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Abstract—On-the-go soil sensors have emerged as promising tools for real-time, high-resolution soil nutrient
monitoring in precision agriculture. This review provides a comprehensive overview of the current state-of-
the-art in on-the-go soil sensor technology, discussing the potential benefits, limitations, and applications of
various sensor types, including optical sensors (Vis-NIR, MIR, ATR spectroscopy) and electrochemical sensors
(ISEs, ISFETs). The integration of these sensors with positioning systems (GPS) enables the generation of
detailed soil nutrient maps, which can guide site-specific management practices and optimize fertilizer applica-
tion rates. However, factors such as soil moisture, texture, and heterogeneity can affect sensor performance,
necessitating robust calibration models and standardized protocols. Future perspectives highlight the need for
multi-sensor systems, incorporation into IoT networks for smart farming, and enhancing affordability and
adoptability of on-the-go sensor technologies to promote widespread adoption in precision agriculture.
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INTRODUCTION
Soil nutrient management plays a critical role in

optimizing crop productivity, minimizing environ-
mental impacts, and ensuring the sustainability of
agricultural systems [55]. Precision agriculture, which
aims to manage spatial and temporal variability within
fields, heavily relies on accurate and timely informa-
tion about soil nutrient status [60]. Traditional soil
testing methods involve collecting soil samples from
the field, sending them to the laboratory for analysis,
and waiting for the results [6]. This process is time-
consuming, labor-intensive, and often fails to capture
the high spatial variability of soil nutrients within
fields. Moreover, the low sampling density and the
delay between sampling and receiving results limit the
applicability of traditional methods for real-time
nutrient management decisions.

In recent years, there has been a growing interest in
developing on-the-go soil sensors that can measure
soil nutrient concentrations in real-time, directly in
the field [14, 54, 67]. These sensors have the potential
to revolutionize soil nutrient management by provid-
ing high-resolution, site-specific information that can
be used to optimize fertilizer application rates [33],
reduce nutrient losses [53], and improve overall nutri-
ent use efficiency [45]. On-the-go soil sensors can be
integrated with other precision agriculture technolo-

gies, such as global positioning systems (GPS) and
variable rate application equipment, to enable real-
time, site-specific nutrient management [49].

Several types of on-the-go soil sensors have been
developed, each with its own advantages and limita-
tions. Optical sensors, such as visible and near-infra-
red (Vis-NIR) spectroscopy [43], mid-infrared (MIR)
spectroscopy [24], attenuated total reflectance (ATR)
spectroscopy [59], and Raman spectroscopy [18], use
the interaction of electromagnetic radiation with soil
constituents to estimate soil nutrient concentrations.
These sensors are non-destructive, require minimal
sample preparation, and can provide rapid measure-
ments. However, their performance can be affected by
soil moisture, texture, and the presence of interfering
substances. Electrochemical sensors, such as ion-
selective electrodes (ISEs) [3] and ion-selective field
effect transistors (ISFETs) [65], use the electrical
properties of soil solutions to measure the concentra-
tion of specific ions, such as nitrate, potassium, and
phosphate [66]. These sensors are sensitive, selective,
and can provide real-time measurements, but their
performance can be influenced by factors such as soil
pH, temperature, and the presence of interfering ions.

The integration of on-the-go soil sensors with
positioning systems, such as GPS, allows for the cre-
ation of high-resolution soil nutrient maps that can be
1
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used to delineate management zones within fields
[49]. These maps can help farmers identify areas with
nutrient deficiencies or excesses, and adjust fertilizer
application rates accordingly. By applying fertilizers
only where and when they are needed, farmers can
optimize crop yields, reduce input costs, and mini-
mize the risk of nutrient losses to the environment.
Moreover, the use of on-the-go soil sensors can facil-
itate the implementation of variable rate application
technologies, which can further improve the precision
and efficiency of nutrient management [62].

Despite the potential benefits of on-the-go soil
sensors, there are still several challenges that need to
be addressed to ensure their reliable and effective use
in precision agriculture. One of the main challenges is
the influence of soil heterogeneity on sensor perfor-
mance. Soil properties, such as moisture content, tex-
ture, organic matter, and pH, can vary significantly
within fields, and these variations can affect the accu-
racy and reproducibility of sensor measurements [63].
Therefore, calibration models that account for the
specific soil conditions of each field may be necessary
to ensure the reliability of sensor readings [2]. Addi-
tionally, the quality of soil-to-sensor contact and the
sampling depth can also impact the performance of
on-the-go sensors, particularly for sensors that require
direct contact with the soil, such as ISEs and ISFETs
[52]. Another challenge is the need for efficient data
management and interpretation tools to process the
large amounts of data generated by on-the-go soil sen-
sors [40]. The integration of sensor data with other
sources of information, such as yield maps, soil sur-
veys, and weather data, can provide a more compre-
hensive understanding of the factors influencing soil
nutrient dynamics and crop performance. However,
this integration requires the development of advanced
data analytics and decision support tools that can help
farmers translate sensor data into actionable manage-
ment decisions.

The motivation for writing this review stems from
the need to provide a comprehensive overview of the
current state-of-the-art in on-the-go soil sensor tech-
nology and its applications in precision agriculture.
The rapid advancements in sensor technologies, data
analytics, and precision agriculture practices have cre-
ated new opportunities for real-time soil nutrient
monitoring and management. However, the adoption
of these technologies in real-world agricultural set-
tings is still limited by various technical, economic,
and practical challenges. This review aims to synthe-
size the existing knowledge on on-the-go soil sensors,
discuss their potential benefits and limitations, and
identify the key research gaps and future directions in
this field. By doing so, we hope to stimulate further
research and development efforts to overcome the cur-
rent challenges and promote the widespread adoption
of on-the-go soil sensors in precision agriculture.
Ultimately, the goal is to provide farmers and agricul-
tural professionals with the tools and knowledge
needed to optimize soil nutrient management, improve
crop productivity, and ensure the sustainability of
agricultural systems in the face of growing global food
demands and environmental pressures.

TYPES OF ON-THE-GO SOIL SENSORS
Optical sensors. Optical sensors have emerged as

promising tools for on-the-go soil nutrient monitoring
due to their non-destructive nature, rapid measure-
ment capabilities, and potential for high-resolution
soil mapping. These sensors rely on the interaction of
electromagnetic radiation with soil constituents to
estimate soil nutrient concentrations. The most com-
mon types of optical sensors used for on-the-go soil
sensing include Vis-NIR spectroscopy, MIR spectros-
copy, ATR spectroscopy, and Raman spectroscopy.

