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Abstract—Lanthanides as a separate group of metals geochemically belong to rare earth elements (REEs). For
a long time, they have not received proper attention of researchers, whose interest was focused on other harm-
ful environmental pollutants. However, the importance of REEs for modern technologies along with signifi-
cant gaps in the knowledge about their effects on living organisms has changed the situation. Thanks to the
active interest of researchers, a fairly large body of data on REEs in various areas has been accumulated,
including their chemical and physical properties, their potential in engineering and instrumentation, their
content in various natural objects, effects on human health, and interaction with other living organisms at the
cellular level. This review analyzes and generalizes the new information about REEs as a relevant ecological
factor with a special focus on the sources of REEs, specific features in their behavior in the soil, the effects of
their interaction with plants, their manifestation, and putative mechanisms at the cellular level. The eco-
nomic importance of plants to humans as well as their role for the entire biosphere as primary producers and
their ability to be among the first ecosystem components that respond to negative changes requires focusing
on these issues. The purpose of this review is to emphasize the research aspects that need a deeper insight, in
particular, the soil–plant interaction and the effect of REEs on plant cell division.
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INTRODUCTION
An ever-increasing use of rare earth elements (REEs),

including lanthanides, as components of new materi-
als almost ubiquitously employed in innovative tech-
nologies, determined the need in their comprehensive
studies. The REE production and processing volumes
naturally increase causing, in turn, an increase in the
REE concentration in the environment. Numerous
research papers on various aspects of the REE behav-
ior in natural objects have been published during the
last decades.

The ability of REEs at low doses to increase the
yield of crops has suggested their use as micronutrients
[92]. However, the mechanisms underlying the stimu-
latory effects of REEs are still vague and the estimates
of their eventual benefits considerably differ [61, 73].
Note here that plants are not only the components of
terrestrial ecosystems that are most sensitive to pollu-
tion and the primary players in the food chain, but also
have a tremendous economic value for humans. Thus,
it is evidently necessary to summarize and analyze the
currently available data on the behavior of REEs in the
soil–plant system.

The existing Russian reviews to a greater degree
consider the biochemistry of REEs and their behavior

in soil rather than their effects on plants, especially at
the cellular level [5, 8]. Even recent reviews almost
omit the effect of REEs on cell division [29]. Corre-
spondingly, the goal of this review was to summarize
the research information about this specific group of
elements, lanthanides, as a relevant ecological factor
with the special focus on the following aspects: the
sources of REE entering soil, specific features of their
behavior in soil, effects of REE interaction with
plants, their manifestation, and putative mechanisms
underlying their effects at the cellular level. Analysis of
the available literature will allow us to reveal the rele-
vant challenges for researchers and to identify the
promising research directions. A special focus here is
the description of cytotoxic effects, which is especially
necessary since the most harmful effects of REE
impact, i.e., damage of hereditary material, are pri-
marily diagnosed at the cellular level.

LANTHANIDES AS REPRESENTATIVES 
OF RARE EARTH ELEMENTS

Lanthanoids, or lanthanides, occupy a special
position among the chemical elements used by
humans in various fields of activity. The former name
means “like lanthanum”, which better ref lects the
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Table 1. Mean content of lanthanides in the earth’s crust
and soil according to published data (lower boundary of the
content in the earth’s crust, [127]; upper, [63]; and mean
content in soil, [14])

Element Mean content 
in the earth’s crust, mg/kg

Mean content 
in soil, mg/kg

Light lanthanides
La (lanthanum) 30–35 29.5–40
Ce (cerium) 64–66 29.5–50
Pr (praseodymium) 7.1–9.1 3–7.7
Nd (neodymium) 26–40 27.9–35
Sm (samarium) 4.5–7 4.5–6.1
Eu (europium) 0.8–2.1 1–1.9

Heavy lanthanides
Gd (gadolinium) 3.8–6.1 3–4.7
Tb (terbium) 0.6–1.2 0.63–0.7
Dy (dysprosium) 3.5–4.5 3.8–5
Ho (holmium) 0.8–1.3 0.38–1.1
Er (erbium) 2.3–3.5 2–2.8
Tm (thulium) 0.3–0.5 0.16–0.6
Yb (ytterbium) 2.2–3.1 2.3–3.1
Lu (lutetium) 0.3–0.8 0.3–0.4
essence of the properties of these elements, rather than
the latter one, meaning “following lanthanum” [18].
This family comprises 14 elements: cerium (Ce), pra-
seodymium (Pr), neodymium (Nd), promethium
(Pm), samarium (Sm), europium (Eu), gadolinium
(Gd), terbium (Tb), dysprosium (Dy), holmium (Ho),
erbium (Er), thulium (Tm), ytterbium (Yb), and lute-
tium (Lu) [128]. Together with lanthanum (La), scan-
dium (Sc), and yttrium (Y), they form the group of the
so-called rare earth elements, REEs, or terrae rarae,
TR [39]. Hereinafter, the terms lanthanides and RREs
are used as synonyms.

As is aptly stated in one of the papers on the phar-
macology and toxicology of REEs, “A Pandora’s box
was opened by the discovery of a black mineral speci-
men in Ytterby by Arrhenius in 1789” [65]. Since that
time, the properties of these elements have been stud-
ied by experts in most diverse areas of research. The
name rare earth elements rather refers to the fact that
their pure deposits are rare as compared with other
elements than to their abundance in environment [61].
Initially, the term “rare earths” denoted all poorly
studied natural oxides and was assigned to lanthanides
by the 18th–19th centuries, when the refractory,
almost water-insoluble oxides of these metals were
produced from rare minerals [88].

The lanthanides are traditionally divided into two
groups according to their electron configuration that
determines their interaction with other elements,
namely, light REEs, comprising the elements from La
to Eu, and heavy REEs, from Gd to Lu [61]. The first
group is also referred to as the cerium group and the
second, as the ytterbium one. As is believed, light
REEs are more soluble than heavy REEs; however,
any distinct criterion for distinguishing between the
elements ascribed to these groups is absent [123].
Some researchers separately consider the middle
REEs, comprising the elements with medium mean
atomic weights and ionic radii, for example, from Sm
to Dy [54]; however, the composition of this group is
rather indistinct [130].

