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INTRODUCTION

In [1, 2], a mathematical model of a data center (DC) was developed that makes it possible to describe
a wide class of DC architectures as well as the mathematical statement of the resource allocation problem
in the Infrastructure�as�a�Service (IaaS) mode [3] is formulated. In the proposed model, computational
resources, data storages, and network resources are considered as scheduled types of resources and are
scheduled consistently in the sense of compliance with the service�level agreement (SLA) [4]. This allows
one to specify SLA for all types of DC resources and to construct maps of requests onto physical resources
for which the required SLAs are guaranteed.

In [2], various approaches to resource allocation in the DC are compared. In this paper, we consider
an algorithm of assigning requests to physical resources for DCs with independent schedulers for different
types of resources and present the results of investigating its features.

Problems of scheduling in real�time systems [5–10] are viewed as the closest problems in terms of the
assured compliance with the SLA. In these problems, the constraints placed on the feasible time of exe�
cuting applied programs or program processes are used as the SLA criteria that cannot be violated. In the
problem under consideration, the requirements for the “volume” of physical recourses allocated to
request elements are used as the SLA criteria. This makes it difficult to use the available scheduling algo�
rithms for this problem.

1. MATHEMATICAL FORMULATION OF THE RESOURCE ALLOCATION PROBLEM 
IN DATA CENTERS

The model of DC physical resources is described by the graph , where Р is the set of
computation nodes, М is the set of data storages, К is the set of commutation elements of the DC data
communication network, and L is the set of physical data transmission channels. On the sets P, M, K, and
L, vector functions are defined whose arguments are elements of the sets P, M, K, or L, respectively. The
values of these functions are the characteristics of the corresponding computation node, data storage,
commutation element, or data transmission channel:
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In this work, we assume that the commutation elements and data transmission channels have the same
characteristics. Mostly, the following characteristics of physical elements are used in practice:

(1) for computation nodes: 〈number of cores〉, 〈frequency〉, 〈core type〉, 〈RAM capacity〉, and 〈disk
memory capacity〉;

(2) for data storages: 〈storage capacity〉 and 〈data storage type〉;
(3) for commutation elements: 〈bandwidth〉 and 〈delay〉;
(4) for data transmission channels: 〈bandwidth〉 and 〈delay〉.

A resource request is specified by the graph , where W is the set of virtual machines used
by applications, S is the set of storage elements, and E is the set of virtual links between the virtual
machines and the storage elements of the request. On the sets W, S, and E, vector functions are defined
whose arguments are elements of the sets W, S, and E, respectively. The values of the functions are char�
acteristics (the required quality of service (SLA)) of the corresponding virtual machine, storage element,
or virtual link:

,

,

.

The characteristics of an SLA request element are the same as the characteristics of the physical
resource corresponding to this element.

By the resource request assignment, we mean a map

.

Let us describe three types of relations between the request characteristics and the corresponding phys�
ical resource characteristics. We denote the characteristic of the ith request by xi and the corresponding
characteristic of the jth physical resource by yj. Then, these relations can be written as follows:

(1) The physical resource capacity must not be overloaded:

,

where Rj is the set of requests assigned to be executed on the physical resource j and xi is the corresponding
characteristic of the assigned request.

(2) The type of the requested resource must match the type of the physical resource:

xi = yj.

(3) The physical resource must possess the required characteristics:

.

The assignment  is called correct if relations 1–3 hold for
all physical resources and all their characteristics.

The residual graph of available resources is the graph Hres for which the values of the functions are rede�
fined according to the corresponding characteristics that must satisfy relation (1):

,

, (1.1)

, .

Here, Wp is the set of virtual machines assigned to be executed on the computation node p, El is the set of
virtual links mapped onto the physical channel l, Ek is the set of virtual links passing through the commu�
tation element k, and Sm is the set of storage elements in the data storage m.
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The input of the problem of assigning physical resources to resource requests is as follows:
(1) the set of requests Z = {Gi} received by the scheduler;

(2) the residual graph of available resources .
It is required to assign the maximum number of requests from the set Z to the DC such that the assign�

ment A is correct.
In the case when the virtual data storage is failed to be assigned, the replication procedure may be called

that duplicates the data on several physical data storages. This problem arises if we have virtual data stor�
ages with high intensity of reading and low intensity of writing. In this case, no high bandwidth channel is
needed to ensure data consistency; some of the applications can work with a virtual data storage and the
other applications may work with its copy placed on another physical data storage.