Vis-NIR spectroscopy operates in the wavelength
range of 400–2500 nm and has been widely used for
estimating various soil properties, including soil
organic matter, clay content, and nutrient concentra-
tions. Vis-NIR spectroscopy measures the reflectance
or absorbance of light by soil samples [47], which is
influenced by the presence of specific chemical bonds
and functional groups. The resulting spectra can be
analyzed using multivariate calibration techniques,
such as partial least squares regression (PLSR) or
principal component regression (PCR), to develop
predictive models for soil nutrient concentrations [10,
30, 57]. For example, Reyes and Ließ [43] explored
the effectiveness of on-the-go Vis-NIR spectroscopy
for assessing soil organic carbon (SOC) at a field scale.
Employing a two-step modeling process, they first
used PLSR to correlate spectral data with SOC con-
tent, followed by ordinary kriging to spatially interpo-
late the PLSR predictions. They tested various spec-
tral preprocessing techniques and semivariogram
models to optimize the SOC predictions. The combi-
nation of Savitzky–Golay preprocessing with a
Gaussian semivariogram model emerged as the most
accurate, achieving a root mean square error (RMSE)
of 1.24 g kg–1 (Figs. 1a-1c). Similarly, the Gap-Seg-
ment derivative preprocessing paired with the Gauss-
ian model yielded an RMSE of 1.26 g kg–1. The study
also tackled potential issues like the striping effect
caused by transect-based data collection, suggesting
that increasing spatial separation, data aggregation,
and block kriging could effectively mitigate these
effects. In another work, Rodionov et al. [46] devel-
oped a tractor-mounted measuring chamber to con-
duct on-the-go visible and Vis-NIRS for the assess-
ment of SOC in arable fields. This chamber was
designed to standardize field spectra acquisition,
ensuring consistent and optimized illumination con-
ditions, which is crucial for accurate SOC prediction.
During field tests, the chamber, attached to a tractor,
could collect spectra both in a stop-and-go mode and
while moving at a speed of 3 km/h (Fig. 1d). The sys-
tem’s performance was evaluated by comparing the
EURASIAN SOIL SCIENCE  2024
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Fig. 1. The median of predicted SOC values of the R + K models with the best performance. (a) Savitzky–Golay–Gaussian,
(b) Gap-Segment derivative–Gaussian, (c) difference between models [43]. (d) Measurement setup during the field Vis–NIR
spectra acquisitions [46].
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SOC predictions with standard laboratory elemental
analyses. The results were promising, indicating that
the on-the-go Vis-NIRS system could predict SOC
with a root mean squared error of cross-validation
(RMSECV) below 0.73 g SOC kg–1 soil and a ratio of
performance to deviation (RPD) greater than 2.0.
These metrics suggest that the system could reliably
estimate SOC concentrations across varying field con-
ditions.
EURASIAN SOIL SCIENCE  2024
MIR spectroscopy operates in the wavelength
range of 2500–25000 nm and is sensitive to the funda-
mental vibrations of chemical bonds in soil constitu-
ents. MIR spectroscopy has been shown to provide
more accurate predictions of soil nutrient concentra-
tions compared to Vis-NIR spectroscopy, particu-
larly for soil organic carbon and total nitrogen [8].
Hutengs and co-workers [24] investigated the effec-
tiveness of handheld MIR spectroscopy for in-field
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Fig. 2. Model construction based on VIS-NIR and MIR spectroscopy for SOC measurement [22].
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estimation of SOC. They analyzed 90 agricultural

loess soil samples using both MIR and VIS-NIR spec-

troscopy, performing measurements directly in the

field and on laboratory-prepared samples. The study

revealed that in situ MIR spectroscopy yielded more

precise SOC estimates than VIS-NIR, with a lower

RMSE of prediction by approximately 5 g/kg. How-

ever, when compared to laboratory measurements on

finely ground samples, the accuracy of in-field MIR

decreased notably, with an RMSE increase of up to

2 g/kg. This reduction in performance was attributed

to factors such as soil moisture variability and surface

heterogeneity, which affected the spectral data quality.

To overcome these limitations, some researchers have

combined MIR spectroscopy with other techniques,

such as ATR spectroscopy or diffuse reflectance spec-

troscopy, to improve the robustness and accuracy of

soil nutrient predictions. For instance, Hong et al. [22]

explored the efficacy of combining VIS-NIR and MIR

spectroscopy for predicting SOC. They employed two

distinct strategies for data fusion: a straightforward

concatenation of the full absorbance spectra and a

more refined approach using selected predictors

derived from an optimal band combination (OBC)

algorithm. To enhance the spectral data, continuous
wavelet transform (CWT) was applied both pre- and
post-fusion (Fig. 2). The study, set in Belgium, gath-
ered soil samples from various farms and used PLSR
to develop SOC prediction models. Models utilizing
the CWT-optimized, fused data outperformed those
based on raw spectral data, demonstrating the value of
data transformation and fusion techniques in improv-
ing SOC estimation. Specifically, the concatenated

full-spectrum model achieved an R2 value of 0.82 and
a RMSE of 3.45 g/kg for SOC prediction, indicating a
strong predictive capability. Meanwhile, the OBC
algorithm-enhanced model further refined the predic-

tion accuracy, yielding an R2 of 0.85 and an RMSE of

3.12 g kg–1.

ATR spectroscopy is a variant of infrared spectros-
copy that allows direct measurement of soil samples
without extensive sample preparation. ATR spectros-
copy uses a crystal with a high refractive index (e.g.,
diamond, germanium, or zinc selenide) to measure
the changes in the totally internally reflected infrared
beam when it comes into contact with the soil sample.
The resulting spectrum is similar to that of transmis-
sion spectroscopy but with a reduced penetration
depth into the sample. ATR spectroscopy has been
used for field precision fertilizer management. Rogov-
EURASIAN SOIL SCIENCE  2024
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ska et al. [48] evaluated a handheld ATR-FTIR spec-
trometer as a soil nitrate sensor. The performance of
the ATR-FTIR spectrometer was assessed through
two datasets: one from field samples and another from
laboratory-prepared samples. In the field dataset,
720 spectra from 124 average raw spectra were ana-
lyzed, while the laboratory dataset involved 844 spec-
tra from 135 average raw spectra. The results showed
that the ATR-FTIR spectrometer could predict soil
nitrate concentrations with a standard error margin
that would be acceptable for real-time fertilizer appli-
cation adjustments.