THE CONTENT OF LANTHANIDES 
IN THE EARTH’S CRUST, 

THEIR WORLD RESOURCES, AND USE
The average REE content in the earth’s crust is

close to 0.015% and amounts to 189 mg/g (sum of con-
centrations of several elements) [79, 94]. The data on
the content of these elements in published sources
considerably vary (Table 1) approaching the level of
copper (47–55 mg/kg), lead (12.5–16 mg/kg), zinc
(70–83 mg/kg), and tin (2–2.5 mg/kg) [4, 57, 126].
Even the rarest REE, thulium, is more frequently
observed as compared with gold (0.004–0.0043 mg/kg),
platinum (0.005 mg/kg), and iodine (0.4–0.5 mg/kg)
[4, 113, 126]. The most abundant elements of this
group are Ce and La, whereas Pm, which has no stable
isotopes and is almost unobservable in nature, was
found only in small amounts in uranium ore. Note
that lanthanides follow the Oddo–Harkins rule: the
elements with an even atomic number are more abun-
dant than the adjacent elements with an odd atomic
number.

These elements, frequently only several representa-
tives of the group simultaneously, are observed in
manifold accompanying minerals (phosphates, car-
bonates, f luorides, and silicates), prevalently in peg-
matites, granites, and associated metamorphic volca-
nic rocks [130]. Over 250 minerals containing REEs
are known; the most abundant of them are bastn-
aesite, monazite, xenotime, loparite, euxenite, and
parisite [79]. However, only about 25% of these min-
erals are actually rare earths and only bastnaesite and
monazite are of economic importance [25]. The so-
called ion-adsorption clays are an important source
for production of these metals [129].

Although REEs are rather abundant in the earth’s
crust, they rather do not concentrate in the commer-
cially suitable ore fields unlike nonferrous and pre-
cious metals [67]. According to the estimate by the
United States Geological Survey (USGS), the total
reserve of rare earth metals in the world amounts to
88 million tons of their oxides [23]. Their largest
deposits are in China and the total reserve there is esti-
mated as 43 million tons of metal oxides, accounting
for 90% of the global production during the corre-
EURASIAN SOIL SCIENCE  Vol. 54  No. 1  2021
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spondingly period [73]. The clays produced only in
China are the main source of several heavy REEs,
such as Gd and Dy [54].

In addition to China, the bastnaesite deposits in the
alkaline rock in the United States and the monazite
deposits in Australia, Brazil, India, Malaysia, Republic
of South Africa, Sri Lanka, and Thailand are significant
for REE production. In 2008, the world production of
lanthanides amounted to 124000 t [78].

According to the estimates of some experts, Russia
heads the list of forecasted REE resources [21], with
16 deposits accounting for approximately 30 million
tons of REE oxides [25]. The main promising deposits
of the REE-containing ores as well as the refuse
dumps of production fields earlier not used for extract-
ing lanthanides are situated in the Murmansk oblast,
Republic of Sakha, Irkutsk oblast, Republic of Tyva,
Krasnoyarsk region, and Transbaikalia [1, 25].

Currently, the availability of REE resources and
feasibility of their production and importation are the
factors that in many respects determine the develop-
ment of a country. In 2010, the European Commission
included this group of elements in the list of raw mate-
rials critically important for new technologies in dif-
ferent branches of production [43]. The significance
of rare earth metals places them among the other most
important natural resources, such as water, oil, and
iron ore [30]. REEs are irreplaceable in the economy
sectors, such as clean energy, military industry, medi-
cine, and agronomy [61, 86]. Currently, REEs are
actual “vitamins of industry”; their addition consider-
ably improves the quality of production of, for exam-
ple, ceramic capacitors, used in electronic circuits as
well as powerful magnets and alloys, used in aviation
[15, 30, 46, 58]. Lanthanides are widely employed in
the manufacture of luminescent materials; design of
anticarcinogenic, antiinflammatory, and antiviral
drugs, as well as nuclear radiation detectors as con-
trasting agents [48, 50, 80, 85, 93, 139]. The attempts
are made to use lanthanides as tags for studying the
migration of other elements, which is applicable to
sanitary and hygienic standardization [2].

One of the hurdles associated with REE production
and processing is the need in additional control of radi-
ation safety because of frequently present admixtures of
radioactive elements in REE minerals [99]. In addition,
lanthanides also have radioactive isotopes [20].

An insufficient amount of this most valuable
resource forces some countries to search for alternative
sources of REEs and to construct plants for recycling
electronic devices [99]. Additionally, phytomining,
phytoextraction, and agromining techniques are
developed, allowing for the extracting heavy metals
from the soil of polluted areas by hyperaccumulator
plant and their subsequent restoration from the bio-
mass [94, 114].
EURASIAN SOIL SCIENCE  Vol. 54  No. 1  2021
PROPERTIES OF LANTHANIDES 
AS A SPECIFIC GROUP OF ELEMENTS

An important role of REEs in the development of
world economy is determined by their chemical and
physical properties, similar for all elements of this group
[10]. Most lanthanides are trivalent metals with close
ionic radii [39]. REEs are soft plastic chemically active
metals. In the presence of air, their silver-white surface
acquires chestnut and dark-brown color with formation
of oxides [113]. All elements of the group react with
water to evolve hydrogen and form insoluble oxides and
hydroxides. At higher temperatures, the reactions with
C, N2, Si, P, S, halogens, and other nonmetals go rather
rapidly. The density and melting temperature increase
with the atomic weight except for europium and
yttrium. Many REEs burn when heated to give oxides.
Lanthanides are paramagnetic except for Y3+, La3+,
Lu3+, and Ce3+, which are diamagnetic [113].

The REE compounds have high electric conduc-
tance and low solubility, readily precipitate, and bind
to complexing ions, such as hydroxides, carbonates,
f luorides, phosphates, and organic ligands [30, 143].