By replication, we mean a map  that duplicates the data of a certain  and creates a
virtual link for maintaining the data consistency (m', l1, k1, …, kn – 1, ln, m), where ;
m' is a replica of the data storage m.

If a storage element is a replica of a certain virtual data storage s, then the node s' is added to the graph
of requested resources G. The virtual link between the nodes s and s' is also added to the graph G; the band�
width of this link is determined based on the requirement of ensuring the consistency of the replica and
the original database.

The input of the algorithm for assigning requests to physical resources consists of the residual graph of
available resources Hres and the set of resource requests {Gi}. The set  is formed by the task manager. In
addition to the newly received requests, this set can also include requests that are already executed and for
which migration is acceptable. The task manager also determines the starting time of the scheduler.

The output of the algorithm for assigning requests to physical resources consists of the set of resource

request assignments  and the set of replications .

2. ALGORITHMS FOR ASSIGNING REQUESTS TO DATA CENTER PHYSICAL RESOURCES

The algorithm for assigning requests to physical resources using independent schedulers involves the
three following steps:

S t e p  1. Assigning virtual machines to computation nodes;
S t e p  2. Assigning storage elements to physical data storages;
S t e p  3. Mapping request virtual links onto the physical data transmission channels and commutation

elements for the assignments of the virtual machines and storage elements to physical resources obtained
at Steps 1 and 2.

2.1. Assignment of Virtual Machines and Storage Elements

In scheduling theory, problems of assigning physical resources to virtual machines and storage ele�
ments are known as bin packing problems [11]. The proposed algorithm is based on a combination of
greedy and limited search strategies. It assigns request elements according to the greedy scheme; in the
case when the next element is failed to be assigned, the algorithm calls the limited search procedure. For
this procedure, the parameter is specified that limits the search depth. This makes it possible to set a
required balance between the computational complexity and accuracy of the algorithm.

The general scheme of the procedure for request element assignment (virtual machines or storage ele�
ments) is as follows.

S t e p  1. Select the next request Gi from the set of resource requests {Gi} using the greedy criterion KG.

S t e p  2. Select the next element e (virtual machine , or storage element )
using the greedy criterion Ke.

S t e p  3. Form the set of physical resources Ph (  or , respectively) to which the selected
element e can be assigned, i.e., for which the assignment the request e to the physical resource is correct.

S t e p  3.1. If the set Ph is empty, then call the limited search procedure. If this procedure fails, then
the request Gi is failed to be assigned; in this case, eliminate the previously assigned elements of the request
Gi and redefine the values of the physical resource characteristics using functions (1.1). If the set {Gi} is not
empty, go to Step 1; otherwise, terminate the algorithm.
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S t e p  3.2. If the set Ph is not empty, then select the physical element  to be assigned according
to the greedy criterion  and assign the request element e to the physical element ph; redefine the values
of its characteristics using functions (1.1). If there are unconsidered request elements, go to Step 2. If the
set {Gi} is not empty, go to Step 1; otherwise, terminate the algorithm.

2.1.1. Limited search procedure. The limited search procedure is called when the next request element e
(  or ) fails to be assigned to any physical resource ph (  or , respectively). The
principle of operation of the limited search procedure is illustrated in Figs. 1 and 2. Figure 1 shows a sit�
uation in which a virtual element with capacity 0.4 fails to be assigned to any physical element despite the
fact that the total free capacity is sufficient for the element to be assigned. By reassigning the elements as
shown in Fig. 2, the fragmentation is eliminated and the virtual element can be assigned.

The limited search is limited by the given number m that specifies the maximum number of physical
elements for which the reassignment is allowed (for m = 2, the assigned elements can be withdrawn and
reassigned from not more than two physical elements at a time).

