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INTRODUCTION

Due to the wide use programmable logic devices (PLDs), such as complex programmable logic devices
(CPLD) and field programmable gate arrays (FPGAs) and for designing various sequential circuits in sys�
tems on chip (SoC), there is pressing need in finding new structural models of FSMs that effectively use
the architectural capabilities of modern PLDs.

Presently, two models of FSMs—Mealy FSM [1] and Moore FSM [2]—are well studied. The archi�
tectures of modern PLDs typically include various memory units and distributed memory elements. For
that reason, a large number of publications are devoted to the development of structural models of FSMs
that are based or use FPGA memory. For example, in [3], structural models of FSMs implemented on
memory arrays are proposed. In [4], the structure of FSMs based on FPGA memory is studied.

Some publications are devoted to hierarchical structural models of FSMs. For example, a structure for
the implementation of hierarchical FSMs consisting of a combinational circuit, stack memory, and code
transformer was considered in [5]. In [6], a structural model for the implementation of parallel hierarchi�
cal FSMs was proposed, which includes a combinational circuit and two stack memory units for FSMs
and for internal states.

Some publications are devoted to the development of structural models of Moore FSMs as they are
implemented on CPLDs and FPGAs. In [7], structural models for the implementation of Moore FSMs
on CPLD macrocells were proposed. In [8], the structure of a microprogrammed Moore FSM imple�
mented on logical Look Up Table (LUT) FPGA elements was proposed. In [9], the structure of the Moore
FSMs implemented on FPGAs was considered and a method of their synthesis so as to minimize the num�
ber of logical LUT elements and memory units was proposed.

The structures of FSMs for the implementation of recursive computations were studied in [10–12]. In
[10], the structure for the implementation of recursive algorithms for microprogrammed FSMs was pro�
posed, which consists of a combinational circuit and two stack memory units—for FSMs and for mod�
ules. In [11], the general structure of an FSM for the implementation of recursive algorithms was
described, which consists of a combinational circuit and three stack memory units—for modules, states,
and data. In [12], two FSM structures (using explicit and implicit modules) for the implementation of
recursive algorithms were considered.

There are some more interesting structural models of FSMs. For example, the structures of an asyn�
chronous and pipeline asynchronous FSMs with enable signals for the time of internal state stabilization
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were described in [13]. In [14], the structure of a reconfigurable FSM which, in addition to two combina�
tional circuits implementing the transition and output functions, contains three more combinational cir�
cuits was proposed. In [15], the structure of an FSM together with a data processing unit called FSM with
data path (FSMD) was considered.

In PLD and SoC�based digital systems, input and output buffers (which are ordinary registers consist�
ing of triggers) are often used to transmit data between units. The possibility to individually control each
trigger or a group of triggers in the architectures of modern PLDs and SoCs makes it possible to use trig�
gers of the input, output, and simultaneously input and output buffers of specific functional units as mem�
ory elements of FSMs. Since the input and output buffers are installed independently of the way the FSMs
within the units are implemented, the implementation of FSM memory elements on input and (or) output
buffer triggers does not require the use of additional PLD resources.

The possibility of using the values of input and output signals (vectors) as internal state codes in FSMs
was studied in [16–18]. In [16], this problem was solved for completely determined FSMs and for FSMs
with undetermined values of the input and output vectors. In [17], output signals of the Moore FSMs are
used as a part of internal state codes; in [18], output vectors with undetermined values are used for this
purpose.

In [19], structural models of PLD�based FSMs were proposed in which triggers at the outputs and in
feedback loops of CPLD macrocells and FPGA logical elements employed as output buffer triggers are
used as memory elements. In [20, 21], a classification of structural FSM models was proposed in which
six basic and four combined classes were distinguished. In these models, triggers of the input and output
buffers are used as memory elements. In [22], combined structural FSM models are considered. The book
[23] is devoted to the synthesis of basic and combined structural models of PLD�based FSMs. In [24, 25],
the combined model of Moore and Mealy FSMs is studied.

In the present paper, we investigate various structural FSM models in which triggers of the input and
output buffers can be used as memory elements. A definition of the internal states of each class of these
FSMs is given for the first time. An algorithm for the synthesis of class C FSMs is described and used to
design methods for the synthesis of FSMs belonging to the classes D, E, and F. Experiments are aimed at
finding out if it is possible to reduce the number of internal states for the FSMs of each class.