Individual elements of this group have their specific
features although their properties are very similar. Lan-
thanides as the representatives of 4f elements differ only
in the number of electrons at this sublevel, which is
gradually filled in the series of elements and change
their properties. In particular, the atomic and ionic radii
gradually decrease (the so-called lanthanide contrac-
tion), which leads to an increase in the stability con-
stants of coordination compounds and hydrolysis con-
stants as well as to a decrease in the initial pH of precip-
itation of lanthanide hydroxides [84]. These regular
changes in the properties most likely determine the dif-
ferences in the biological effects of lanthanides [153].

In addition, Ce and Eu display variable valence in
natural environment [8]. Ce, Pr, and Tb have 4+ oxi-
dation state, while Sm, Eu, and Yb, 2+ oxidation
state [84]. The periodic alteration of lanthanide
properties determined by formation of coordination
compounds in aqueous medium, or the so-called tet-
rad effect, was also observed [6]. Owing to this effect,
a smooth plot of the chondrite-normalized REE con-
tent breaks into four parts [6].

Undoubtedly, the current active use of REEs
increases their concentration in the environment. This
problem has been noted by several researchers, who
explain the manifestation of toxic effects on biota and
humans with lanthanide pollution [41, 86]. However,
it is difficult to definitely state whether the REE con-
centration actually increases in the areas not associ-
ated with their production and application since the
data on the REE content in the soils there in earlier
period are sparse. In particular, analysis of the lichens
from herbaria in Italy harvested starting from the
1980s failed to find any significant changes in the con-
centrations of lanthanides [101].
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Fig. 1. Main sources of the lanthanides entering soil. 
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Presumably, lanthanides are not as toxic as other
heavy metals and metalloids, such as Cd or As, but may
be chronically toxic to humans and cause long-term
adverse effects. In particular, a long exposure to high
REE doses correlates with a decrease in the IQ in chil-
dren, disturbances of blood circulation and immune sys-
tems, decrease in the human nerve conduction velocity,
and increase in atherosclerosis prevalence [140, 151,
156, 157]. This suggests the need in development of stan-
dards for REE content in environment and foodstuff.
The corresponding standards are currently absent
although several researchers attempt to provide the rele-
vant scientific criteria and solutions [70, 82, 123].

The similarity of chemical properties of lanthanides
was regarded as the sufficient reason to forecast the tox-
icity of the entire REE series; however, several studies
demonstrate a decrease in toxicity with an increase in
the atomic number, which is explainable by higher sta-
bility constants of heavy lanthanides [61]. In the
absence of complexing ligands, the toxicity of lantha-
nides increases with the atomic weight. A higher toxicity
of Ce to plants as compared with La is shown, which is
explainable with a higher Ce charge density, allowing
for its easier adsorption [59]. Note that the toxicity to
the amphipods Hyalella azteca decreases from La to Er
but grows from Tm to Lu [36]. Thus, the differences in
toxicity of individual REEs require a deeper insight into
their individual properties and specific features of the
interaction with plants of each lanthanide.

ROUTES OF ENTRY AND CONTENT 
OF LANTHANIDES IN SOILS

Bedrocks are the main source of REEs in soils; the
REE content in the bedrock decreases in the following
order: granite > Quaternary deposits > basalt > purple
sandstone > red sandstone (figure) [76, 98]. Note that
the content of light lanthanides in the soil-forming
rocks is always higher as compared with heavy lantha-
nides. The ratio of light to heavy lanthanides is specific
of different rocks and is mainly inherited by the soil [77].
According to Bohn et al. [34], the REE content in soil
varies from 30 to 700 mg/kg. The content of REEs in the
upper soil layer, where they can be assimilated by plants
and can actively interact with the other biota, consider-
ably varies and reaches 100–200 mg/kg [92, 105].

This content can increase to 1000 mg/kg as a result
of human activities [91]. In particular, the mean REE
content in China soils is 177 mg/kg and reaches
243 mg/kg in agricultural soils. Owing to their high
mobility, these metals are readily dispersed from the
tailing dumps of REE production by air and water
flows. As a result, the total REE concentration in
neighboring soils reaches 870–1100 mg/kg [94]. The La
and Ce concentrations in the soil near a Baotou tailing
reservoir (China) leap to 11000 and 23600 mg/kg,
respectively, which is several hundredfold higher as
compared with the mean concentrations for this
region (Inner Mongolia) [64].

The most important anthropogenic source of
REEs entering the soil is associated with the manufac-
ture and use of organic and mineral (especially phos-
phate) fertilizers [9, 35, 74, 104, 116, 133]. The con-
centration of lanthanides in apatites considerably var-
ies reaching over 1600 mg/kg [111]. Up to 50–60% of
the lanthanides contained in the raw material passes
into superphosphate during its production; high con-
centrations of Ce, La, and Nd are observed in the final
product. In addition, limestone contains REEs as
EURASIAN SOIL SCIENCE  Vol. 54  No. 1  2021
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impurities. Correspondingly, a long-term use of phos-
phate fertilizers can pretty well elevate the concentra-
tion of lanthanides in soil and plants [27, 62].

During the last decades, some Asian countries
commenced applying lanthanides as microfertilizers,
thereby creating a new route of entry of these elements
to soil and adjacent media [92]. In China, the REE-
fertilized area has reached 4 million hectares, resulting
in annual entry of 50 to 100 million tons (calculated for
oxides) of REEs to agroecosystems [92]. The use of
REE-fertilizers spread to Korea, Japan, Australia,
Switzerland, and Philippines [45]. The Research Cen-
ter for Agriculture Application of Rare Earth Elements
in China recommends a dose of 0.7 to 3.6 kg/ha of
REE fertilizers. However, a wide use of REEs as a fer-
tilizer concurrently with the traditional melioration
techniques may have negative ecological conse-
quences. For example, the concurrent use of REE fer-
tilizers and urea causes an increase in the N2O emis-

sion from the soil [138].

REE additives are also used in livestock breeding.
This may also lead to the REE entry to soil with
manure, used as an organic fertilizer [113]. The other
anthropogenic sources comprise aerial pollution of soils
during REE mining and metal production [76, 84, 91].

Remediation of the REE-polluted aquatic and soil
ecosystems currently is a serious ecological challenge
in several regions. Since the 1990s, REEs are regarded
as one of the major pollutants in China [94]. After sev-
eral decades of wide use of REE fertilizers, they are
prohibited in China [60].

