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Abstract—The water retention curve (WRC) describes the nonlinear relation of soil water content (SWC) and
matric potential. Since direct measurement of SWC and matric potential is difficult and time consuming,
indirect approaches including statistical, numerical, and pattern recognition-based pedo-transfer functions
(PTFs) that relate basic soil properties to the WRC have been developed during the last few decades. Although
several studies reporting the performance of these models can be found in literature, it seems that an extensive
investigation which compares the available models and introduces a reliable method to soil hydrologists can
be useful. Therefore, in this study, the performance of multiple linear regressions (MLR) models, scaled
numerical models and machine learning methods including artificial neural networks (ANN) and adaptive
neuro-fuzzy inference systems (ANFIS) are compared using 98 UNSODA codes with various soil textures to
estimate WRC. Results showed that regardless of the soil texture, ANN (RMSE = 0.029) predicts the WRC
more accurately than ANFIS (RMSE = 0.035), scaled model (RMSE = 0.060) and MLR (RMSE = 0.071),
respectively. Considering the soil texture, ANFIS performance is the best in the moderate and fine textured
soils, while scaled numerical model predicts with acceptable performance in sandy soils. WRC prediction
using easily available soil characteristics particularly when there is a lack of data, shows that newly developed
machine learning methods are capable of predicting WRC considerably accurate for sustainable water f low
and solute transport management.
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INTRODUCTION

Modeling water flow and solute transport in vadose
region is commonly carried out using Richards equa-
tion and convection-dispersion equation (CDE),
respectively, which require soil information including
unsaturated soil hydraulic functions and water retention
curve (WRC) [63]. WRC is a fundamental soil hydraulic
function which controls water flow and solute transport
in the unsaturated zone. The relationship between soil
water content (SWC) and matric potential is nonlinear.
Indeed, WRC modeling is difficult using simple or even
complicated mathematical formulas since pedo-trans-
fer functions (PTFs) require many input variables [29].
Due to temporal and spatial variability, direct measure-
ment of hydraulic properties is labor-intensive, costly
and time-consuming [38, 68]. Therefore, efforts have

been made to predict the WRC indirectly employing
different PTFs [13].

Indirect estimation of soil hydraulic conductivity
functions and WRC have gathered the interest of
researchers in recent decades [33]. On the other hand,
several studies have shown that WRC can be estimated
efficiently using soil easily available characteristics
such as soil texture, bulk density, organic matter,
porosity and particle size distribution (PSD) [27, 31].
PSD is capable of significantly improving WRC pre-
diction particularly in sandy soils. The macro-pores
and void ratio of sandy soils make prediction of WRC
more accurately using PSD. The micro-pores and
physicochemical characteristics of clay soils limit
WRC estimation using PSD curve [17, 23].

Machine-learning methods such as artificial neural
networks (ANN) and adaptive neuro-fuzzy inference
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system (ANFIS) which are newly developed for PTFs
are another group of models which have been success-
fully used to predict hydraulic processes including
WRC [61], hydraulic conductivity, and other soil
hydrological functions [3, 43, 20]. These methods can
predict soil hydraulic characteristics accurately having
high f lexibility in soil process evaluation [1].

The performance of numerical, multiple linear
regression (MLR) and machine learning methods to
predict the WRC have been widely discussed in previ-
ous studies [8, 25, 52]. This study is a fundamental
development on the work carried out by Meskini-
Vishkaee et al. [23] who predicted WRC using PSD.
To do this, several models including MLR, scaled
numerical PTFs, ANN and ANFIS are compared in
various soil textures to clarify how soil texture can pro-
duce a significant effect on models’ performance. The
objectives of this study are (a) to evaluate the proposed
scaled numerical model using PSD data to predict the
WRC, and (b) to compare MLR, scaled numerical
PTFs and machine learning-based methods in the
WRC prediction in various soil textures selected from
UNSODA database.