The general scheme of the limited search procedure is as follows.

S t e p  1. For the given m, form all sets  consisting of not more than m physical resources and
search according to the decrease of the total value calculated using the greedy criterion KG.

S t e p  1.1. If, for a certain set Am, the total residual capacity of resources is sufficient to assign the cur�
rent element, then execute Steps 1.1.1–1.1.3 of the algorithm. Otherwise, go to Step 2.

ph Ph∈

phK

e W∈ e S∈ ph P∈ ph M∈

mA A⊆
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Fig. 1. Example of the limited search procedure execution.
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Fig. 2. Reassignment of elements from Fig. 1.
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S t e p  1.1.1. Withdraw the elements that are assigned to physical resources from the set Am.

S t e p  1.1.2. Try to perform reassignment using one of the following techniques:
(a) first, assign the element e to a physical resource from the set Am using the greedy strategies and then

assign all the virtual elements withdrawn from the physical elements Am using the greedy strategies;

(b) form the set consisting of the element e and all the virtual elements withdrawn from the physical
elements of Am; then assign the formed set according to the greedy strategies (see Steps 2 and 3 of the gen�
eral scheme for assigning request elements without limited search);

(c) form the set consisting of the element e and all the virtual elements withdrawn from the physical
elements of Am; perform the exhaustive search for feasible assignments of the elements from the formed set.

S t e p  1.1.3. If the reassignment fails, then return the initial assignments of elements.
S t e p  2. If the element e fails to be assigned upon searching all the above�mentioned sets, then return

failure.
2.1.2. Greedy criteria. The quality of results produced by the algorithm considerably depends on the

greedy criteria used. The criteria are specified at Step 1 of the general scheme of the request element
assignment procedure when the request to be assigned is selected (KG), at Step 2 when the request element
is selected (Ke), and at Step 3 when the physical resource to which the element is assigned (Kph) is selected.

The proposed criteria are based on the cost function r(e) of assigning the element e. We propose two
techniques to calculate the cost of the element assignment:

(1) dynamic selection of the resource characteristic that is the most loaded at the time of assignment
and the calculation of cost based on this characteristic;

(2) calculation of the weighted sum of resource characteristics with respect to their workload.
Let an element be characterized by the vector of required resource characteristics (re, 1, re, 2, … re, n) for

which the overload is not allowed.1 In the case of dynamic selection, the most loaded characteristic is
determined prior to each assignment:

.

In this formula, the summation in the numerator is performed over all the assigned requests Ga. Thus,
the workload of a resource is calculated as the quotient from the division of the total capacity of the
assigned elements by the total capacity of the physical elements for the given characteristic.

In the case of dynamic selection, the cost function of an element is calculated as the capacity of the
most loaded characteristic: .

To determine the weighted cost of an element, the deficit is calculated for each resource:

.

This quantity is determined as the quotient in which the numerator is the total required capacity for
the given characteristic for all the requests G and the denominator is the total value of the available physical
resources. The greater the deficit, the greater is the required amount of resources of this type.

The cost function is calculated as2

;

it is the weighted sum of required resources with regard to their deficit.

1 In this case, we consider only the characteristics for which the first relation between the request characteristics and the corre�
sponding physical resource characteristics is verified; i.e., the total capacity of the virtual elements assigned to the resource
must not exceed the capacity of the physical resource; by the time of using the criteria, the filtration of the elements has already
been performed by the two other relations.

2 In this formula, the value of resource capacity is assumed to be normalized.
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There are two types of criteria: compact assignment and balanced assignment.
The compact assignment is used when the physical resources of the network are not critical resources,

i.e., when the ratio of the costs of the required network resources to the available network resources is
below a given threshold. For the compact assignment, we propose the following criteria:

(1) KG: select the request G with the highest total required cost of elements;

(2) Ke: among elements of the request G, select the element e that has the maximum required
capacity r

v
(e);

(3) Kph: among the physical elements  that have the sufficient amount of resources to assign the
selected element e, select the element with the lowest cost (that is calculated similarly to the cost of a vir�
tual element).