Several publications report the data that can form
the basis for the standards of lanthanide content,
which are now extremely necessary. In particular, a
concentration of 30 mg/kg soil is permissible for lan-
thanum according to Kozhevnikova [17].

The data on the content of lanthanides in soils of
Russia are sparse and mainly refer to the areas with
high lanthanide concentrations, technogenic and nat-
ural anomalies [7, 84]. The recent advent of induc-
tively coupled plasma atomic emission spectrometry,
allowing for sufficiently easy determination of REE
concentrations with a high accuracy, induced the
studies on their content and distribution in soils of dif-
ferent types [3, 16, 17, 24, 84] (Table 2). However,
accumulation of these data and their generalization
are still relevant.

BEHAVIOR OF LANTHANIDES IN SOIL

Numerous factors influence the concentration and
mobility of REEs in soil, such as soil genesis and
weathering, adsorption/desorption processes, soil
physical and chemical properties including pH, and
the content of organic matter and clay minerals [76,
116, 130, 142, 150].

Most likely, the lanthanides redistribute between
the soil components owing to complexing, adsorption,
EURASIAN SOIL SCIENCE  Vol. 54  No. 1  2021
and ion exchange processes. Note that the main soil
sorbents (iron and manganese oxides or hydroxides
and clay minerals) take up lanthanides in different
manners depending on the specific chemical features
of elements as well as the content and composition of
soil organic matter [53, 84]. Recent studies suggest a
high degree of REE binding in soil by metal–organic
complexes [53]. This may determine a high bioavail-
ability of lanthanides to plants via decomposition of
humate and fulvate compounds by rhizospheric
microorganisms.

A larger part of the REEs entering the soil with fer-
tilizers appears to be bound to ferromanganic oxides,
organic matter, and sulfides. Note that part of them
still remains water-soluble, exchangeable, and car-
bonate-bound, regarded as available to plants. The
chemical species formed in situ by exogenous REEs
that entered soil depend also on the physicochemical
soil characteristics [141].

In general, the lanthanides that entered the soil via
anthropogenic activity (exogenous lanthanides) are
usually represented by more soluble and reactive com-
pounds as compared with the metals of a natural ori-
gin, and, correspondingly, are more bioavailable.
Their entry may interfere with the balance of REE
biogeochemical cycles in environment and have a neg-
ative effect on the integrity of soil system [113].

Various areas differ in the REE content in the soil;
the REE content in plant products is usually rather
low but display specific features characteristic of indi-
vidual areas. Several currently proposed methods are
able to trace the origin of different food products, for
example, wine, pumpkin seed oil, and tea, according
to their REE fingerprints [28, 77, 154].

Initially, the methods designed to assess the toxic-
ity of the aquatic media and soils containing heavy
metals took into account only the total concentration
of elements in the assayed medium. However, the
activity of free metal ions is regarded as a more reliable
predictor of toxicity as compared with the total con-
centration of a metal since the physicochemical char-
acteristics, such as the presence of organic and inor-
ganic ligands, influence the deportment and behavior
of metals in aquatic medium and soil [40].

One of the state-of-the-art tools for assessing the
effects of mobile and bioavailable metal compounds
on their toxicity is the biotic ligand model (BLM) the-
ory [60]. The BLM takes into account two aspects,
namely, chemical speciation of metals and competi-
tion of cations. The concept that the degree of toxicity
of a metal in a studied medium is determined by the
share of the metal ions bound to biologically active
centers, or biotic ligands, forms the background for
this model. As is assumed, the toxic cations competing
with the ions of other metals appear to be bound to
biological ligands, which weakens their toxicity in the
studied medium. Several studies have demonstrated
that this theory is applicable to bivalent metals [60].
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However, the data favoring the applicability of BLM to
trivalent metals (and REEs are mainly trivalent) are
yet insufficient and the corresponding studies are in
progress.

Thus, the chemical forms of exogenous lantha-
nides in soil are still a relevant problem as well as the
soil ligands as factors of their sorption/desorption.
The distribution of all REEs according to the types of
compounds they form in soil matrix will quantitatively
determine their bioavailability and biological activity
towards higher plants.

ROUTES OF ENTRY, ACCUMULATION,
AND CONTENT OF LANTHANIDES 

IN PLANTS

Plants can sorb REEs through the surface of their
leaves when sprayed; however, the main route of their
entry is through roots [125]. Lanthanides are absorbed
to the xylem though thin cell walls of the root hairs and
are then transported to other parts of the plant [114].
The ability of plants to assimilate lanthanides from
solutions and soil has been studied in several species.
The review by Brown at al. [37] suggests that soil che-
lates and applied fertilizers influence the sorption of
REEs; in this process, potassium and nitrogen fertiliz-
ers increase the sorption and phosphate fertilizers
decrease it. In the soil–root system, low molecular
weight organic acids, being important components of
root exudates (for example, citric and malic acids),
can increase desorption of light lanthanides as well as
their uptake by plants from the soil [118]. This is asso-
ciated with chelating and\or complexing properties of
acids, which can influence the solubility of metal
compounds in soil.

The Casparian strips on roots, which limit the
uptake of lanthanides to the other part of the organ-
ism, are among the main factors associated with mor-
phology. This mechanism that minimizes the entry of
metals to the upper plant parts, housing important
growth and development processes, such as photosyn-
thesis, is regarded as a tool decreasing the toxic impact
[114]. Thus, the content of lanthanides is typically
increased in the roots and decreases in the row roots >
leaves > stems > seeds/fruits [38, 141, 145]. Note that
distribution pattern of lanthanides may depend on
particular plant species. In particular, the distribution
in corn (Zea mays L.) is more contrasting as compared
with rice (Oryza sativa L.) [89]. The plant seeds have a
semipermeable layer differing in its location depend-
ing on the plant species. This layer limits the entry of
some substances to the embryo, as is demonstrated for
lanthanum in the switchgrass (Panicum virgatum L.)
seeds [68]. The researchers explain the absence of the
effect of lanthanum on seed germination by the pres-
ence of this layer, which prevents its negative impact
on the embryo.
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A comparison of the accumulation factors in the
soil–plant (ferns) system shows that the REEs in a
water-soluble form are easier transported from the
upper soil horizon to the roots and from the leaf stalk
to blade than from the stem to the stalk [155]. Presum-
ably, the mechanisms underlying the lanthanide
assimilation in ferns differ from those in other species.
In particular, the REE concentration in fern tissues
decrease in the row leaves > stems > roots.