PRELIMINARIES: STATISTICAL, NUMERICAL 
AND MACHINE LEARNING MODELS

Progress in Modeling WRC

Statistical, numerical PTFs and neural network
models have been used to determine the correlation of
basic soil properties (for instance, sand, silt and clay
percentages and organic matter content) and WRC
parameters [23, 30, 56, 67]. These models can be clas-
sified into three groups: the first group describes the
relationship of SWC and matric potential by close-
form equations [50]. The second group are physico-
empirical models to predict WRC PTFs which are
derived from physical concept. Multi linear regression
and machine learning methods are among these mod-
els [30]. Third group is dedicated to conceptual models
which are based on some conceptual assumptions with-
out any empirical coefficients. Since several WRC
models have empirical coefficient and they are data and
scale-dependent, some researchers have attempted to
predict WRC using conceptual models. As an example,
Mohammadi and Vanclooster [44] developed a robust
and conceptual transfer function to estimate WRC from
PSD. The efficiency of such models does not decrease
in case of changing the model scale [60].

Multiple Linear Regression (MLR)

Some statistical methods such as multiple regres-
sions have been used to find a mathematical equation
relating the model inputs and outputs [5]. Although
these models are based on some hypothesis such as
data normality and model structure, they cannot esti-
mate WRC accurately [69] since these models have no
essential f lexibility for the modeling of complicated
hydraulic process of soil [5].

Regression methods are suggested to be used for
the description of quantitative relations between
inputs and outputs. According to Pearson correlation
coefficient, inputs enter the MLR models to estimate
WRC [22]. To construct an MLR model, soil physical
characteristics including sand, silt, clay, saturated
water content (θs), matric potential (h), bulk and parti-
cle densities (BD, PD) (in some models, porosity (n))
are considered as input variables, while soil water con-
tent (SWC) (θ) of the corresponding matric potential
is considered as the output variable. Therefore, the
equation of MLR can be defined as  Eq. (1)

(1)

where Y and x1 – xn are the output and input variables,
respectively. α0 is the intercept of MLR PTFs and α1 – αn
are the multiplication coefficients of MLR PTFs.
Available and reliable databases provide a variety of
inputs for statistical models and therefore, these mod-
els can be widely used to predict the WRC [22, 58].

Khodaverdiloo et al. [26] derived MLR PTFs in
some calcareous soils showing that the WRC predic-
tions using MLR PTFs were more accurate than the
Rosetta PTFs. ROSETTA software uses modified
neural network analysis to estimate soil hydraulic
parameters with hierarchical pedo-transfer functions.
They also showed that MLR PTFs were not capable of
distinguishing between calcareous and non-calcare-
ous soils in the WRC prediction. In another study,
comparison of MLR PTF and other implemented
PTFs revealed that MLR PTF of Hydraulic Properties
of European Soil (HYPRES) database was less accu-
rate than the developed PTFs for Belgian soils, while
the MLR PTF of HYPRES database resulted in better
performance than Rosetta PTF for European and US
soils [51]. Vereecken et al. [30] reviewed PTFs to esti-
mate the van Genuchten–Mualem soil hydraulic
properties. Results indicated that MLR PTFs were not
capable of predicting the WRC accurately in dry range
and model error increased by increasing the absolute
matric potential.

Scaled Numerical Models

Although modeling the nonlinear relationships of
SWC and matric potential is a matter of importance,
recently developed numerical PTFs are capable thor-
oughly of predicting the WRC. Karup et al. [16] pre-
dicted the WRC of undisturbed structured soil using
bulk density, organic matter and PSD fraction using a
combination of hydrometer and wet-sieving methods.
They indicated that silt and clay fractions and organic
matter significantly improved the WRC prediction in
dry range. They also reported that the proposed PTF
predictions were sensitive to bulk density variation.
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Mohammadi and Vanclooster [44] developed a
robust and conceptual transfer function to estimate
the WRC from PSD (MV model). They showed that
conceptual models can predict soil hydraulic proper-
ties based on some conceptual assumptions without
any requirements to empirical coefficients. Moham-
madi and Meskini-Vishkaee [45] used the MV model
to predict a continuous form of the WRC (MM
model). They showed that MV and MM models
under-predicted the SWC in dry ranges of WRC. To
overcome this limitation, Meskini-Vishkaee et al. [23]
used a scaling approach to predict the continuous
form of WRC based on PSD data, the model intro-
duced by Van Genuchten [50] (VG model) and parti-
cle packing state parameter (MV-VG model).