The greedy criteria described above provide the assignment using the best�fit decreased (BFD) strate�
gies [11]. In the case of the one�dimensional bin packing problem, this strategy reaches the asymptotic
accuracy of 11/9. This means that, in the worst case, this algorithm assigns elements to the number of
physical resources that is 11/9 times greater compared with the optimal algorithm.

The balanced assignment is used when the network resources are critical, i.e., when the ratio of the cost
of the required network resources to the cost of the available network resources exceeds a certain threshold.

In this case, the first two criteria (KG and Ke) correspond to the compact assignment. For the criterion Kph,
we propose to select the element with the highest cost from the set of elements  that have a suffi�
cient capacity for the selected element e to be assigned. This approach allows one to distribute virtual
resources over all available physical elements while ensuring a greater number of network resources for the
virtual channel assignment.

2.2. Assigning Virtual Links to Physical Resources of the Network

The assignment of virtual links is performed upon obtaining the virtual machines and storage elements
are assigned; it is based on solving the problem of finding the k shortest paths in the graph [12]. If a certain
virtual channel  fails to be assigned, then the limited search procedure is called that searches through
the sets with limited cardinality of already assigned virtual links in order to reassign them so that the given
virtual link could be assigned. The general scheme of the limited search for virtual channels is similar to
the one for virtual machines and storage elements. In the case of failure, the replication procedure is called
that creates a replica for the storage element to eliminate the overload of exchange channels in the physical
data storage. When creating the replica, it is also required to organize a link for maintaining the consis�
tency between the storage element and its replica.

Note that the replication procedure is used in this algorithm to optimize the allocation of virtual links,
i.e., to create extra paths when assigning requests.

2.2.1. General scheme of virtual link assignment. The general scheme of the algorithm for assigning vir�
tual links is as follows.

S t e p  1. Select the request  for the virtual link assignment according to the criterion KG, where
GA is the set of requests for which the virtual machines and storage elements are already assigned.

S t e p  2. Select the virtual link  of the request G according to the criterion Ke.

S t e p  3. Assign the virtual link e using the algorithm for finding the k shortest paths and redefine the
values of the physical resource characteristics using functions (1.1).

S t e p  4. In the case of failure, call the limited search procedure.
S t e p  5. If the limited search procedure returns failure, call the replication procedure.
S t e p  6. In the case of failure, the request G cannot be assigned: withdraw all the allocated virtual links,

virtual machines, and storage elements of the request G and redefine the values of the physical resource
characteristics using functions (1.1).

2.2.2. Greedy criteria. At the first two steps, we select criteria similar to those for allocating virtual
machines and storage elements. Thus, it is proposed to select the request with the highest total cost of vir�
tual links (KG) and then sequentially select the virtual link with the maximum capacity (Ke). The cost is
determined similarly to the cost of the computation resources/virtual machines and data storages/storage
elements. Typically, only one characteristic—bandwidth—is used for data transmission channels and
switches. In this case, the cost is calculated as the capacity value of this characteristic.

ph Ph∈

ph Ph∈

e E∈

AG G∈

e E∈
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2.2.3. Assigning a virtual link. A virtual link is assigned using the algorithm for finding the k shortest
paths (for example, the Yen’s algorithm [12]). The general scheme of the algorithm is as follows.

S t e p  1. For the given k, search for not more than k shortest paths  of minimum length (by the
length, we mean the number of switches in the path ). Search only for the paths wherein each ele�
ment possesses the sufficient capacity for the given virtual link to be assigned. If no paths are found, return
failure.

S t e p  2. For the found paths, select the path  with the highest residual total cost among the data
transmission channels and switches.

This search procedure employs two criteria: minimum length and maximum residual cost. The mini�
mum length is the primary characteristic, since DC topologies (such as the FatTree topology [2]) have a
tree�like structure (with redundant edges added) that allows one to select paths from the set of paths of the
same length for each pair of elements.