1. CLASSES OF FINITE STATE MACHINES

In engineering practice, two types of FSMs received widespread use—the Moore FSMs and the Mealy
FSMs. The behavior of the Moore FSM is described by the equations

  

where ϕ is the transition function, ψ is the output function, t are the machine’s times (t = 1, 2, 3, …), zt is
the input vector at the time t, wt is the produced output vector, at is the current state of the FSM, and
at + 1 is its next state.

The behavior of the Mealy FSM is described by the equations

 

Structural models of Moore and Mealy FSMs are shown in Figs. 1a and 1b, where the combinational
circuit CLΦ implements the transition function, the combinational circuit CLψ implements the output
function, the register RG implements the FSM memory, and CLK is the clock signal.

If each output vector wt of a Moore FSM coincides with the code of its internal state at, then its behav�
ior can be described by the equations

 

The type of FSM is said to belong to the class C [26]. Similarly, the Mealy and Moore FSMs form the
classes A and B, respectively. The structure of the class C FSM is shown in Fig. 1c. Its distinctive feature is
the absence of the combinational circuit CLψ and the fact that all the outputs of the FSM are register out�
puts because they are formed at the outputs of the register RG.
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If each output vector wt of a Mealy FSM coincides with the code of its next state at + 1, then we have a
class D FSM (Fig. 1d); its behavior is described by the equations

 

Its distinctive feature is the absence of the combinational circuit CLψ, but its outputs are combinational
because they are formed at the outputs of the combinational circuit CLϕ. The difference between the
classes C and D FSMs is that in the class C FSMs the output vector wt coincides with the code of its current
state at, and in the case of the class D FSMs it determines the code of the next state at + 1.

Note that in order to implement a class C FSM, it suffices to configure the outputs of the logical ele�
ments on which the output variables are implemented as register outputs; to implement a class D FSM, it
is sufficient to configure the outputs of the logical elements as combinational ones with a trigger in the
feedback loop. All modern PLDs make it possible to configure logical elements in this way; therefore, no
special output buffers are needed for the implementation of the class C and D FSMs.

The codes of the FSM internal states can also be determined by sets of values of the input variables.
If each input vector zt of a Mealy FSM coincides with the code of the next state at + 1, then we have the
FSM of the class E (Fig. 1e) whose operation can be described by the equations

 

Similarly, if each input vector zt of a Moore FSM coincides with the code of the next state at + 1, then
we have the FSM of the class F (Fig. 1f) whose operation can be described by the equations
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Fig. 1. Structural models of FSMs: (a) for class А, (b) for class В, (c) for class С, (d) for class D, (e) for class E, (f) for class F.
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A feature of the structures of the FSM classes E and F is the absence of the combinational circuit CLϕ.
In the FSMs of the class E, the combinational circuit CLψ has two types of inputs—combinational and
register ones; in the class F FSMs, it has only register inputs.

To implement a class E FSM on FPGA or SoC, the input buffer must admit two types of connections
with the internal logic—a combinational and a register types; to implement a class F FSM, it is sufficient
that the input FPGA or SoC buffer has the register type of connection with the internal logic. Note that
modern FPGAs and SoCs make it possible to construct input buffers with such properties.

In practice, it is rarely possible to directly implement FSMs of the classes C–F. This is because the
input or output vectors cannot always be used as codes of the FSM internal states. For this reason, addi�
tional internal memory elements similar to memory elements of the class A and B FSMs are often intro�
duced to design FSMs of the classes C–F.

2. STATES OF FSMS OF THE CLASSES A–F

Let X = {x1, …, xL} be the set of input variables; Y = {y1, …, yN} be the set of output variables; A =
{a1, …, aM} be the set of internal states; D = {d1, …, dR} be the set of excitation functions of memory ele�
ments; E = {e1, …, eR} be the set of feedback variables of the FSM, where R = intlog2M is the minimum
number of code bits that are sufficient for the FSM internal state assignment; and B(ai) is the set of states
the transitions from which end in the state ai (ai ∈ A).