In summary, optical sensors, particularly Vis-NIR,
MIR, and ATR, have shown great potential for on-
the-go soil nutrient monitoring. These sensors provide
rapid, non-destructive, and high-resolution measure-
ments of soil nutrient concentrations, which can be
used to generate detailed soil maps and guide precision
nutrient management decisions. However, the perfor-
mance of these sensors is influenced by various soil
factors, such as moisture content, texture, and organic
matter, which can affect the accuracy and reproduc-
ibility of the predictions. Therefore, robust calibration
models and standardized protocols are needed to
ensure the reliability and transferability of the sensor
measurements across different soil types and environ-
mental conditions. Furthermore, the integration of
optical sensors with other sensing technologies, such
as electrochemical sensors or soil penetration resis-
tance sensors, can provide a more comprehensive
assessment of soil nutrient status and improve the
overall performance of on-the-go soil sensing systems.

Electrochemical sensors. Electrochemical sensors
have emerged as another promising technology for on-
the-go soil nutrient monitoring. These sensors mea-
sure the electrical properties of soil solutions to deter-
mine the concentration of specific ions, such as
nitrate, potassium, and phosphate. The two main
types of electrochemical sensors used for on-the-go
soil sensing are ISEs and ISFETs.

ISEs are electrochemical sensors that measure the
activity of specific ions in a solution. ISEs consist of a
sensing electrode (working electrode) and a reference
electrode, which are connected through a selective
membrane that allows only the ion of interest to pass
through [16]. The potential difference between the
sensing and reference electrodes is proportional to the
logarithm of the ion activity in the solution, as
described by the Nernst equation. ISEs have been
widely used for on-the-go soil nutrient monitoring
due to their simplicity, low cost, and ability to provide
real-time measurements [3]. For example, Chen et al.
[12] developed an all-solid-state ISE for the direct

measurement of soil nitrate-nitrogen ( -N). This

electrode was uniquely crafted using a nanohybrid
composite film that combined gold nanoparticles
(AuNPs) with electrochemically reduced graphene
oxide (ERGO), enhancing its sensitivity and stability.

−
3NO
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Laboratory tests were conducted using a 3-stage col-
umn to simulate in-situ conditions, where variables

such as soil texture, moisture, and NO3
−-N content

were carefully manipulated to assess the electrode’s
performance. The ISE showcased a robust detection

range from 10–5 to 10–1 M and a theoretical detection

limit of 10−(5.2 ± 0.1) M. Notably, the ERGO/AuNPs
composite film significantly outperformed its ERGO-
only counterpart in key aspects such as sensitivity,
accuracy, and response time, with the latter clocking
in at approximately 10 s. The hydrophobic nature of
the film also contributed to the electrode’s impressive
lifetime of 65 days, which is superior to many existing
nitrate ISEs. The recovery rate for the ISE was
between 91.2–109.7%, indicating high repeatability
for soil nutrient detection. When field-testing the ISE
for in-situ monitoring, results from soil percolate

-N closely mirrored those from laboratory-pre-

pared extract solutions, suggesting that the ISE could

reliably track -N content variations in actual soil

environments.

One of the main challenges in using ISEs for on-
the-go soil sensing is the need for frequent calibration
due to drift and sensitivity to environmental factors,
such as temperature and humidity. Normally, the cal-
ibration of the ISEs for soil pH, potassium, and nitrate
content involved a meticulous process to ensure accu-
rate soil property mapping [56]. The ISEs were cali-
brated using standard buffer solutions for pH, and an
integrated calibration solution containing KNO3 for

potassium and nitrate ISEs, with Na2SO4 as the ionic

strength adjuster (ISA) to maintain consistent ionic
strength across measurements. The calibration equa-
tion was based on the Nernst equation, relating the
electrode potential to the ion activity of the sample.
The calibration process was done before each experi-
ment and after every set of soil samples to account for
any drift in the electrode readings. The pH electrode
required separate calibration due to interference issues
with the nitrate PVC membranes when using pH buff-
ering compounds. The automatic calibration system
that can perform in-situ calibration of the ISEs during
the measurement process is a challenge.

Ion-selective field effect transistors (ISFETs) are
another type of electrochemical sensor that have been
used for on-the-go soil nutrient monitoring [11].
ISFETs are similar to ISEs in that they measure the
activity of specific ions in a solution, but instead of
using a selective membrane, they use a semiconductor
device (field effect transistor) to convert the ion activ-
ity into an electrical signal. The gate of the ISFET is
coated with a selective membrane that allows only the
ion of interest to interact with the gate insulator, mod-
ulating the current f low through the transistor.
ISFETs have several advantages over ISEs, including
higher sensitivity, faster response time, and the ability
to be miniaturized and integrated into multi-sensor

−
3NO

−
3NO
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arrays [58]. However, ISFETs are also more suscepti-
ble to interference from other ions and require more
complex instrumentation and data processing com-
pared to ISEs.

Archbold et al. [7] reviewed the operational princi-
ples of ISFETs, their non-idealities, and the practical
aspects of their simulation. It also delved into the nec-
essary electronic instrumentation and provided exam-
ples of ISFET applications in agricultural settings.
Performance specifics indicated that ISFETs could
deliver real-time soil analysis, which is critical for the
high-resolution data collection that precision agricul-
ture demands. However, the review also identified sev-
eral challenges that hinder the widespread adoption of
ISFET technology in agriculture. These included
environmental influences on sensor stability, the com-
plexity of soil matrix interactions, and the need for
robust calibration methods to ensure accuracy. The
review underscored a significant gap in the adoption of
ISFET sensors in agriculture compared to other fields
like biomedical sciences. It suggested that more
research and case studies focusing on ISFET instru-
mentation for soil analysis could foster their usage in
precision agriculture.