2.2.4. Limited search procedure. The limited search procedure consists of the following steps.

S t e p  1. For the given m, search through all the sets  consisting of not more than m allocated
virtual links in descending order of the total cost of virtual links. For each set Ae, perform Steps 1.1–1.3.

S t e p  1.1. Withdraw all the selected virtual links .
S t e p  1.2. Try to assign the virtual link e using the algorithm for finding the k shortest paths; in the case

of failure, restore the allocation of the withdrawn virtual links  and go to the next set .

S t e p  1.3. Try to assign all the withdrawn virtual links ; in the case of success, return success.
Otherwise, withdraw the virtual link e and restore the initial assignments.

S t e p  2. If the virtual link e fails to be assigned upon searching through all the given sets , then
return failure.

2.2.5. Replication procedure. The replication is possible when one of elements connected by the virtual
link  is the storage element  for which the replication is available. The replication procedure
consists in searching for the data storage  that has sufficient resources for assigning the replica (the
replica requires as much resources as the given storage element s), and the total length of all virtual links

 (that include the given storage element s) to this replica of m is minimum. In addition, it is
required to create a link l for maintaining the consistency between the replica and the original storage ele�
ment (the required bandwidth of the link l is determined by the type of the storage element s). If the link
l for maintaining the consistency fails to be created, then another data storage s is considered in order of
descending total path length of virtual links.

If the replication procedure returns success, then the virtual links that include the given storage ele�
ment s can further be assigned to this replica of m. If the data storage  with a sufficient number of
resources is not found or the link l for maintaining the consistency fails to be created, then the procedure
returns failure.

3. COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

Let N be the number of computation nodes, S be the number of data storages, and W be the number of
switches in the data communication network. Let RV be the total number of virtual machines for all
resource requests, RS be the total number of storage elements, and RVL be the total number of virtual
links. We denote the search coefficient for the limited search of virtual machines and storage elements by

, the search coefficient for the assignment of virtual links by , and the number of shortest paths
in the procedure for finding the k shortest paths by .

1. Assigning virtual machines to computation nodes. At this stage, the following operations are per�
formed.

1.1. Sorting virtual machines by the chosen criterion; the complexity of this step is .
1.2. For each virtual machine, select a computation node to which the assignment is performed (if fea�

sible); in the worst case, the complexity is  operations.

1.3. The limited search procedure. The number of combinations being searched is  (N choose
). For each combination, the reassignment is attempted; the complexity of reassignment depends on

the chosen technique of limited search:
(a) when using the greedy algorithm in the limited search procedure, the complexity is

;
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(b) when using the exhaustive search algorithm, the complexity is as high as  in the worst case.

At this step, the worst complexity is  ) when using the

greedy algorithm in the limited search procedure and is  when
using the exhaustive search of all possible maps in the limited search procedure.

2. Assigning storage elements to data storages. This stage is similar to the previous one and has the same
complexity, but the number of storages is used in estimates rather than the number of virtual machines.

3. Assigning virtual links. At this stage, the following operations are performed.

3.1. Sort the virtual links by the chosen criterion; the complexity of this step is .

3.2. Try to assign the given virtual link using the procedure for finding the k shortest paths. This proce�
dure consists uses Dijkstra’s algorithm not more than  times and involves not more than

 operations (since the virtual machines and storage elements are already assigned, the

number of nodes in the search graph is ). Thus, the complexity of this step is .

3.3. The limited search procedure of depth  for virtual links. The complexity of this procedure is
estimated similarly to the virtual machine assignment; the only difference is in using the procedure for

finding the k shortest paths. Thus, the complexity of this step is , where

 is the number of combinations being searched and  is the number of virtual links being reas�
signed.

3.4. The replication procedure. In the worst case, the replication is performed for each storage element.

The complexity of searching for the data storage to be replicated is ; it finds the short�
est paths to each data storage for a graph of (N + W + 1) elements. The complexity of finding the path

for the link of maintaining the consistency is . Thus, the overall complexity is

.