The content of individual lanthanides (except for
cerium) in the plant roots is similar to the content of
the REE soluble species in the upper horizon of the
soils where these plants grow. The lanthanides in soil
are typically in a trivalent state except for Eu and Ce.
The latter, being in a tetravalent state, is more likely to
precipitate via hydrolytic reactions, which interferes
with its accumulation in plants [94].

Most studies of the REE accumulation by plants
involved the objects simultaneously containing several
elements, i.e., artificial mixtures with certain concen-
trations of lanthanides, or soil samples containing the
elements at natural concentrations and ratios. The
studies of this kind do not allow the individual specific
features of REE accumulation by plants to be revealed
[61]. Thus, comprehensive model experiments are
necessary to study the sorption of individual lantha-
nides and their mixtures by plants aiming to clarify
their putative competition as well as predictable accu-
mulation mechanisms and patterns if possible.

Noteworthy is the ability of REEs to accumulate
although in small amounts in the edible plant parts
after applying REE fertilizers. This requires additional
studies aiming to reveal the putative toxic effects [141].
In general, the studies of REE toxicity and chronic
biological effects demonstrate that the acceptable
daily intake for humans is 0.1–1.2 mg/kg (oxides).
According to the assessment of REE consumption with
foodstuff in China, the daily intake with cereals, vegeta-
bles, and other products may reach 1.75–2.25 mg,
which does not exceed the level recommended for this
country [125].

The REE content in plants considerably varies,
which may be in part determined by their specific fea-
tures [141]. In particular, the range of La concentra-
tion in plants reaching five orders of magnitude is
observed in Japan [81], which the authors explain not
only by different concentrations in soils, but also by
particular differences between plant species. Some
ferns growing in the sites with a high REE content
accumulate to 3000 mg/kg lanthanum and may be
regarded as accumulators of this element, whereas the
concentration in spruce needles is as low as 10 ng/g
[136, 144]. The wheat Triticum durum Desf. displays
the highest accumulation ability among crops and the
hickory Carya tomentosa Lam., among trees [13].

Different plant species growing in the same site
take in different REEs at unstable ratios [49, 137]. In
addition to species specificity, individual accumula-
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tion specificity is observed since individuals of the same
species display the corresponding differences [146].
The differences in REE accumulation between species
and individuals are in part explainable with the pH in
the rhizosphere, which depends on the plant species
and growth stage and determines the availability of the
metals contained in soil [114].

THE EFFECT OF LANTHANIDES ON PLANTS

The most important property of REEs, especially
of light lanthanides, that determine the effect on the
biota is their ionic radii, which are close to that of cal-

cium. The ionic radius of calcium is 9.9 × 10–2 nm,

and varies from 8.5 × 10–2 to 1.15 × 10–1 nm for the tri-
valent lanthanide ions [37]. This allows REE ions to
competitively react and actually replace calcium in
many biochemical processes taking place in living
organisms, which, in turn, leads to inhibition of
enzymes, destabilization of the cell membrane, and so
on [37, 71].

Note that a strong binding of trivalent ions with the
negatively changed ligands of the plant cell wall inter-
feres with an experimental study of their intercellular
transport and the routes they use to enter metabolism;
correspondingly, the relevant literature fails to give the
precise answer on which mechanism allows REEs to
enter the cell [118].

Presumably, the capability of penetration strongly
depends on environmental conditions, which can
change the speciation of elements and influence their
mobility [37]. In particular, trivalent La within weakly
dissociating compounds in a colloidal solution fails to

penetrate the plant cell membrane, whereas La3+ ion
passes through it [55].

Lanthanides are detectable in different parts of the
intracellular space putatively simulating the behavior
of chemical analogs. Entering the root cells through
the membrane and intracellular calcium channels,

La3+ can be involved in the signal transduction net-
works via calmodulin, a calcium-binding protein [95].
In the cells of the root meristem, lanthanum starts to
interact with the components of the nucleus [115, 132].
The ability to penetrate through calcium channels is
characteristic not only of lanthanum. Gadolinium is
detectable in the cells of the roots exposed to this
metal [8]. Deposits of light lanthanides taken up from
soil are observable in the cell wall, intercellular space,
plasmalemma, vesicles, and vacuoles of the root epi-
dermal cells of the fern, a hyperaccumulator of lantha-
nides; however, they were undetectable in the Caspar-
ian strips on the adventitious roots [118]. As for
cerium, it appeared not only to penetrate into the cell,
but also to accumulate in the nucleus [73].

Several studies oppositely estimate the penetrating
ability of REEs. In particular, it is demonstrated that
lanthanum, similar to neodymium, is unable to enter
the cytoplasm and can accumulate only on the outer
membrane surface [73]. Several studies report an
increase in the resistance of cell membranes along
with the inability of lanthanides to penetrate into the
cell [12]. Presumably, the REE capability of penetra-
tion considerably depends on the plant species-spe-
cific features.

Having entered the cell, REEs can bind to macro-
molecules (nucleic acids, proteins, and polysaccha-
rides) to form complexes with biotic ligands [136].

For a long time, REEs were regarded as elements
neither necessary for plant growth and development,
nor toxic in any way. Starting from the second half of
the last century, part of the studies on the effect of
these metals on plants suggested that they can be used
as fertilizers. Note that the REE-fertilizers are recom-
mended for seed or foliar application since the lantha-
nides applied to soil become poorly available to plants
and fail to give the required effect, while an increase in
their dose has a negative result [8].