Several researchers have developed ISFET-based
systems for on-the-go soil nutrient monitoring. For
example, Joly et al. [25] designed a silicon chip
equipped with ISFET microsensors to monitor soil
nutrients in wheat crops, focusing on the nitrogen
cycle. The chip’s pH-ISFET sensors proved capable of
accurately measuring soil pH over a six-month period,
matching standard methods with a maximum deviation
of 0.5 pH units and unaffected by soil moisture levels.
For the first time, the adaptation of pH-ISFET to
detect nitrate and ammonium ions allowed in-situ
tracking of natural soil nitrogen f luctuations due to
microbial activity. The microsensors demonstrated a
quasi-Nernstian sensitivity of 59.0 mV per unit change
in ammonium ion concentration and 56.2 mV for
nitrate ions. They also had detection limits of 3.2 μM
for ammonium and 17 μM for nitrate, aligning with
standard mineral nitrogen levels in agricultural fields.
Recently, they also demonstrated a pH-sensitive
chemical field effect transistor (pH-ChemFET) plat-
form to fabricate ISFETs capable of detecting ammo-
nium and nitrate ions in soil with high sensitivity and
selectivity [26]. These sensors, pNH4-ISFET and

pNO3-ISFET, incorporated f luoropolysiloxane poly-

mer matrices that adhered well to silicon-based films,
enhancing the longevity of the ion-sensitive layers
(Fig. 3a). The pNH4-ISFET showed a sensitivity

range of 53–56 mV/pNH4 within a concentration

range of 10–1.5 to 10–4.5 M, while the pNO3-ISFET

demonstrated a similar sensitivity range for nitrate
ions. Notably, the pNO3-ISFET exhibited quasi-

Nernstian behavior with an impressive measurement
accuracy of ±1 mV and a response time of approxi-
mately two minutes, which is particularly advanta-
geous for in-situ soil analysis where swift measure-
ments are crucial. These performance metrics were
validated in various soil matrices with different pH
levels, ensuring the sensors’ applicability in real-world
agricultural settings.

Another example of an ISFET-based system for
on-the-go soil sensing was developed by Hong et al.
[23]. The authors developed a portable soil pH sensor
employing an ISFET electrode. The sensor consisted
of an electrode unit, a portable console, and a USB
connector. It was designed to measure relative pH val-
ues, accommodating the variability in crop growth
stages. The performance of the sensor was evaluated
through tests on artificial soil samples with different
soil water contents (SWC) and electrical conductivi-
ties (EC). Results showed that stable pH measure-
ments were achievable at SWCs greater than 20 mL
(16.3%). The electric potential difference (EPD)
remained constant at 2.5 g of NaCl, indicating that
while SWC significantly influenced the electrical
resistance of soil, EC did not affect soil pH at SWCs
less than 10 mL. The study concluded that the ISFET-
based sensor could measure up to a SWC of 16.3%.

In summary, electrochemical sensors, particularly
ISEs and ISFETs, have shown great potential for on-
the-go soil nutrient monitoring. These sensors provide
real-time, in-situ measurements of soil nutrient con-
centrations, which can be used to generate high-reso-
lution maps of soil fertility and guide precision nutri-
ent management decisions. However, the perfor-
mance of these sensors is influenced by various
factors, such as temperature, humidity, and interfer-
ence from other ions, which can affect their accuracy
and reliability. Therefore, frequent calibration and
maintenance of the sensors are necessary to ensure
their long-term stability and performance. Further-
more, the integration of electrochemical sensors with
other sensing technologies, such as optical sensors or
soil moisture sensors, can provide a more comprehen-
sive assessment of soil nutrient status and improve the
overall efficiency of on-the-go soil sensing systems. As
research continues to advance in this area, it is
expected that electrochemical sensors will play an
increasingly important role in precision agriculture
and sustainable soil management.

INTEGRATION OF ON-THE-GO SOIL 
SENSORS WITH POSITIONING SYSTEMS

The integration of on-the-go soil sensors with
positioning systems, such as GPS, is a critical step in
realizing the full potential of precision agriculture. By
combining real-time soil sensing with accurate spatial
information, farmers can generate high-resolution
maps of soil nutrient variability within their fields and
use this information to optimize fertilizer application
rates and improve nutrient use efficiency [32, 50]. This
section discusses the integration of on-the-go soil sen-
sors with GPS, the generation of high-resolution soil
EURASIAN SOIL SCIENCE  2024
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Fig. 3. (a) Dip-coating deposition of the f luoropolysiloxane-based ion-sensitive layer on the SiO2/Si3N4 pH-ChemFET sensitive
zone [26]. (b) Illustration of an on-the-go platform with the sensor offset from the GNSS/GPS antenna by fixed lateral and inline
distances A and B, respectively [54].
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nutrient maps, and the application of these maps for
variable rate fertilizer application.

One example of the integration of on-the-go soil
sensors with GPS is the soil pH and nutrient map-
ping system developed by Scudiero et al. [54]. A
mobile platform was employed to collect concurrent
soil ECa and gamma-ray spectrometry data. The
platform, equipped with a Global Navigation Satellite
EURASIAN SOIL SCIENCE  2024
System (GNSS)/GPS (Fig. 3b), was designed to con-

duct accurate ECa surveys close to the irrigation

driplines, where the soil moisture content is higher,

and gamma-ray sensing in the drier alleyways between

the orchard rows. GNSS/GPS played a crucial role in

ensuring precise geolocation of the sensor data, which

is vital for the accurate mapping of soil properties. The

study’s results indicated that the GNSS/GPS-enabled
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Fig. 4. (a) Recommendation maps of K2O fertilization developed based on on-the-go available potassium (Ka) predicted using
gamma-ray spectral analysis with PLSR [27]. (b) ECa maps for the four signals with raw and corrected coordinates. The inset for
the P2 signal shows in detail how the sawtooth pattern disappears for the corrected coordinates [20].
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system could successfully account for the sensor’s off-
set from the GNSS antenna, ensuring accurate posi-
tioning of the ECa readings. The platform was tested
in a 0.4-hectare navel orange orchard with a soil type
classified as Monserate sandy loam. Traveling at
speeds below 5 mph, the system collected ECa data for
the 0–1.5 m soil profile and gamma-ray spectrometry
total counts (TC), with measurements ranging from
0.4 to 2.81 MeV. The integration of ECa and gamma-
ray data facilitated a more nuanced soil texture map of
the citrus orchard. The performance of this data fusion
was underscored by a leave-one-out cross-validation
of the gamma-ray interpolation, which yielded an R2

value of 0.75, indicating a strong correlation between
observed and predicted values. Furthermore, 20 sam-
pling locations were identified using a response sur-
face sampling design strategy that maximized the rep-
resentativeness and minimized spatial autocorrelation.
This approach demonstrated the potential of
GNSS/GPS-enhanced mobile platforms to signifi-
cantly improve the spatial characterization of soil
properties in precision agriculture applications.