3.1. Dependence of the Algorithm Complexity on the Depth of Limited Search

When investigating the complexity of the algorithm with the zero depth of limited search (for 
and ), the following conclusions can be made:

(1) the complexity of the algorithm has a cubic dependence on W, quadratic dependence on N, and
linear dependence on S (if the replication is not used, the algorithm also linearly depends on N);

(2) with increasing , , and , the algorithm complexity increases as ,
, and , respectively;

(3) the algorithm linearly depends on the parameter .

When the search depth  and  increases, the algorithm complexity increases as ( )

and , respectively. Note that the coefficient in the summands  and

 increases with increasing ; the summands increase as 
( , respectively) depending on RV (RS). The variation of the search complexity depending on

 when using the greedy algorithm in the limited search procedure is shown in Table 1. In the case of
using the exhaustive search in the limited search procedure, the complexity is increased by the factors of

 and (RS – 1)!, respectively. The variation of complexity for the reassignment with exhaustive
search is shown in Table 2.

However, when the value of  increases, the coefficient in the summand

, which has a cubic dependence on W, is changed. The variation of the
limited search complexity depending on  is given in Table 3.
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4. EXPERIMENTAL EXPLORATION OF THE ALGORITHM PROPERTIES

The experimental exploration is performed to elucidate the following properties of the algorithm.
1. The dependence of the assignment quality and computational complexity of the algorithm on the

chosen technique for calculating the cost of an element: the dynamic calculation with the selection of a
critical characteristic or the weighted sum over all the criteria (see Subsection 2.1.2).

2. The dependence of the assignment quality and computational complexity of the algorithm on the
strategies used in the limited search procedure: the greedy algorithm (when the current virtual element is
assigned first or when the element is assigned together with the withdrawn elements) or the exhaustive
search (see Subsection 2.1.1).

3. The dependence of the assignment quality and computational complexity of the algorithm on the
assignment method: the compact or balanced assignment (see Subsection 2.1.2).

4. The efficiency of the replication procedure.

4.1. The Dependence on the Technique Used to Calculate the Cost of an Element

To investigate this dependence, a series of runs was performed for the randomly generated DC that
consists only of computation nodes with the following characteristics:

(1) the number of computation nodes was 1000;

Table 3.  Dependence of the algorithm complexity on the search depth Klinks

Search depth Klinks Algorithm complexity coefficients depending on

1 RVL

2 RVL(RVL – 1)/2

3 RVL(RVL – 1)(RVL – 2)/6

… …

N CRVL

Klinks

Table 1.  Dependence of the algorithm complexity on the search depth Knodes when using the greedy algorithm in the lim�
ited search procedure

Search depth Knodes

Algorithm complexity coefficients depending on

N S

1 N S

2 N(N – 1)/2 S(S – 1)/2

3 N(N – 1)(N – 2)/6 S(S – 1)(S – 2)/6

… … …

Knodes CN

Knodes
CS

Knodes

Table 2.  Dependence of the algorithm complexity on the search depth Knodes when using the exhaustive search in the
limited search procedure

Search depth Knodes

Algorithm complexity coefficients depending on

N and RV S and RS

1 (RV – 1)!N (RS – 1)!S

2 (RV – 1)!N(N – 1)/2 (RS – 1)!S(S – 1)/2

3 (RV – 1)!N(N – 1)(N – 2)/2 (RS – 1)!S(S – 1)(S – 2)/6

… … …

Knodes (RV – 1)! (RS – 1)!CN

Knodes
CS

Knodes
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(2) the number of requests was 100 (on the average, 50 virtual machines for each request);
(3) the number of characteristics was four: 〈number of cores〉, 〈frequency〉, 〈RAM capacity〉, and 〈disk

memory capacity〉; no overload of the physical resource for each characteristic was allowed.
(4) the tests were formed so that all the request could be assigned;
(5) the overall resource load (the ratio of the total required capacity of virtual elements to the capacity

of physical elements over the given characteristic) was set using two methods:
the full load: the load over all characteristics was 100%;
the unbalanced load: 〈number of cores〉 was 10% load, 〈frequency〉 was 40% load, 〈RAM capacity〉 was