Meskini-Vishkaee et al. [23] showed that the scal-
ing approach improves the WRC prediction by 30%
for all the selected soils compared to MV model, MM
model and Rosetta PTF. Empirical parameters of
WRC and database dependent PTFs are the error
sources of numerical models which describing soil
hydraulic functions. Correction of such systematic
errors using scaling approaches can significantly
develop the performance of WRC model. Meskini-
Vishkaee et al. [23] proposed a WRC scaled model
based on VG model assuming that the residual water
content equals to zero (θr = 0) (Eq. (2))

(2)

where θ (L3L–3) is the SWC corresponding to matric
potential h, θs (L3L–3) is the saturated SWC, h (L) is the
matric potential, m and α (L–1) are fitting coefficients
and n* is the scaled pore size distribution index (Eq. (3))

(3)
where cn is a fitting coefficient obtained from PSD
data and λ is defined by Eq. (4).

(4)

The parameter ξmax (–) equals to 1.41432 and ξ (–) is
a coefficient depending on the arrangement state of
soil particles and is defined by Eq. (5)

(5)

where e (–) is the void ratio given by Eq. (6)

(6)

Mohammadi and Vanclooster [44] introduced a
conceptual robust model (MV model) to predict the
soil matric potential from the particle size based on the
pore space geometry (Eq. (7))

(7)
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where hi (L) is the matric potential of the i-th fraction
size and ri (L) is the radius of the i-th particle fraction
size. Simplified assumptions of MV model which
ignore the considerable effects of clay surface forces
lead to under-predictions in a dry range of the WRC,
despite the fact that MV model can predict WRC
accurately since WRC does not depend on database
and empirical parameters. Following Arya and Paris
model (AP model), θi can be calculated by Eq. (8)

(8)

where wi (–) is the particle mass fraction of the i-th
fraction. When θr = 0, combining Eq. (8) and VG
model gives

(9)

Eq. (9) finally gives VG model parameters (Eq. 10).

(10)

Eq. (9) is fitted to the PSD data to estimate VG
model parameters (m, n* and α) which are used as the
input parameters in Eq. (10) as the WRC predictor
model. Since Eq. (9) includes three fitting parameters,
it should be used to fit on the full range of PSD data
containing at least four measured points. In summary,
the fitting of Eq. (9) allows the estimation of WRC
parameters (m, n*, and α). Considering that BD is
known and the scaling factor and subsequently n* can
be calculated, the continuous form of WRC will be
predicted using Eq. (2).

Artificial Neural Networks (ANNs)
ANN is one of the machine learning methods

which can act similar to human neural system to pre-
dict the output of the network based on a trained data-
set. In ANNs, the learner neurons learn a dataset in
the form of sigmoid functions with certain weights and
biases. Although there should be a dataset to train
ANN models [40], it does not require prior knowledge
about the relationships between the model inputs and
output [37, 47]. The disadvantage of ANN models is
that a large database is generally required for training
an ANN [40].

Machine learning methods such as ANNs can be
used for WRC prediction in unsaturated soils [56].
ANN determines the correlation of basic soil properties
(e.g., the percentage of sand, silt, and clay and organic
matter content) and WRC [30, 57]. ANNs can learn
highly nonlinear behavior of hydraulic process of soil to
predict WRC by finding complicated relations between
inputs and output [41, 65, 66]. ANNs have been used to
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evaluate WRC for HYPRES and international soil ref-
erence and information center (ISRIC) [55]. Haghverdi
et al. [6] used ANN model for accurate prediction of
SWC in a desirable matric potential having easily avail-
able soil characteristics including sand, silt, clay, bulk
density, and organic matter.

An ANN model usually has three layers, namely
input, hidden, and output layers. Neurons in input
and output layers are responsible for model input and
output variables, respectively. The neurons in hidden
layer discover the relationships between input and out-
put variables. The optimal number of neurons in hid-
den layer is usually determined by trial and error tech-
nique to obtain the highest performance of ANN [18].
Although assessing hydraulic functions of unsaturated
zone are complex, ANN is capable of modeling soil
and water interactions. However, as a limitation, ANN
is among black-box models which it does not provide
us with the existing structural behavior among the
input and output variables [7, 47]. Uncertainties of soil
physical characteristics due spatial and temporal vari-
ability can be explained using ANN models [6].

Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
ANFIS is another machine learning method in

which hidden layer neurons learn the relationships
between input and output variables by a set of fuzzy
rules instead of sigmoid functions [28]. ANFIS model
contains a five-layer network layers of which are called
input layer, membership function layer, fuzzy rules
layer, defuzzification layer, and output layer, respec-
tively  [28]. The first layer of ANFIS takes inputs and
provides inputs to the next layer. The second layer
fuzzifies inputs using different membership functions
to indicate membership degree of each input. The
third layer of ANFIS performs inference fuzzy rules.
The fourth layer defuzzifies the fuzzy values to crisp
numbers. The fifth layer simply generates model out-
put using a linear equation [53, 59]. Two learning algo-
rithms can be used to train ANFIS models, i.e., back-
propagation and hybrids algorithms. ANFIS is capa-
ble of describing complex nonlinear relations of input
and output variables with acceptable accuracy. Essen-
tially, ANFIS is a rule-based fuzzy logic model whose
rules are developed during the training phase [10, 39].
The trained machine can reliably predict the output
even when there are uncertainties and variations in
input variables.

Previous studies have indicated that ANFIS can
predict WRC [22, 28]. Although ANN is not always
suitable for accurate prediction of the WRC and other
soil physical characteristics [56], ANFIS is introduced
as a reliable method which uses the learning capacity
of fuzzy inference system in ANN model [22, 28, 32].
Intensive nonlinear relationship of SWC and matric
potential data pairs and variability of soil physical
characteristics raises a broad range of uncertainties of
soil hydraulic phenomena. As a solution, ANFIS is
capable of tolerating the uncertainties in soil proper-
ties and minimizing the errors of the WRC prediction
[15, 32].

ANFIS is widely used to predict physical and chem-
ical soil characteristics [43, 69]. For example, soil cation
exchangeable capacity (CEC) has been successfully
predicted in paddy lands using ANFIS model [24, 34].

As another work, Si et al. [35] modeled the SWC in
extreme arid area using ANFIS. The proposed ANFIS
models were compared by different ANN models. The
comparison results indicated that ANFIS models were
more efficient in predicting SWC than ANN models.
Ghorbani et al. [24] compared ANN and ANFIS mod-
els with MLR to predict CEC. They showed that perfor-
mances of ANFIS and ANN were similar while their
accuracy was better than MLR. Hosseini et al. [46] pre-
dicted the soil phosphorus using different statistical
and machine learning methods including ANN,
ANFIS and genetic algorithm. They showed that
genetic algorithm and ANN performed better than
ANFIS for the estimation of soil phosphorus.

Given that ANFIS is a combination of ANN and
fuzzy logic, ANN shortcomings such as over-fitting
and local minima do not concern ANFIS models [57].
Moreover, the ANFIS PTF can be implemented to
predict the WRC without determination of specific
soil physical relationships before modeling even
when the input data are limited for numerical model-
ing [9, 14, 35].

MATERIALS AND METHODS
To create a dataset, 98 soil codes including 2187 soil

samples with at least four PSD data fraction and con-
tinuous water retention curve were selected from
UNSODA database to compare the models’ perfor-
mance in different soil textures. UNSODA database
contains unsaturated hydraulic characteristics of
780 soil codes from all over the world, especially Europe
and America [2]. It provides researchers with reliable
and accurate soil hydraulic functions to develop the
estimations of water flow and solute transport.

The distribution of the soil textural classes is shown
in Fig. 1 and the descriptive statistics of all soil vari-
ables for the soil codes are given in Table 1. In MLR
modeling, all input and output variables followed nor-
mal distribution, input variables had linear correlation
with output, and no multi-collinearity was observed
among model’s input variables. In MLR, ANN and
ANFIS models, porosity was considered as one of the
input variables for some of UNSODA codes. The
MLR and machine learning models were imple-
mented in SPSS 21 (IBM, Armonk, NY, USA) and
MATLAB R2015a (The Mathworks Inc., Natick, MA,
USA) programming environments, respectively.