Another example is the gamma-ray spectrometer
platform developed by Kassim et al. [27] for enhancing
soil potassium management. The objective was to
accurately determine the spatial distribution of plant-
available potassium (Ka) across agricultural fields. A
measurement system was developed to collect gamma-
ray spectra while moving across a field, with DGPS
ensuring precise location tracking for the collected
data. The gamma-ray spectral data underwent prepro-
cessing and analysis using PLSR to predict Ka levels.
Comparative analysis between univariate and multi-
variate methods revealed that the PLSR model, which
incorporated multiple spectral lines, outperformed
univariate models that relied on single spectral peaks.
This multivariate approach allowed for a more robust
prediction of Ka, taking into account the complex
interactions between different spectral features. Spe-
cifically, the study demonstrated that the PLSR model
could predict Ka with a R2 of 0.82 and a RMSEP of
12 mg/kg. The incorporation of DGPS was pivotal in
ensuring that the spectrometry data could be accu-
rately georeferenced, thus enabling precise soil map-
ping. This integration allowed for the development of
detailed soil potassium maps that could inform tar-
geted fertilization strategies (Fig. 4a).

The integration of on-the-go soil sensors with GPS
and variable rate fertilizer application has the potential
to significantly improve the efficiency and sustainabil-
ity of nutrient management in precision agriculture.
However, there are still several challenges that need to
be addressed to fully realize the benefits of this tech-
nology. One of the main challenges is the need for
accurate and reliable soil nutrient maps, which require
high-quality soil sensing data and robust calibration
models. In a recent study, Jiménez et al. [20] devel-
oped a approach to address the issue of coordinate
mismatches in field measurements collected on the
move. The core of this method involved optimizing
time lag values, which significantly enhanced the
accuracy of spatial data. The team demonstrated the
method’s efficacy using ECa data, gathered with elec-
tromagnetic induction (EMI) sensors paired with
GPS receivers. The results indicated a notable reduc-
tion in coordinate mismatches when the optimized
time lag was applied. Specifically, the study showed
that for different signal configurations and search
EURASIAN SOIL SCIENCE  2024
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strategies, the optimized time lags (Δt) and corre-
sponding average spatial offsets (Δs) varied. For
instance, with a 1 m coil spacing, the Δs ranged from
2.0 to 3.3 m, while a 2 m coil spacing resulted in Δs
ranging from 2.6 to 4.0 m. These offsets were contin-
gent on the driving speed during data collection. The
optimal Δt values were consistent across overlapping
measurements, with S1 and S2 search strategies yield-
ing similar time lags when such overlaps existed. With-
out overlapping data, only S2 provided reliable Δt val-
ues. The correction method’s impact was also evident
in the spatial correlation structures of the ECa data
(Fig. 4b). The average ECa and its coefficient of vari-
ation (CV) were affected by depth, with increases in
ECa and decreases in CV as depth increased. Notably,
the average ECa was higher for data set C, which sug-
gested that the northwest part of the field had lower
ECa values that were not included due to technical
issues. This research presents a significant advancement
in precision agriculture, offering a robust solution to
improve the quality of spatial data in real-time field
measurements. By minimizing positional errors, this
method paves the way for more accurate soil mapping
and informed decision-making in farm management.

Despite these challenges, the integration of on-
the-go soil sensors with GPS and variable rate fertil-
izer application is an active area of research and devel-
opment in precision agriculture. Researchers are
developing new sensor technologies and data analysis
methods to improve the accuracy and reliability of soil
nutrient mapping, such as multi-sensor data fusion
and machine learning algorithms [4, 9, 28, 31]. Indus-
try stakeholders are also working to develop standards
and protocols for data exchange and communication
between different components of precision agriculture
systems, such as the ISOBUS standard for agricultural
equipment [5, 35]. As these technologies continue to
advance and become more accessible, it is expected
that they will play an increasingly important role in
optimizing nutrient management and improving the
sustainability of agricultural production.

FACTORS AFFECTING PERFORMANCE
OF ON-THE-GO SOIL SENSORS

While on-the-go soil sensors have shown great
promise for real-time, high-resolution soil nutrient
mapping, several factors can affect their performance
and reliability in field conditions. One of the most sig-
nificant factors affecting the performance of on-the-
go soil sensors is soil moisture content. Soil moisture
can influence the electrical conductivity, dielectric
properties, and reflectance spectra of soils, which are
the basis for many on-the-go soil sensing technolo-
gies. For example, Zhou et al. [68] tackled the chal-
lenge of predicting soil total nitrogen (TN) concentra-
tion using NIR spectroscopy, which was previously
hindered by interference from soil moisture and parti-
cle size. They developed a new coupled elimination
method (Fig. 5a) that combines the moisture absorp-
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tion correction index (MACI) and the particle size
correction index (PSCI), designed to mitigate these
interferences in real-time. The study’s findings show-
ing that the new coupled method improved the predic-
tion accuracy of TN concentration. Specifically, the
MACI and PSCI methods successfully reduced the
RMSEP for TN concentration from a baseline of
0.1% to an impressive 0.07%, indicating a substantial
enhancement in the accuracy of NIR spectroscopy
for soil analysis.

Soil texture and heterogeneity can also affect the
performance of on-the-go soil sensors. Soil texture
refers to the relative proportions of sand, silt, and clay
particles in a soil, which can influence the soil’s phys-
ical and chemical properties. Soil heterogeneity refers
to the spatial variability of soil properties within a
field, which can be caused by factors such as topogra-
phy, parent material, and management practices.
Reyes and Ließ [44] recently reported that soil hetero-
geneity can significantly affect the results of spectral
data processing for field-scale SOC monitoring. Het-
erogeneous soils have variable compositions, which
can lead to differences in the spectral signatures that
are used to estimate SOC content. This variability can
result from differences in soil types, mineralogy, mois-
ture, and other soil properties. The models used for
spectral data processing often require calibration and
validation against reference SOC measurements. Het-
erogeneous soils can make it difficult to obtain repre-
sentative samples for these purposes, potentially
reducing the accuracy of the models. Microsite condi-
tions such as shading, vegetation cover, and soil sur-
face roughness can influence the spectral reflectance.
In heterogeneous fields, these effects can vary widely
across the area, complicating the interpretation of
spectral data. Accounting for soil heterogeneity often
requires more complex models that can handle the
variability in the data. This can increase the computa-
tional demand and the need for more sophisticated
algorithms. An appropriate sampling strategy is cru-
cial when dealing with heterogeneous soils. A strati-
fied sampling approach might be necessary to ensure
that all variations are adequately represented.