Let the operation of the FSM be specified by a list of transitions. The list of transitions is a table con�
sisting of four columns am, X(am, as), as, and Y(am, as). Each row in the list of transitions corresponds to
one transition of the FSM. The column am contains the present state of the FSM, the column X(am, as)
contains the input vector that initiates this transition (the transition condition), the column as contains
the next state, and the column Y(am, as) contains the output vector formed in this transition. In the case
of Moore FSMs, the last column in the transition list is denoted by Y(am); it contains the output vectors
formed in the states am. The transition condition in the column X(am, as) can be written as a conjunction
of the input variables or as a ternary vector. The output sets in Y(am, as) can be written as a binary (for com�
pletely defined FSMs) or ternary (for incompletely defined FSMs) vector.

D e f i n i t i o n  1. The set AA of states of the class A FSM is defined as the set of its internal states; i.e.,
AA = A.

D e f i n i t i o n  2. The state am (am ∈ A) is a state of the class B FSM (Moore FSM), i.e., am ∈ AB, where
AB is the set of states of the class B FSM, if identical output vectors are formed on all the transitions into
the state am, i.e., if it holds that

Y(ai, am) = Y(aj, am) ai, aj ∈ B(am), i ≠ j. (2.1)

In this case, the value of any output vector Y(ai, am) can be assigned to the state am and denoted by Y(am).

D e f i n i t i o n  3. The state am is a state of the class C FSM, i.e., am ∈ AC, where AC is the set of states
of the class C FSM, if this is a Moore FSM (i.e., all the FSM states satisfy conditions (2.1)) and the value
of the output vector Y(am) is formed in none of the states, except for am:

Y(ai) ≠ Y(am)  ai ∈ AB, i ≠ m. (2.2)

D e f i n i t i o n  4. The state am is a state of the class D FSM, i.e., am ∈ AD, where AD is the set of states
of the class D FSM, if the same output vector Y(ai, am) is formed on all the transitions into the state am

(i.e., condition (2.1) is satisfied) and the vector Y(ai, am) is not formed on the transitions into other FSM
states, i.e., if it holds that

Y(as, aj) ≠ Y(ai, am)  as, aj ∈ A, j ≠ m. (2.3)

D e f i n i t i o n  5. The state am is a state of the class E FSM, i.e., am ∈ AE, where AE is the set of states
of the class E FSM, if all the transitions into the state am are made under the action of the same input
vector X(ai, am), i.e., if it holds that

X(ai, am) = X(aj, am)  ai, aj ∈ B(am), i ≠ j, (2.4)

and the vector X(ai, am) does not affect the transitions into other states of the FSM, i.e., if it holds that

X(as, aj) ≠ X(ai, am)  as, aj ∈ A, j ≠ m. (2.5)

∀

∀

∀

∀
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D e f i n i t i o n  6. The state am is a state of the class F FSM, i.e., am ∈ AF, where AF is the set of states
of the class F FSM, if this is a Moore FSM (i.e., all the FSM states satisfy conditions (2.1)) and the state am

satisfies conditions (2.4) and (2.5).
D e f i n i t i o n  7. An FSM belongs to the class h (h ∈ {B, C, D, E, F}) if

Ah = A. (2.6)

Note that the sets AB–AF may overlap, i.e., the same state may simultaneously belong to FSMs of sev�
eral classes of FSMs.

3. SYNTHESIS OF FSMS OF THE CLASSES A–F

To design FSMs of the classes A and B, all conventional synthesis methods can be used. When a class B FSM
and FSMs of the classes C and F are synthesized, the initial FSM must be a Moore FSM. A Mealy FSM
can be transformed into a Moore FSM by splitting its internal states as described in [27].

3.1. Synthesis of Class C FSMs

A Moore FSM belongs to the class C if each output vector uniquely determines the code of its internal
state. However, this condition is often violated in practice. For example, this is the case when the number
N of its output functions is less than the minimally required number of code bits R or when the same out�
put vector is formed in different internal states. Moreover, the determinacy condition of the FSM behavior
implies that the codes of the internal states must be mutually orthogonal. In all these cases, additional
code bits must be added in order to differentiate between internal state codes, and the structure of the
FSM must be supplemented with additional internal memory elements and the corresponding feedback
loops.

In the general case, the synthesis of class C FSMs is reduced to a special internal state assignment.
To encode the states of a class C FSM, the matrix G is constructed. The rows of G correspond to the inter�
nal states of the set A and its columns correspond to the output variables of the set Y. The element in row
m and column j of the matrix G contains one if the variable yj takes the value one in the output set Y(am),
it contains zero if the variable yj is zero, and it contains a hyphen if the variable yj is undefined (do not
care). Now, the internal state assignment is reduced to the following problem.