The e, ξ and λ parameters in scaled numerical
model were calculated using available bulk and parti-
cle densities. In most UNSODA soil codes, θs is avail-
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
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Fig. 1. Distribution of soil textural classes in the selected dataset.
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able; for those samples with no θs data, the suggestion
of Chan and Govindaraju [62] who assumed satura-
tion water content to be equal to the corresponding
water content of the lowest measured matric potential
was used.

In ANN PTFs, the number of neurons in network
hidden layer changed from 5 to 15 and the perfor-
mance of each network evaluated to obtain the opti-
mum ANN model in prediction of the WRC. In
ANFIS modeling, the Gaussian function was used to
construct the learning network. This function is the
most commonly used membership function in the lit-
erature [21, 53] since it is fully defined with only two
parameters and its smoothness.

Before the modeling process, the values of input
and output variables were normalized using Eq. (11) to
make it possible to compare the models based on their
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019

Table 1. Descriptive statistics of soil physical properties inpu

BD and PD, n, θs, Ksat, h, and θ indicate bulk and particle densities
matric potential, and SWC, respectively.

Variable Minimum M

BD*, kg m–3 1.14

PD*, kg m–3 2.54
n* 0.257
Sand*, % 0. 9
Silt*, % 0. 5
Clay*, % 0. 2

0.2

Ksat, m s–1 0.091

, m 0.0
log|h|*, m 0.0
θ** 0.0

θ*
s

h

performances. Eq. (11) maps all values of each variable
between 0 and 1

(11)

where Xn is the normalized value, Xm is the measured
value, and Xmin and Xmax are the minimum and maxi-
mum measured values of each variable, respectively.

All soil codes were used to construct the scaled
numerical models. In MLR models, due to the com-
plex nonlinear relationships among SWC, soil physi-
cal characteristics and matric potential, dataset was
divided into two subgroups to assess the multi regres-
sion method (80% of data for training and remaining
20% for test). Similarly, since machine learning meth-
ods require test data to evaluate the performance of the
model, the database were randomly divided into two
groups for ANFIS model: 80% (1750 soil samples) for

−=
−

min

max min

     ,m
n

X XX
X X
t* and output** variables

, porosity, saturated water content, saturated hydraulic conductivity,

aximum Mean Standard deviation

1.97 1.53 0.141
2.82 2.64 0.034
0.55 0.42 0.051
98 63 32.2
87 24 22.9
54 12.8 12.4

0.797 0.428 0.131

716.0 184.05 196.12
15850 91.78 351.02

4.2 1.743 0.430
0.82 0.261 0.104
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training and 20% (437 soil samples) for test. One of the
limitations of ANNs is being trapped in local minima.
To untie this knot, a part of training set is usually dedi-
cated for validation in ANN models and validation per-
formance determines either the training process is com-
pleted or not [7]. Therefore, 65% (1421 soil samples) for
training the network, 20% (438 soil samples) for valida-
tion and 15% (328 soil samples) for test, respectively.

Mean square error (MSE) [61], root mean square
error (RMSE) [16, 22, 62], mean absolute error
(MAE) [35, 59], mean bias error (MBE) [22, 62], and

coefficient of determination (R2) [9, 17] are widely
used to evaluate the efficiency of WRC models. Per-
formance evaluation parameters were computed using
Eqs. (12) to (16) between the measured and predicted
water content of given matric potential

(12)

(13)

(14)

(15)

(16)

where N is the number of samples, θi(p) and θi(m) are

predicted and measured water content in the i-th mat-

ric potential, respectively, and  is the mean mea-

sured water content. The lower the error parameters

and higher the R2, the better performance of the
model. MAE is a statistical criterion to show the aver-
age of error magnitude and MBE is used to show the
average bias of each method. The positive value of
MBE indicates over prediction.

Because of the random data dividing, the machine
learning methods were run for five times to be assured
that each soil sample is tested by the models for at least
one time and then, the mean values of evaluation cri-
teria for the test samples are reported.