The effects of small REE doses, which are regarded
as positive have been repeatedly demonstrated,
including a rapid La-induced growth of oat (Avena
sativa L.) coleoptiles, favorable effects of La and Ce on
the growth and development of wheat (T. durum
Desf.), and an increase in the length of Arabidopsis
thaliana roots after addition of these elements to nutri-
ent medium [66, 69, 100]. Other positive effects have
been also observed, in particular, stabilization of the
membrane, a decrease in the water loss by plants, an
increase in the efficacy of hormones and nitrogen fix-
ation, and a decrease in accumulation of toxic ele-
ments, such as cadmium [141, 149]. The ability of lan-
thanides to decrease the injuries caused by ultraviolet
radiation and to increase the contents of sugars and
vitamin C has been also observed [45]. An increase in
the length of rice (O. sativa L.) roots caused by low
doses of lanthanum is also demonstrated [96].

The experience of applying REE microfertilizers
demonstrates an up to 10% increase in the crop yield
[72]. However, the biochemical mechanism of the
increase in crop productivity as well as the long-term
consequences of this impact on the components of
environment and human health after consuming such
products is still vague. Another still disputable issue is
whether the effects, such as an increased root and
shoot growth, can be regarded as positive. The plant
responses of this kind may indicate a stress and
impairment of biochemical reactions in the organism,
for example, of hormonal regulation. Summing up of
the available data suggests that the low concentrations
of lanthanides induce a hormetic effect. In particular,
this is demonstrated when exposing the common sun-
flower (Helianthus annuus L.) and bok choy cabbage
(Brassica chinensis L.) to lanthanum and neodymium:
a hormetic effect on the root and shoot masses
appeared at low doses of these elements, whereas both
elements were toxic at high doses [114].
EURASIAN SOIL SCIENCE  Vol. 54  No. 1  2021
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Many researchers also report opposite results sug-
gesting a negative effect of REEs, namely, a decrease
in the plant growth, development, and yield, via inter-
fering with some physiological, biochemical, and
molecular processes [121]. In particular, a decrease in
the growth rate of maize (Z. mays L.), mung bean
(Vigna radiata L.), barley (Hordeum vulgare L.), and
wheat roots has been observed [47, 75, 106, 132]. La,
Nd, and Pr inhibit the growth of oat (A. sativa L.) cole-
optiles [107]. A negative effect on the growth charac-
teristics and a decrease in the parameters of photosyn-
thesis of tomato (Solanum lycopersicum L.) seedlings
are explained by the ability of lanthanum to boost the
formation of reactive oxygen species (ROS), thereby
stimulating lipid peroxidation [121].

REEs can influence the physiological activity of
plants. In particular, the chlorophyll with lanthanum
and cerium instead of magnesium was observed in
ferns; this chlorophyll variant is able to partially or
completely replace normal chlorophyll in the corre-
spondingly reactions. As is assumed, this has a favor-
able effect on the activity of photosynthesis [94]. It is
shown that the corresponding REE concentrations
can increase the rate of photosynthesis in the peanut
(Arachis hypogaea L.) plants [51]. The REE-assisted
increase in plant photosynthetic activity is explainable
with an increase in the enzyme activity, development
of chloroplasts, and growth in the chlorophyll concen-
tration in plants.

Different mechanisms underlying the interaction
of lanthanides with plants determine the changes in
the plant elemental composition. REEs can regulate
plant growth by altering the uptake of mineral nutri-
ents [73]. Close solubility values of iron and lantha-
num phosphates determine the competition of ions
and the effect of lanthanum on the content of iron and
phosphorus in plant tissues [37, 131]. The replacement
of calcium with a REE, which is determined by close
ionic radii, may lead to the deficiency in this necessary
element [76]. The stimulation of K, Ca, and Mn
uptake induced with small doses of La (6.9 and
13.9 mg/kg) was observed for rice (O. sativa L.). How-
ever, an increase in the La dose to 69.4 and 138.9 mg/kg
reduced the accumulation of these nutrients [96].
A decrease in the Fe and Cu contents in the roots and
shoots of the soybean (Glycine max (L.) Merrill) and
Zn content in its shoots, associated with a decrease in
photosynthetic activity and biomass, was observed
starting from the La concentration in solution of
2.8 mg/L [45]. The authors also report an increase in
the concentrations of Mg and P in plants, which pre-
sumably explains the preservation of the chlorophyll
content with an increase in the dose of La since Mg is
a structural component of the photosynthetic pigment
and P is necessary for production of ATP (adenosine
triphosphate), the source of energy for the metabolic
processes, including biosynthesis of chlorophyll.
REEs increase the rate of nitrogen transition from an
inorganic to organic form, which has a positive effect
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on the protein synthesis and regulation of nutrient bal-
ance [104].

Numerous studies assess the effect of lanthanides
on different plant species. The main object of these
studies is a solution–plant system, when plants are
grown using solutions of REE salts or nutrient media.
The studies utilizing artificial mixtures or directly soils
are considerably fewer. In the experiments with La-
and Nd-containing nutrient media, the 50% inhibi-
tory concentration (IC50) for the roots of the bok choy
cabbage (B. chinensis L.) and sunflower (H. annuus L.)
roots was assessed as 139 and 188 mg/kg for La and 222
and 258 mg/kg for Nd, respectively [114]. The authors
compare these data to the REE concentrations in the
soils of Australia, Germany, and Japan, amounting to
105, 305, and 98 mg/kg, respectively. Thus, the con-
centrations in soil are comparable to the observed
range of inhibitory concentrations for the tested spe-
cies. However, the metals in soil solution can be in
other chemical forms, which will alter the response of
the test objects.

When testing soils, most of the positive effects are
observed at the applied REE doses in available forms
below 10 mg/kg [49]. However, REEs in these studies
are used as nitrates, which interfere with assessing the
particular effect of lanthanides since nitrates also have
a positive effect on the plant growth [61].

Thus, the data on the REE effects on plants con-
tain many contradictions. Some contradictions are
mainly determined by the difference in the REE con-
centrations used for testing as well as by individual
responses of test objects and differences in the effects
manifested at different developmental stages. It is clear
that the revealing of the threshold between the poten-
tial positive effects of REE low doses, their hormesis
effect, and negative impact of increased concentra-
tions remains a relevant challenge. Note that it is nec-
essary to control the changes taking place in the
organisms at the cellular and biochemical levels since
the reactions at macrolevel can be delayed as com-
pared with the changes at microlevel, or can result
from the negative effects unnoticeable without appli-
cation of the corresponding methods.