P r o b l e m. Add to the matrix G the minimum number R* of columns corresponding to the additional
internal variables eN + 1, …, eN + R* so that all the rows of G are mutually orthogonal.

This problem can be solved using the following algorithm.
A l g o r i t h m  (for the orthogonalization of the rows of the matrix G).
1. Construct the graph H of matrix G row orthogonality. The vertices of H correspond to the rows of G.

Two vertices i and j of H are connected by an edge if the rows i and j are mutually orthogonal (have different
values in at least one column). Now, the problem is reduced to finding in the graph H the minimum num�
ber T of complete subgraphs H1, …, HT the vertices of which do not overlap and to assigning to these sub�
graphs binary codes determined by the values of the variables eN + 1, …, eN + R*.

2. Remove from H all the vertices connected to all other vertices of the graph (the rows of G correspond�
ing to these vertices are orthogonal to all other rows).

Set t := 0.
3. Set t := t + 1. Find a maximal complete subgraph Ht.
4. Remove the vertices of Ht from H. If the set of remaining vertices of H is empty, then go to Step 5;

otherwise, go to Step 3.

5. Set R* = intlog2T. Each subgraph Ht (t = ) is associated with the binary code determined by the
values of the variables eN + 1, …, eN+R*.

6. Add columns corresponding to the variables eN + 1, …, eN + R* to the matrix G. The content of these
columns is determined by the codes of the corresponding subgraphs.

7. End.
As the code of a state am (am ∈ A) the content of the row of the matrix G is used.
E x a m p l e. Consider the synthesis of a class C FSM for the FSM with the graph shown in Fig. 2 and

the transition list presented in Table 1. The initial FSM has five internal states a1, …, a5, one input variable x1,
and three output variables y1, …, y3.

1,T
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A necessary condition for the synthesis of class C FSMs is the requirement that the initial FSM be a
Moore FSM. For the FSM in Fig. 2, conditions (2.1) are satisfied for all the states except for a2. For this
reason, to obtain a Moore FSM from the Mealy FSM, the method described in [27] is used. As a result of
applying this method, the state a2 is split into two states a2_1 and a2_2. The graph of the FSM obtained after
splitting the state a2 is shown in Fig. 3, and its list of transitions is shown in Table 2. Since the FSM was

Table 1.  List of transitions of the initial FSM

am X(am, as) as Y(am, as)

a1 1 a2 0 0 1
0 a1 – 0 0

a2 1 a3 1 0 0
0 a4 0 0 1

a3 1 a4 0 0 1
0 a3 1 0 0

a4 1 a5 1 1 0
0 a4 0 0 1

a5 1 a2 1 1 0
0 a1 – 0 0

a1

a5 a4

a3

a2

1/001

0/001

1/100

1/110

1/110

1/001
0/�00

0/–00 0/100

0/001

Fig. 2. Graph of the initial FSM.
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Fig. 3. Graph of the FSM upon splitting the state a2.
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transformed into a Moore FSM, Table 2 contains the column Y(am) instead of the column Y(am, as), which
contains the output vectors formed in the state am.

To encode the internal states of a class C FSM, the matrix G shown in Table 3 (columns y1, y2, and y3)
is constructed and the orthogonalization algorithm for the rows of G is executed. At Step 1 of this algo�
rithm, the graph H of the matrix G row orthogonality (Fig. 4) is constructed. Next, the graph H is decom�
posed into the minimal number of complete subgraphs H1 and H2 (Fig. 5). To encode the subgraphs H1

a1 a2_1

a2_2a5

a3a4

Fig. 4. Orthogonality graph H for the rows of the matrix G.

Table 2.  List of transitions upon splitting the state a2

am X(am, as) as Y(am) D(am, as)

a1 1 a2_1 – 0 0 0 0 1 0

0 a1 – 0 0 – 0 0 0

a2_1 1 a3 0 0 1 1 0 0 1

0 a4 0 0 1 0 0 1 1

a2_2 1 a3 1 1 0 1 0 0 1

0 a4 1 1 0 0 0 1 1

a3 1 a4 1 0 0 0 0 1 1

0 a3 1 0 0 1 0 0 1

a4 1 a5 0 0 1 1 1 0 0

0 a4 0 0 1 0 0 1 1

a5 1 a2_2 1 1 0 1 1 0 1

0 a1 1 1 0 – 0 0 0

Table 3.  The matrix G

y1 y2 y3 e4

a1 – 0 0 0

a2_1 0 0 1 0

a2_2 1 1 0 1

a3 1 0 0 1

a4 0 0 1 1

a5 1 1 0 0
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and H2, one internal variable e4 is sufficient. The results of encoding subgraphs are presented in Table 3
(the column e4); the subgraph H1 is assigned the code 0 and H2 is assigned the code 1.