Another important factor affecting the perfor-
mance of on-the-go soil sensors is the quality of soil-
to-sensor contact and the sampling depth. Many on-
the-go soil sensors, such as ISEs and NIR spectrome-
ters, require direct contact with the soil to obtain accu-
rate measurements. Poor soil-to-sensor contact can
result in inaccurate or noisy data, which can reduce
the reliability of the soil maps generated by these sen-
sors. Additionally, the sampling depth of the sensors
can affect their ability to capture the spatial variability
of soil properties, particularly in fields with variable
soil profiles or layering. For example, Masch et al. [34]
evaluated the effect of sampling depth on the mapping
soil mechanical resistance. The sensor, equipped with
three embedded load cells, was adept at measuring soil
mechanical resistance at varying depths (0–80, 80–
160 and 160–240 mm). The correlation between the
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Fig. 5. (a) Flowchart of the coupled elimination method [68]. (b) Maps showing spatial variability in field 98 compared to carbon
values from soil sampling. Wetness index map (Top left). Aerial photograph–blue band (Top right). SC prediction after using
aerial photograph along with topographical features (Bottom) [37]. (c) Flow diagram of Smart soil property prediction system [1].
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soil horizontal resistance index (HRI) and the cone
index (CI) improved with increased depth, with cor-
relation coefficients of 0.42, 0.68, and 0.81 for the
respective depth intervals. This trend suggests that
deeper soil layers provide more consistent resistance
measurements, likely due to reduced variability in soil
properties and compaction effects at these depths. The
critical depth was identified around 100 mm, below
which the soil’s failure mode shifted, leading to a bear-
ing-capacity type failure characterized by lateral soil
displacement. This phenomenon resulted in a resis-
tance increase with depth and lower data variability,
thereby enhancing the sensor’s performance at depths
beyond this critical point.

Franceschini et al. [19] examined the impact of
external factors on soil reflectance measurements
obtained directly in the field and assessed various
spectral correction methods to enhance the prediction
of soil properties necessary for liming. Through com-
prehensive testing, they discovered that techniques
such as external parameter orthogonalization (EPO),
direct standardization (DS), and orthogonal signal
correction (OSC) significantly improved the accuracy
of on-the-go soil property predictions. Notably, the
EPO method showcased a remarkable performance in

predicting soil pH, with a R2 increasing from 0.55 to
0.82 after correction. Similarly, the OSC method
enhanced the prediction of organic carbon content,

with R2 values rising from 0.45 to 0.78. The study
underscored the effectiveness of these spectral correc-
tion techniques in mitigating the interference of vary-
ing external conditions, such as soil texture and mois-
ture content, during spectral data acquisition.

APPLICATIONS OF ON-THE-GO SOIL 
SENSORS IN PRECISION AGRICULTURE

On-the-go soil sensors have numerous applications
in precision agriculture, enabling farmers and research-
ers to collect high-resolution, real-time data on soil
EURASIAN SOIL SCIENCE  2024
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properties and nutrient status. This information can be
used to optimize nutrient management practices,
improve crop yields, and reduce the environmental
impacts of agriculture. This section discusses the appli-
cations of on-the-go soil sensors for real-time soil nutri-
ent monitoring, soil nutrient mapping and management
zone delineation, integration with decision support sys-
tems for optimized fertilization, and the economic and
environmental benefits of these technologies.

One of the primary applications of on-the-go soil
sensors is real-time soil nutrient monitoring. By con-
tinuously measuring soil nutrient concentrations as
the sensor moves through the field, farmers can
quickly identify areas of nutrient deficiency or excess
and take corrective actions. For example, Smolka et al.
[61] developed a portable lab-on-a-chip device capa-
ble of conducting soil nutrient analysis directly in the
field. This innovative tool employed capillary electro-
phoresis to quantify key soil nutrients from liquid soil
extracts. In testing, the device demonstrated its utility
by accurately measuring multi-ion solutions. When
applied to actual soil samples, the device’s perfor-
mance indicated a strong potential for real-world
application in agriculture and environmental monitor-
ing. Specifically, the device showed a quantification
range that was well-suited for agricultural needs. It was
able to detect nitrate and ammonium with a sensitivity
reaching down to 1 ppm, while for potassium and
phosphate, the sensitivity was slightly less, around
10 ppm. The results from the field tests revealed that
the device could measure nutrient levels with a preci-
sion that closely mirrored those obtained from stan-
dard laboratory equipment, typically within a 5–10%
variance. This mobile sensor’s development marked a
significant step towards simplifying soil nutrient anal-
ysis. By providing on-site results, it aimed to enable
more timely and informed decisions for soil manage-
ment. However, it was noted that further enhance-
ments were necessary to optimize both the sensor’s
performance and the nutrient extraction process.

Another important application of on-the-go soil
sensors is soil nutrient mapping and management
zone delineation. By collecting high-resolution soil
data across a field, farmers can create detailed maps of
soil nutrient variability and use these maps to delineate
management zones with similar soil properties and
nutrient requirements. These management zones can
then be used to guide site-specific management prac-
tices, such as variable-rate fertilization, irrigation, or
seeding. For example, Ezrin et al. [17] developed a sys-
tem capable of mapping soil nutrients in real time
within paddy fields. The integration of this sensor with
geographic information system (GIS) technology
enabled the generation of accurate soil nutrient maps,
facilitating better site-specific fertilizer management
by farmers. Conducted in Malaysia’s Tanjung Karang
paddy fields, the system was tested across 118 lots, with
results indicating a strong correlation between the sen-
sor’s readings and actual soil nutrient content. The
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system’s reliability was further underscored by the
consistency of its nutrient maps with those produced
using traditional kriging methods in ArcGIS software.
With a total of 21642 data points collected, the study
demonstrated the system’s potential to enhance fertil-
izer application efficiency, thereby optimizing crop
yields while minimizing environmental impact and
production costs.