THE EFFECT OF LANTHANIDES 
ON PLANT CELL DIVISION

A few studies on the REE activity towards plant cell
division and the existing contradictions in the corre-
sponding data prevent from any unambiguous infer-
ences on the effects of lanthanides on these processes.
The first attempts to estimate the effects of various
metals on cell division using an Allium test demon-
strated the ability of La and Ce to decrease the cell
proliferation and cause aberrations [42, 87]. Wang
et al. [134, 135] described the lanthanum-induced
DNA lesions in Vicia faba L. seedlings, which together
with the unbalance of nutrient elements in plants were
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likely reasons of the root growth retardation. A study of
the effect of praseodymium and neodymium on bean
seedlings demonstrates a clastogenic effect (formation
of chromosome breaks), leading to serious distur-
bances of the cell cycle, including induction of micro-
nuclei [76]. A considerable increase in the number of
micronuclei was later observed in the maize roots
exposed to REE nitrates [75]. A statistically significant
mitotoxic effect (a decrease in the cell division activ-
ity) was observed in three plant species physiologically
distinct from one another: wheat (T. durum Desf.),
garlic (Allium sativum L.), and pea (Pisum sativum L.)
[12, 44, 148]. In addition, the inhibition of cell growth
resulting from spindle misorientation after exposure to
REEs was observed in experiments with animals [37].

Note that a stimulatory effect of REEs is observable
in a narrow range of low concentrations. The stimula-
tory effect of low lanthanide concentrations on the
root growth, presumably associated with cell division
activity, was repeatedly described [52, 90, 124, 134,
147]. This may be determined by a hormetic effect,
observed at low concentrations of lanthanides [102].
In particular, addition of low lanthanum concentra-
tions (2.8–22.2 mg/L) to nutrient solutions activates
the proliferation of soybean (G. max L.) root tip cells,
which is most likely a hormetic effect [45]. Concur-
rently, the authors report an increase in the proportion
of the cells with mitotic abnormalities. An increase in
the number of dividing cells was observed in V. faba at
a holmium concentration in solution of <4 mg/L;
however, an increase in the concentration induced
cytotoxic and genotoxic effects (an increse in the
number of cells with chromosome aberrations) [109].
The further increase in REE concentration in solution
decreased the rate of cell division. Note here that a
growth in plant weight shown in several studies is
explainable with formation of polyploid cells [112].

Acting as a Ca2+ channel blocker, La controls the
ROS level in plant cells. Note that part of researchers
explain a negative effect of lanthanides on the cell by
their ability to increase ROS generation. The excess
ROS production caused by an abiotic stress induces
lipid peroxidation and damage of macromolecules (for
example, DNA) leading even to cell death [32]. This is
confirmed by Siddiqui et al. [121], who report an over-
production of ROS as well as an increase in the
malondialdehyde accumulation and the activity of an
H2O2-producing enzyme, glucose oxidase (GOx), in

the cells of tomato (S. lycopersicum L.) seedlings
effected by lanthanum. Since malondialdehyde is the
final product of plasma peroxidation, it is regarded as
a marker of the lipid peroxidation induced by the stress
impact of heavy metals [148]. Note that the excess of
generated ROS is able to directly influence the chro-
mosome structure and the function of cell mitotic
apparatus, testable by an increase in the rate of mitotic
abnormalities and chromosome aberrations. This cor-
relation has been proved for the factors of a radiation
nature when analyzing the mechanism of indirect
effect of radiation and the specific features in the
effect of low ionizing radiation on cells [19].

The manifestation of cytotoxic effects during mito-
sis is explained by the changes at the early stages of the
cell cycle, taking place in the interphase before the
beginning of mitosis. For example, this can be associ-
ated with the inhibition of DNA synthesis in S phase

of cell cycle or its disturbance in G2 phase [119]. La3+

was shown to arrest the cell cycle progression at G1/S
and S/G2 of interphase (cell cycle checkpoints),
which can be a mechanism underlying the inhibition
of root growth [134, 135].

Entering the cell, lanthanum can alter the structure
of microtubules [97]. At a high concentration, this can
arrest the growth of root cells and, on the contrary, can
stabilize cytoskeleton at low concentrations.

Numerous studies report a dose-dependent
decrease in the plant root growth caused by various
stress factors; however, the mechanism of this phe-
nomenon remains vague. It is well established that a
steady growth of roots is regulated by a combination of
the cell division activity in the meristematic zone and
subsequent cell elongation in the growth zone [120].
The available research data suggest that the toxicity of
lanthanides for plant roots is mainly determined by the
disturbed cell proliferation since the root growth activ-
ity usually decreases in parallel with the mitotic activ-
ity in apical meristem. As a rule, the decrease in
mitotic index correlates with an increase in the num-
ber of cells carrying various mitotic abnormalities, i.e.,
the cell cycle abnormalities particularly lead to a
decrease in proliferative activity [44, 108]. An analo-
gous correlation was observed when studying the effect
of cerium solution on the root tip cells of garlic
(A. sativum L.) [148]. The researchers who have shown
the ability of lanthanum to enter the root meristematic
cells and interact with the nuclear components also
explain the arrest of root growth with the inhibition of
cell division rather than of cell extension [132]. A sim-
ilar correlation between the macro and micro charac-
teristics of toxicity (changes in the root growth activity,
mitotic activity, and the number of cells with mitotic
abnormalities) is usually observable in the soils pol-
luted with heavy metals [116]. Note that such regular
correlations between the root growth and mitotic
activity may be characteristic only of a short exposure
time. In particular, the absence of correlation between
the mitotic activity of the apical meristem of V. faba L.

seedlings exposed to La3+ for 15 days and the root
length was demonstrated [134].

Anyhow, the mechanism underlying the effect of
lanthanides on cell structures and mitotic cycle
remains vague. In particular, along with a negative
effect of REEs on mitotic activity and the share of cells
with various abnormalities, lanthanum at a low con-
centration (1.4 mg/L) displays the ability to prevent
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the salt stress–induced programmed cell death in the
rice root tips [90].