70% load, and 〈disk memory capacity〉 was 100% load.
For each combination element cost calculation technique–resource load, 100 runs were performed and

the results were averaged. The limited search with greedy reassignment and the search depth of 1 was used.
The results depending on the cost calculation technique for the full and unbalanced load are summa�

rized in Tables 4 and 5, respectively.
The results show that the dynamic cost calculation with the use of the critical characteristic assigns, on

the average, a greater number of requests in the case of the full load; in the case of unbalanced load, the
weighted sum assigns a greater number of requests. When the weighted sum is used to calculate the cost,
the load of elements proves to be higher in both the cases.

4.2. The Dependence on the Chosen Procedure of Limited Search 

Test cases were generated in the same way as in Subsection 4.1. The following versions of the limited
search procedure were investigated:

without limited search;
with the greedy algorithm in the limited search procedure (the current virtual element was assigned first

with the search depth equal to one);
with the greedy algorithm in the limited search procedure (the current virtual element was assigned first

with the search depth equal to two);
with the greedy algorithm in the limited search procedure (the current virtual element was assigned

together with all the withdrawn elements according to their cost);

with the exhaustive search in the limited search procedure.3 

3 In the case of exhaustive search and greedy algorithm with the search depth set to 2, an additional constraint was placed on the
search procedure execution time: if there were no assignments made in the course of this time, then the procedure returned
failure.

Table 5.  Results of investigating the cost calculation technique for the unbalanced load

Cost calculation technique
Accuracy: 

average number 
of assigned requests

Average load 
of elements

Maximum
load over 

characteristics

Minimum load over 
characteristics

Average 
execution time 
of algorithms, s

%

Dynamical with the use 
of the critical characteristic

96.93 56.6 98.6 10 30

Weighted sum with regard 
to resource deficit

97.58 56.8 98.9 10 21

Table 4.  Results of investigating the cost calculation technique for the full load

Cost calculation technique
Accuracy: average 

number of assigned 
requests

Average load
of elements5, %

Average execution 
time of algorithms, s

Dynamical with the use of the critical characteristic 95.63 96.3 63

Weighted sum with regard to resource deficit 93.77 97.7 34
5 The average load is calculated as an arithmetical mean of the loads over all characteristics. This quantity is used to compare the pack�
ing densities.
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In all the cases, the cost function was calculated as the weighted sum over all the characteristics with
regard to their deficit. The results for the full and unbalanced load are given in Tables 6 and 7, respectively.

It can be seen that different versions of limited search do not provide considerable improvement. The
increase of the search depth also provides no considerable gain. This can be explained by the fact that
independent requests were generated, and the limited search offers no advantages for such requests within
reasonable time. As compared with the run with the limited search off, the average operating time for the
unit search depth was increased more than twice. When the search depth is set to two or the exhaustive
search was used, the time was increased by an order of magnitude.

Note that, in the case of unbalanced load, the algorithm shows better results (a high average number
of assigned requests) in less time. This can be explained by the fact that the limited search procedure is
called only when the element fails to be assigned, i.e., when physical elements are already heavily loaded.
In the case of full load, this happens more often than in the case of unbalanced load, so the limited search
procedure is called more frequently.

The use of the exhaustive search algorithm when the execution time of each search procedure is limited
offers no advantages. In the case when there is no constraint placed on the execution time of the proce�
dure, the time of each algorithm run is increased by several orders of magnitude and, therefore, is not
included in the results.

4.3. The Dependence on the Assignment Method 

Here, the criterion for selecting the physical elements when assigning virtual elements is investigated:
(1) the compact assignment: the physical element with the lowest cost is selected;
(2) the balanced assignment: the element with the highest cost is selected.

