000,
C is the identity matrix, and  is selected to be the column vector

. (6.2)

1i = K iV
{ }1 2 KV V V�

V

2�

rΣ

e rΣ = Σ − Σ

2

2

1 1

* * * *( ( ) ( )) ( ( ) ( )),
n r

e i i i j j j

i j= =

Σ = φ −λ − −λ + φ −λ − −λ∑ ∑G G G G
� � � � �

�

( )( ) , 1, ..., ,
i

i i s
s s i n

=λ

φ = − λ =F

( )( ) , 1, ..., ,
j

j j s
s s j r

=λ

φ = − λ =F
� ��

( )sF ( )sF
�

randn(1000 1000)= ×A

randn

x

B

randn(1000 1)= ×B

−10
−100 0 100 200 300 400 500

−8

−6

−4

−2

0

6

8

10

Re λ

Im
 λ

4

2

Fig. 5. Eigenvalues of large�scale matrix A (6.3).
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The eigenvalues of this matrix obey the circle Girko law, and their distribution on the complex plane is

shown in Fig. 3. The radius of the circle in which all eigenvalues of the matrix lie is equal to  =

.
The approximation (reduction) of the system with matrices (6.1) and (6.2) by the Krylov subspaces

method implemented by the Arnoldi procedure yields the diagrams depicted in Fig. 4.
As can be seen from these diagrams, the reduced systems very accurately approximate the boundary of

the localization of the eigenvalues of the original matrix. Figure 4d demonstrates that even 20�fold (!)
reduction of the order of the system still provides acceptable accuracy.
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Fig. 6. (a) Approximation of eigenvalues of large�scale matrix A (6.3) of size , (b) approximation of
eigenvalues of large�scale matrix A (6.1) of size .
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Now consider system (1.1) with matrices

(6.3)

Generator rand ensures strict positiveness of all entries of matrix A.

The eigenvalues of matrix (6.3) obey partially the circle Girko law, to be more specific, all, but one,

eigenvalues of the matrix lie in the ellipse with the major semiaxis equal to , and one eigenvalue neces�
sarily lies at infinity (Fig. 5).

Reducing the system with matrices (6.3) by means of the Arnoldi procedure, we obtain diagrams shown
in Fig. 6.

This example demonstrates exceptional capability of the Krylov subspaces method to approximate
“regular” and “abnormal” subsets of eigenvalues.
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