The integration of on-the-go soil sensors with deci-
sion support systems (DSS) is another important
application in precision agriculture. Decision support
systems are computer-based tools that integrate soil,
crop, and weather data to provide farmers with recom-
mendations for optimal management practices. By
incorporating real-time soil data from on-the-go sen-
sors, decision support systems can provide more accu-
rate and site-specific recommendations for fertiliza-
tion, irrigation, and other management practices. For
example, Thompson and Puntel [64] developed a DSS
that integrated on-the-go soil sensors on unmanned
aerial vehicles (UAVs) to enhance nitrogen manage-
ment in corn cultivation. This system was designed to
leverage high-resolution multispectral imagery to pro-
vide dynamic, in-season nitrogen application recom-
mendations. Field trials conducted to assess this sys-
tem’s efficacy revealed significant improvements in
nitrogen use efficiency (NUE). Specifically, the sen-
sor-based management approach resulted in an 18.3%
average increase in NUE compared to the farmer’s
traditional nitrogen application practices. Further-
more, this method allowed for a reduction in nitrogen
rates by an average of 31 kg N/ha without compromis-
ing yield, indicating a more precise and environmen-
tally friendly approach to nitrogen application. In
another work, Dammer et al. [15] explored the effec-
tiveness of an on-the-go camera vision sensor system
paired with a d DSS for real-time phenotyping in
potato fields. This system was designed to measure
green coverage levels and estimate biomass, thereby
providing valuable data for crop management deci-
sions. The camera sensor, mounted on a tractor, was
capable of distinguishing green plant tissue from soil
and senescent material by utilizing specific wave-
lengths of light. During trials across three different
fields, the system scanned a 600-m strip three times,
reliably capturing data at speeds up to 15 km/h. The
study found that the sensor’s measurements of green
coverage were strongly correlated with leaf area index
(LAI) and tops fresh mass during key growth phases
before canopy closure and during senescence. For
instance, before canopy closure, the sensor values

showed a linear regression model fit with an R2 of 0.78
and a RMSE of 13.17, indicating a high level of accu-
racy in the data collected. As the canopy closed, the
sensor detected near-constant coverage levels at 90 to
100%, despite increases in LAI and biomass, due to its
two-dimensional perspective.

Another approach to optimizing the placement of
IoT sensors in agricultural fields is to use spatial inter-
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polation techniques to estimate soil properties across
the field based on sensor readings at specific locations.
Savin and Blokhin [51] proposed using updated high-
resolution soil maps, derived from traditional soil
maps and remote sensing data, to identify optimal sen-
sor locations that represent the range of soil condi-
tions. In their study, sensors were placed in replicates
on the most and least fertile areas of the field, as deter-
mined by the detailed soil fertility maps. Interpolation
methods were then applied to estimate soil properties
between the sensor points, providing a more complete
picture of the spatial variability in soil characteristics.
This strategy enables efficient sensor networks that
provide representative sampling while keeping costs
manageable. The resulting high-resolution soil data
generated through interpolation can then guide preci-
sion management decisions. By integrating these spa-
tial analysis techniques with the on-the-go sensing
technologies covered in this review, we can develop
more comprehensive and cost-effective soil and crop
monitoring systems that account for the inherent vari-
ability in agricultural fields.

Some filed case studies were carried out. For exam-
ple, Morimoto et al. [36] developed an on-the-go soil
sensor system for rice transplanters to measure TD and
ECa in real-time. The system consisted of ultrasonic
sensors for TD measurement and wheel-type elec-
trodes for ECa measurement. A new soil parameter
called soil fertility value (SFV), defined as ECa per
unit TD, was introduced to evaluate soil conditions
regardless of TD variations. Field tests conducted on
eight research fields in Ishigaki island revealed that the

ultrasonic sensors accurately measured TD with a R2

of 0.999. The average TD was 23.5 cm, with a maxi-
mum of 39.9 cm and a minimum of 12.2 cm. The SFV
showed strong correlation with measured EC values

from soil samples (R2 = 0.9397). The average SFV was
0.61 mS/cm, ranging from 0.02 to 1.11 mS/cm. Higher
SFV areas were mainly observed in fields that received
manure treatment two months prior to the study. The
developed on-the-go soil sensing system demon-
strated its potential for assessing spatial variability in
paddy fields during rice transplanting, which could be
useful for future variable rate fertilizer application.

Cosby et al. [13] embarked on creating detailed
maps to predict the density of redheaded cockchafer
(RHC) larvae in pastures. Employing innovative on-
the-go sensing technologies, the study successfully
mapped RHC infestations by integrating data on soil
properties, pasture biomass, and topographical fea-
tures. The methodology involved utilizing electro-
magnetic surveys to assess soil conditions and active
optical sensors to gauge pasture biomass. These data
points, when correlated with topographical informa-
tion, allowed for the creation of risk maps that indi-
cated areas potentially aff licted by RHC. The study’s
results show a risk map achieving an impressive 88%
accuracy in categorizing areas according to the density
of RHC larvae. This high level of precision marks a
considerable improvement in the ability to predict and
manage pest infestations in agricultural settings.

CURRENT CHALLENGES 
AND FUTURE PERSPECTIVES

While on-the-go soil sensors have demonstrated
great potential for improving nutrient management
practices in precision agriculture, there are still several
challenges that need to be addressed to ensure their
widespread adoption and effectiveness. This section
will discuss the current challenges in improving the
accuracy and reliability of on-the-go soil sensors,
developing multi-sensor systems for simultaneous
measurement of multiple soil properties, incorporat-
ing sensors into Internet of Things (IoT) networks for
smart farming, and enhancing the affordability and
adoptability of on-the-go sensor technologies.