Table 7.  Results of investigating the limited search procedure for the unbalanced load

Cost calculation technique

Accuracy: 
average number 

of assigned 
requests

Average load 
of elements

Maximum load 
over character�

istics

Minimum load 
over character�

istics
Average execu�

tion time 
of algorithms, s

%

Without limited search 97.09 56.6 98.6 10 9.8

Greedy algorithm: the current 
element is assigned first with search 
depth 1

97.58 56.8 98.9 10 21

Greedy algorithm: the current 
element is assigned first with search 
depth 2

97.7 56.8 99 10 95

Greedy algorithm: the current 
element is assigned together with all 
withdrawn elements

97.48 56.7 98.9 10 22

Exhaustive search 97.3 56.6 98.7 10 96

Table 6.  Results of investigating the limited search procedure for the full load

Limited search technique
Accuracy: average 

number of assigned 
requests

Average load 
of elements, %

Average execution 
time of algorithms, s

Without limited search 93.22 97.4 7.5

Greedy algorithm: the current element is assigned 
first with the search depth 1

93.77 97.7 34

Greedy algorithm: the current element is assigned 
first with the search depth 2

93.9 97.7 230

Greedy algorithm: the current element is assigned 
together with all withdrawn elements

93.78 97.7 40

Exhaustive search 93.5 97.5 210
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To demonstrate the difference between these assignment methods, we use the DC consisting only of
computation nodes with the following characteristics:

(1) the number of computation nodes is 1000;
(2) the number of requests is 100 (100 virtual machines for each request);
(3) the number of characteristics is one: 〈CPU frequency〉;
(4) the overall load is 50%.
For the compact assignment, the following results were obtained:
(1) virtual machines are assigned only to 500 computation nodes out of 1000 nodes;
(2) in each node to which virtual machines are assigned, the workload is close to 100%.
For the balanced assignment, the following results were obtained:
(1) virtual machines are assigned to all computation nodes;
(2) in each node, the average workload is 50%.
This example shows that the compact load makes it possible to leave some computation nodes

unloaded, resulting in energy saving. The balanced load provides the decrease in the average load of nodes.
We propose to use the compact assignment when physical resources of a network are not critical

resources, i.e., when the ratio of the costs of the required network resources to the available network
resources is below the given threshold. Otherwise, the balanced assignment is recommended. This feature
is illustrated by the experimental investigation using the DC with the following characteristics:

the FatTree architecture [2] with three levels of commutation elements;
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Fig. 3. Percentage of assigned requests for the compact (–�–) and balanced (–�–) assignment.
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Fig. 4. Percentage of assigned requests depending on the replication procedure: –�– algorithm with replication and
–�– algorithm without replication.
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60 computation nodes and 60 data storages;
the assignment was performed for 100 requests (on the average, 10 virtual links for each request);
the average load of the computation nodes and data storages was fixed to be 75%;
the average load of the DC network resources is varied from 30 to 100%.
The results for the compact and balanced assignment depending on the workload of virtual links are

given in Fig. 3. It can be seen that, for the load of 60% and higher, the balanced assignment makes it pos�
sible to increase the percentage of assigned requests.

4.4. The Efficiency of the Replication Procedure 

The efficiency of the replication procedure is investigated using the same sets of requests as in Subsec�
tion 4.3. The run was performed with the replication on and off. For each run of the algorithm, the bal�
anced assignment was used. The results are shown in Fig. 4. It can be seen that the replication procedure
provides the increase in the percentage of the assigned requests.

5. CONCLUSIONS

In this work, we extended the formulation of the problem of assigning requests to physical resources to
the possibility of setting an arbitrary number of SLA requirements for each type of resources. An algorithm
for assigning requests to physical resources for the DC with independent schedulers for different types of
resources was proposed. Based on the exploration of the properties of the algorithm, conclusions about
the domains of its efficient application are made. This algorithm can be used for designing cloud plat�
forms, for example, in the OpenStack platform [13] or in the self�organizing cloud platform that is being
developed in the Applied Research Center for Computer Networks.4 

In order to run the algorithm and check its applicability for your data center, it is required to
(1) write a letter to ev@arccn.ru, indicating your full name;
(2) install any VNC client;
(3) read the manual.
The tool offers the possibility to describe DC resources, to create a set of requests, and to investigate

how these requests will be assigned to physical resources using the chosen algorithm.
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