Upon the orthogonalization, the rows of G determine the following codes of the internal states: “–000”
for a1, “0010” for a2_1, “1101” for a2_2, “1001” for a3, “0011” for a4, and “1100” for a5. The column
D(am, as) is added to Table 2 that contains the values of the excitation functions of the memory elements
d1, …, d4 formed on the transitions from the state am into the state as. Now, using the internal state codes
and the list of transitions from Table 2, we can write the logical equations of the FSM combinational part:

d1 = x1 1 2e3 + x1e1e2 3 + 1e1 2 3e4,

d2 = x1 1 2e3e4 + x1e1e2 3 4,

d3 = x1 2 3 4 + 1 1 2e3 + 1e1e2 3e4 + x1e1 2 3e4,

d4 = 1 2e3 4 + e1 3e4 + 1 1 2e3e4 + x1e1e2 3 4.

An implementation of the FSM is shown in Fig. 6. Thus, to construct the C class FSM on PLD, four
logical elements are needed—three for the output variables y1, …, y3 and one for the implementation of
the excitation function of the internal memory element corresponding to the variable e4. For comparison,
the implementation of the class A Mealy FSM in this example without using the models proposed above
requires six logical elements—three for the output and three variables for the implementation of the exci�
tation functions of the memory elements.

3.2. Synthesis of Class D FSMs

An FSM belongs to the class D if each output vector uniquely determines the code of its next state.
In the synthesis of class D FSMs, the same problems as in the synthesis of class С FSMs arise—the output
sets do not always determine the codes of the transition states, the number of output functions can be less
than the minimum number R of code bits, different transition states are associated with identical output
sets, and the state codes must be mutually orthogonal.

Therefore, the synthesis method of the class D FSMs is similar to the method used to synthesize
class C FSMs. The difference is in the construction of the matrix G. Namely, each row m of G is assigned
the content of the output vector Y(ai, am), where ai ∈ B(am) and am ∈ AD. The further synthesis is per�
formed using the algorithm described above.

e e e x e e

e e e e

e e e x e e x e e e

e e e e x e e e e

a1

a5

a2_1

a2_2

a3a4

H1

H2

Fig. 5. Decomposition of the graph H into the minimal number of complete subgraphs.
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d1 y1

D Q
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d2 y2

D Q

e3

d3 y3

D Q

e4

d4

CLΦ
x1

Fig. 6. Implementation of the FSM.

3.3. Synthesis of Class E and F FSMs

A Mealy (Moore) FSM belongs to the class E (F) if its each input vector coincides with the code of the
next state. However, the sets of input variable values cannot always be the codes of internal states. For
example, this is the case when the number L of the input variables is less then R or when transitions to dif�
ferent internal states are initiated by the same input vector. On the other hand, not every set of input vec�
tors can be used to encode the internal states of the FSM; indeed, the condition that the behavior of the
FSM must be deterministic requires that the codes of different states must by mutually orthogonal. In all
these cases, the structure of the FSM belonging to the class E and F must be complemented with addi�
tional code bits and additional internal memory elements.

The internal state assignment for the class E and F FSMs is similar to that for the class C and D FSMs.
The difference is in the construction of the matrix G. The rows of G correspond to the internal states of the
set A, and the columns correspond to the input variables of the set X. Let X(ai) be the condition of transi�
tion into the state ai (ai ∈ AE). The element in the row i and column j of G has the value 1 if the variable xj

of the input vector X(ai) is equal to 1; it has the value 0 if xj is equal to 0, and it has the value hyphen if the
value of xj is undefined. The matrix G for the FSM of the class F is similar but the set AE is replaced with AF.

To encode the internal states of the FSMs of the classes E and F, the algorithm for the orthogonaliza�
tion of the rows of the matrix G is used in which the number N of the output variables is replaced with the
number L of input variables. Upon the execution of this algorithm, the rows of the matrix G determine the
internal state codes of the FSMs of the classes E and F.