The inconsistency of the available data on the
effect of REEs on the mitotic apparatus of cell is also
explainable with a species-specific response of test
objects. The effects of this kind have been earlier
observed using other tested substances, for example,
wastes of aluminum industry, when a plant species
(Allium cepa L.) responds to the impact by an
increased cell division activity, whereas an opposite
response is observed for another species (Lactuca
sativa L.) [122]. This demonstrates the need to employ
different test systems so that their wide range would be
able to the fullest extent reflect the effect of tested sub-
stance on organisms.

A study conducted in the Orenburg oblast (Russia)
demonstrates a direct correlation between the fre-
quencies of chromosome aberrations assessed using an
Allium test and the REE load factor for water bodies
and water f lows [26]. However, these results fail to
prove that the REE content is the particular factor that
determines the mutagenicity of the tested bottom sed-
iments since they could well be contaminated with
other toxicants omitted in that study.

The earlier mentioned manifestations of the oxida-
tive stress caused by the impact of lanthanides on cells
(including an increase in the ROS content, lipid perox-
idation, and decrease or increase in catalase, superoxide
dismutase, and other enzyme activities) can be involved
in the processes leading to cytogenetic effects [102]. Xu

et al. [148] believe that Ce4+ at a high concentration
damages the spindle and thus causes chromosome
sticking, fragmentation, bridges, and lagging in the
A. sativum root tips, observed when testing cerium
solutions [148]. The chromosome sticking in mitosis is
usually explained by the effect on histones (nuclear
proteins) and tangling of chromatin fibers [31, 83].
This can further lead to other chromosome abnormal-
ities, such as irregular chromosome segregation, chro-
mosome bridges, fragmentation, star-like chromo-
some structures, and eventual cell death. An abnormal
(disintegrated) metaphase usually results from the
negative alterations of the spindle apparatus [110].

An increase in the number of cells with a C-meta-
phase in the soybean roots was observed after testing the
La solution with a low concentration (2.8 mg/L) [45].
During the so-called C-mitosis, the cell division is
arrested in metaphase as a result of spindle inactiva-
tion (presumably, because of tubulin acetylation),
which is characteristic of the effect of colchicine or an
analogous mitotic poison. C-mitosis is accompanied
by disassembly of microtubules of the mitotic appara-
tus, delayed kinetochore segregation, and overcon-
tracted chromosomes [83]. Depending on the degree
of the damage to the mitotic apparatus in C-mitosis,
the following events are observable: chromosome scat-
tering, sticking, ball-like metaphase, and metaphase
with two groups of chromosomes (pseudo-anaphase).
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During the C-metaphase, chromosomes become
shorter and more condensed as compared with a nor-
mal mitosis. The impaired spindle formation delays
the cell division in metaphase (to 4–5 days) [33]. The
outcome of a C-mitosis differs depending on the
degree of damage of the cellular structures, namely,
cell death, formation of a single polyploid nucleus
(i.e., chromosomes are divided into daughter chroma-
tids but remain in the same nucleus), or several micro-
nuclei with different numbers of chromosomes; how-
ever, restoration of the mitotic apparatus and a normal
outcome are also possible.

CONCLUSIONS

During the last decades, lanthanides have gained
great importance in human economic activity. An
increase in their concentration in environment is inev-
itable and, thus, requires the effects of REEs on eco-
systems and their components to be assessed and their
permissible concentrations in soil and agricultural
products and the doses of consumption to be deter-
mined. Presumably, the main challenge is to find the
boundary between the low REE concentrations,
which potentially have positive hormetic effects (or
which are at least safe), and the higher concentrations,
potentially causing negative toxic effects. Note that the
threshold concentration of the effect positive in terms
of agricultural plants must not have any genotoxic
effect at the cellular level.

All studies of the REE genotoxicity considered in
the last section of the review used solutions containing
lanthanides at different concentrations. However, it is
necessary to take into account that soils have a buffer
capacity and are able to alter the toxicity of applied
substances [56]. The practice of standardization of the
heavy metals and several other pollutants in soil
demonstrates that their total content cannot be the
only characteristic allowing their behavior and effect
on living organisms to be estimated. The bioavailabil-
ity of pollution components must be taken into
account as well as their dynamics in soil [103]. Some
researchers assert that the direct toxicity of soils,
which can influence the substances that entered there,
can be higher or lower than the toxicity of the corre-
sponding soil extracts. Frequently, these extracts fail to
reflect the actual degree of soil toxicity under natural
conditions [22]. The dependence of bioavailability on
chemical and physical soil properties has been demon-
strated for many elements, lanthanides included [92,
152]. Thus, further studies must include testing of sev-
eral soil types differing in the consequences of REE
application. The chemical forms of lanthanides in soils
and types of their binding by the soil components
sorbing/desorbing REEs are insufficiently studied and
require closer attention. It has been shown that the
composition and properties of the host medium con-
siderably influence the mobility, bioavailability, and
toxicity of lanthanides. Note that the REEs signifi-
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cantly differ in the dependence of their toxicity on
their chemical characteristics as well as the presence or
absence of ligands. The translocation and distribution
of REEs in individual parts of the plant organism
require separate attention; this issue is important not
only for characterization the putative mechanisms of
their biological effect, but also for assessing the quality
of the corresponding plant products. The data on the
coefficients of REE biological accumulation are
almost absent in the literature. A comparative analysis
of the information about the heavy metal compounds
and mobility in soil is a useful tool for this purpose. In
addition, lanthanides have radioactive isotopes, some
of them being fission products. A considerable dataset
obtained by radioecological studies of the soil com-
pounds containing fission products and the quantita-
tive characteristics of their transition to the abo-
veground plant parts may be used for analysis and pre-
diction of the behavior of stable lanthanide isotopes.

Standardized biotesting procedures are a conve-
nient tool allowing the results of different studies on
the forms of REE toxicity to be compared. An import-
ant advantage of such methods is the possibility of
testing in the soil–plant system. The sensitivity of bio-
testing makes it possible to detect genotoxicity of the
soils with a low REE content, whereas the traditional
pollution indicators, such as the concentration of
heavy metals, in this case may fail to show any ecolog-
ical risk [80].
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