One of the main challenges in the development of
on-the-go soil sensors is the need for multi-sensor sys-
tems that can simultaneously measure multiple soil
properties. While individual sensors have been devel-
oped for measuring specific soil properties such as pH,
nutrient concentrations, and organic matter content,
the integration of these sensors into a single system can
provide a more comprehensive assessment of soil
health and fertility. For example, a recent study inves-
tigated the efficacy of a multi-sensor system incorpo-
rating near infrared spectroscopy, topography, and
aerial photography for mapping soil carbon in Mid-
west Alfisols [37]. Their primary goal was to enhance
the accuracy of soil carbon predictions. Through rig-
orous comparison of various calibration approaches
and pre-processing techniques, the study identified
that PLSR, when coupled with a novel leaving-one-
outlier-out cross-validation method, yielded the most
accurate results. Specifically, the performance metrics

indicated that this approach achieved an adjusted R2

value of 0.93 in the calibration phase, signifying a very
high level of explained variance. Furthermore, the

RMSE for this method was reported at 0.3 g kg–1,
demonstrating a high precision in soil carbon estima-

tion. In the validation phase, the adjusted R2 value

remained robust at 0.66, with an RMSE of 0.5 g kg–1.
The integration of aerial photographs with topograph-
ical information was found to be particularly effective,
outperforming models that relied solely on near infra-
red data. This multi-sensor system approach not only
improved the predictive performance but also offered
a more comprehensive understanding of spatial soil
carbon distribution (Fig. 5b). Similar attempts were
made by Knadel et al. [29], Naderi-Boldaji et al. [38],
Hemmat et al. [21].

The incorporation of on-the-go soil sensors into
IoT networks for smart farming is another important
challenge and opportunity for the future. TOthaman
et al. [39] developed an IoT-based mobile device for
real-time monitoring of soil nutrients in paddy fields.
EURASIAN SOIL SCIENCE  2024
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The researchers designed a sensing system consisting
of ECa and temperature sensors integrated with a
TTGO T-Beam microcontroller and IoT connectivity.
Experimental results showed that the observed EC
data near the calibration solution conductivities of
12.88 and 150 mS/cm were within 2% of the stated val-
ues. The study found a linear relationship between
ECa and temperature, with ECa increasing as tem-
perature rose. Furthermore, the investigations
revealed that soil ECa was directly linked to nutrient
availability and soil depth. Specifically, the soil ECa at
a 5 cm depth without fertilizer was 1.04375 mS/cm,
while with fertilizer, it was 3.86 mS/cm. At a 10 cm
depth, the EC without fertilizer was 0.65625 mS/cm,
and with fertilizer, it was 4.20 mS/cm, indicating that
EC decreased as soil depth increased but increased
with the presence of fertilizer. Postolache et al. [41]
developed and assessed an information system aimed
at improving soil nutrient monitoring in horticulture
through the integration of IoT technologies and
mobile applications. The system utilized a range of
sensors to measure soil moisture, pH, electrical con-
ductivity, temperature, and the concentrations of
nitrogen, phosphorus, and potassium. Laboratory
tests confirmed the sensors' sensitivity, with precise
measurements starting from 5% soil moisture content.
Field tests were conducted at the Lisbon Botanical
Garden, where sensor nodes were installed near 12 dif-
ferent tree species. Data were collected under varying
conditions, particularly before and after rainfall, to
determine the impact of soil wetness on nutrient lev-
els. The results demonstrated that the system could
effectively detect changes in soil parameters, providing
valuable data for better farm management. Specifi-
cally, the system showed a significant response to soil
moisture variations, which is critical for nutrient avail-
ability to plants. Similarly, Aarthi et al. [1] developed
an IoT based prototype for monitoring soil fertility and
crop growth in backyard gardening. The prototype
system comprised sensors for measuring soil pH, ECa,
temperature, and moisture, integrated with an Ardu-
ino microcontroller. The sensor data were transmitted
to a Raspberry Pi gateway and then to a cloudMQTT
server for storage and analysis (Fig. 5c). The research-
ers tested the prototype in a backyard garden, moni-
toring the growth of spinach from sowing to harvest.
To validate the accuracy of the prototype, they com-
pared the sensor measurements with laboratory analy-
sis results. For soil pH, the sensor measured 6, while
the laboratory result was 6.7, indicating a 0.7% differ-
ence. Similarly, for soil EC, the sensor value was 0.48,
and the laboratory result was 0.64, with a 0.16% differ-
ence. These small variations demonstrated the proto-
type’s efficiency for on-field monitoring in gardening
applications. Additionally, the study tracked soil tem-
perature and humidity variations over 25 days, provid-
ing valuable data for decision-making regarding irriga-
tion and fertilization schedules for the spinach crop.
The state of the open soil surface can significantly
influence the spectral reflectance properties and, con-
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sequently, the accuracy of soil property predictions
using on-the-go sensors and remote sensing data. As
discussed by Prudnikova et al. [42], the open surface of
arable soils is constantly affected by agricultural
machinery and natural factors, such as precipitation,
leading to changes in soil moisture, roughness, and
material composition. These changes can result in dif-
ferences between the surface layer and the arable hori-
zon, affecting the reliability of soil property prediction
models. Therefore, when using on-the-go soil sensors
and remote sensing data for precision agriculture, it is
crucial to consider the state of the open soil surface
during the survey and to develop models that account
for these variations. This can be achieved by incorpo-
rating information on soil surface state, such as mois-
ture content, surface roughness, and the presence of
crop residues, into the prediction models. By doing so,
the accuracy and reproducibility of soil property
assessments can be improved, enabling more effective
precision agriculture practices.

CONCLUSIONS

On-the-go soil sensors have emerged as promising
tools for real-time, high-resolution soil nutrient mon-
itoring in precision agriculture. Optical sensors, such
as Vis-NIR, MIR, and ATR spectroscopy, and elec-
trochemical sensors, including ISEs and ISFETs, have
demonstrated their potential for accurate and rapid
assessment of soil nutrient concentrations directly in
the field. The integration of these sensors with posi-
tioning systems, such as GPS, enables the generation
of detailed soil nutrient maps, which can be used to
guide site-specific management practices and opti-
mize fertilizer application rates. However, several
challenges need to be addressed to ensure the wide-
spread adoption and effectiveness of on-the-go soil
sensors, including the influence of soil heterogeneity,
moisture content, and sampling depth on sensor per-
formance, the need for multi-sensor systems for
simultaneous measurement of multiple soil properties,
and the incorporation of sensors into IoT networks for
smart farming. As research continues to advance in
this field, it is expected that on-the-go soil sensors will
play an increasingly important role in precision agricul-
ture, contributing to improved nutrient use efficiency,
reduced environmental impacts, and enhanced sustain-
ability of agricultural systems.
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