R e m a r k  1. Conditions (2.2), (2.3), (2.5), and (2.6) are very stringent, and they are rarely satisfied in
the design of FSMs. For this reason, in order to better use the input and output vectors as codes (or part
of code) of internal states in the synthesis of FSMs of the classes C–F, conditions (2.2), (2.3), (2.5),
and (2.6) may be dropped. In this case, the rows of the matrix G corresponding to the internal states for
which these conditions are violated are assigned undefined values ‘–’.

4. EXPERIMENTAL RESULTS

Experiments were performed on the benchmarks of MCNC [28]. First, the potential possibility of
using the input and output vectors as a code (or part of code) of internal states of FSMs was checked.
To this end, according to conditions (2.1)–(2.5), the sets AA–AF of the internal states of the FSMs of
classes A–F were specified. The set AA is the set of states of the initial FSM, AB is the set of states of the
FSM obtained by applying the method described in [27], AC is the subset of states of AB satisfying con�
dition (2.2), AD is the subset of states of AA satisfying conditions (2.1) and (2.3), AE is the subset of states
of AA satisfying conditions (2.4) and (2.5), and AF is the subset of states of AB satisfying conditions (2.4)
and (2.5).

The experimental results are presented in Table 4, where L is the number of input variables; N is the
number of output variables; MA–MF are the numbers of the elements in the sets AA–AF, respectively; and
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Table 4.  The number of internal states of class A–F FSMs

Name L N MA MB MC MD ME MF

bbara 4 2 10 12 2 0 0 0
bbsse 7 7 16 24 7 1 0 5
bbtas 2 2 6 9 3 0 0 0
beecount 3 4 7 10 3 0 0 1
cse 7 7 16 29 7 0 0 0
dk14 3 5 7 26 1 1 0 0
dk15 3 5 4 17 6 0 0 0
dk16 2 3 27 75 0 0 0 0
dk17 2 3 8 16 0 0 0 0
dk27 1 2 7 10 0 0 0 0
dk512 1 3 15 24 0 0 0 0
donfile 2 1 24 24 0 0 0 0
ex1 9 19 18 78 50 1 0 14
ex2 2 2 19 23 0 0 0 0
ex3 2 2 10 13 2 1 0 0
ex4 6 9 14 18 8 2 0 7
ex5 2 2 9 13 0 0 0 0
ex6 5 8 8 14 12 2 0 4
ex7 2 2 10 14 0 0 0 0
keyb 7 2 19 20 1 0 1 1
lion 2 1 4 5 0 0 0 0
lion9 2 1 9 11 0 0 0 0
mc 3 5 4 8 8 0 0 2
modulo12 1 1 12 12 0 0 0 0
planet 7 19 48 95 37 1 2 20
pma 8 8 24 49 5 1 12 13
s1 8 6 20 20 20 20 0 0
s1488 8 19 48 168 3 0 0 42
s1494 8 19 48 168 3 0 1 39
s1a 8 6 20 20 0 0 0 0
s208 11 2 18 37 3 0 0 2
s27 4 1 6 6 0 0 0 0
s298 3 6 218 332 0 0 0 0
s386 7 7 13 23 5 1 0 3
s420 19 2 18 37 3 0 0 2
s510 19 7 47 73 2 0 7 20
s8 4 1 5 5 0 0 0 0
s820 18 19 25 70 1 0 1 18
s832 18 19 25 70 1 0 1 18
sand 11 9 32 84 18 2 0 19
shiftreg 1 1 8 16 0 0 0 0
see 7 7 16 24 7 1 0 5
styr 9 10 30 57 13 3 0 2
tav 4 4 4 27 7 0 0 6
tbk 6 3 32 60 0 0 0 0
tma 7 6 20 38 8 1 4 4
train11 2 1 11 13 0 0 0 0
train4 2 1 4 5 0 0 0 0
mid 6.0 5.9 21.0 42.0 5.13 0.79 0.60 5.15
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mid is the average value of the corresponding parameter. The analysis of Table 4 shows that when the Mealy
FSMs are replaced with Moore FSMs, the number of states increases from 21.0 to 42.0 on the average,
i.e., it doubles. The average number of states in the class C FSMs is 5.13 (or 12.21%), in the class D FSMs
it is 0.79 (or 3.76%), in the class E FSMs it is 0.60 (or 2.86%), and in the class F FSMs it is 5.15
(or 12.26%). Thus, the most potential for using the values of the input vectors as the code (or part of code)
of internal states has the class F, while the class C has the most potential for using the output vectors for
this purpose.

We also analyzed the efficiency of using the proposed structural models for the synthesis of FSMs.
As the efficiency indicator, we used the number of additional code bits (internal memory elements) that
must be added to encode the states of the FSM of the corresponding class. It is clear that all the memory
elements of the class A and B FSMs are internal; for the classes C–F, some memory elements can be in
the input (for the classes E and F) or output (for the classes C and D) buffers.

The experimental results are presented in Table 5, where RA, RD, RE, RB, RC, and RF are the numbers of
internal memory elements of the FSMs of the classes A, D, E, B, C, and F, respectively; RAD(%) shows how
much the use of the class D FSM model reduces the number of internal memory elements compared with
the use of the class A FSM on a percentage basis; RAD(%) = [(RA – RD)/RA] ⋅ 100%, RAE, RBC, and RBF(%)
are interpreted similarly; and mid is the average value of the corresponding parameter.

The analysis of Table 5 shows that the use of the class D FSMs for the these example reduces the num�
ber of internal memory elements by 5.56% on the average (and by 100% for certain examples); the use of
class E FSMs by 2.22% (by 20% for certain examples); the use of class C FSMs by 25.832% (by 100% for
certain examples); and the use of class F FSMs by 5.68% (by 20% for certain examples).

It should be emphasized that the use of the class C FSM model for the synthesis in examples ex6 and
mc made it possible to obtain less internal memory elements than in the models of Mealy FSMs
(classes A, D, and E). In other words, the use of Moore FSM instead of Mealy FSM and the use of a class C
FSM sometimes reduces the number of internal memory elements compared with Mealy FSM models.

R e m a r k  2. The efficiency of FSM models of the classes C–F is not limited to the reduction of the
number of internal memory elements and the number of memory element excitation functions. In fact,
the combinational part of the FSM is simplified, which ultimately reduces the implementation cost, the
delays on the critical path, and the power consumption.

Table 5.  The number of internal memory elements of FSMs

Name RA RD RE RAD, % RAE, % RB RC RF RBC, % RBF, %

bbsse 4 4 4 0 0 5 4 5 20 0

bbtas 3 3 3 0 0 4 3 4 25 0

beecount 3 3 3 0 0 4 3 4 25 0

dk15 2 2 2 0 0 5 4 5 20 0

ex1 5 5 5 0 0 7 5 6 29 14

ex4 4 4 4 0 0 5 4 4 20 20

ex6 3 3 3 0 0 4 1 4 75 0

mc 2 2 2 0 0 3 0 3 100 0

planet 6 6 6 0 0 7 6 7 14 0

pma 5 5 4 0 20 6 6 6 0 0

s1 5 0 5 100 0 5 0 5 100 0

s1488 6 6 6 0 0 8 8 7 0 13

s1494 6 6 6 0 0 8 8 7 0 13

s510 6 6 6 0 0 7 7 6 0 14

s820 5 5 5 0 0 7 7 6 0 14

s832 5 5 5 0 0 7 7 6 0 14

see 4 4 4 0 0 5 4 5 20 0

tma 5 5 4 0 20 6 5 6 17 0

mid 4.39 4.11 4.28 5.56 2.22 5.72 4.89 5.39 25.83 5.67
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CONCLUSIONS

A theoretical justification of the use of triggers of input and output buffers as memory elements of the
FSM is given. To this end, a new classification of FSM structural models in which all FSMs are subdivided
into six classes A, B, C, D, E, and F is proposed. Models in the classes A and B are the conventional models
of Mealy and Moore FSMs; in the class C and D FSMs, output buffer triggers are used as memory ele�
ments; and in the class E and F FSMs, input buffer triggers are used as memory elements.

Definitions of states of each class of FSMs and the definition of FSMs of each class are given. A general
method for the synthesis of FSMs is described using the class C as an example. It provides a basis for the
synthesis of FSMs of the classes D, E, and F.

The experimental results demonstrated the high efficiency of the proposed structural models of FSMs.
The use of the models of the classes C–F reduces the number of internal memory elements by 2.22–
25.38% on the average and by 100% for certain examples.

The further study in this field can be in the direction of construction of combined models of FSMs and
elaboration of the available synthesis methods.
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