RESULTS AND DISCUSSION

MLR PTFs
Performance evaluation of MLR PTFs according

to the input variables is presented in Table 2. RMSE of
MLR PTFs ranges from 0.071 to 0.089. MLR5 and
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MLR8 have the maximum and minimum RMSEs
(0.089, 0.071) among the MLR models, respectively.
According to the table, MLR5 and MLR8 have only
one different input variable. In other words, replacing
particle density with porosity in MLR8 has signifi-
cantly increased the accuracy of MLR model. MSE,

RMSE and R2 of MLR8 as the most accurate MLR
PTF which predicts WRC through easily available
soil physical characteristics are 0.005, 0.071, and
0.69, respectively. The negative MBE values of the
MLRs reveal that all implemented MLRs under-pre-
dict the WRC.

Similar multiplication coefficients of log |h| in
MLR PTFs indicate the important role of matric
potential in the prediction of WRC regardless of the
kind and number of input variables. MLR4 with six
input variables and MLR8 with seven input variables
perform similarly. In other words, using silt fraction
along with particle density as input variables in MLR8
instead of porosity does not significantly improve the
WRC prediction.

The unbiased prediction of WRC is attributed to
nature of MLR models, simplified hypothesis of soil
hydraulic characteristics modeling, complex relation
of SWC and matric potential and limitations of this
type of model. Results indicate that increasing the
number of input variables do not necessarily lead to
improve WRC prediction. This issue indicates that
MLR models are not sensitive to the number of input
variables. MLRs are based on several assumptions
including model structure, normality of residuals and
errors, and no or little collinearity of input variables,
which limit the MLRs applications. Moreover, pre-
dicting WRC using MLR models creates systematic
errors because of extensive nonlinear relationships of
SWC and matric potential. Another shortcoming is
that the MLRs efficiencies considerably depend on
dataset. Several studies have shown that MLR models
have no essential f lexibility for the modeling of com-
plicated soil hydraulic processes [5, 69].

Figures 3a–3h compares the measured vs. pre-
dicted soil water content using MLR models. The

mean slope and R2 values of linear regression of vari-
ous MLR models are 0.6126 and 0.6499, respectively.
The y = x line (solid black line) shows the most desir-
able fitting line and the error of the model will be zero
if all the data pairs lie on this line. The area between
1 : 1 plot (y = x) and fitted regression lines shows the
systematic error [23]. The general trend of MLR mod-
els show that WRC is overestimated when the soil
water content is less than mean saturated water con-
tent of all soil samples, while WRC using MLR models
is underestimated when soil water content is raised to
more than mean saturated water content of all soil
samples. Measured and predicted WRC in scatter
plots of Figure 3 shows the undesirable predictions of
the WRC by MLR PTFs. This is because of the com-
plex nonlinear relationships of SWC and matric
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
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Table 2. Performance evaluation parameters of MLR PTFs according different input variables

* h, θs, n, BD and PD indicate matric potential, saturated water content, porosity, bulk and particle densities, respectively.

Model Input variables * MSE RMSE R2 MAE MBE Equation

MLR1 log|h|, θs, Sand 0.0057 0.075 0.65 0.0581 –0.0013 0.26θs – 0.08Sand – 0.08log|h| + 0.15

MLR2 log|h|, θs, Sand, n 0.0052 0.072 0.68 0.0558 –0.0013 0.25θs – 0.14Sand – 0.08log|h| –0.05n 
+ 0.15

MLR3 log|h|, θs, Sand, n, BD 0.0052 0.072 0.68 0.0555 –0.0026 0.25θs – 0.13Sand – 0.08log|h| – 

0.04n – 0.05BD + 0.15

MLR4 log|h|, θs, Sand, n, BD, 

Clay

0.0051 0.071 0.69 0.0546 –0.0006 0.26θs – 0.08Sand – 0.08log|h| –

0.04n – 0.06BD + 0.08Clay + 0.11

MLR5 log|h|, θs, Sand, n, BD, 

Clay, Silt

0.0081 0.089 0.50 0.0734 –0.0547 0.26 θs + 0.71Sand – 0.08log|h| – 

0.04n – 0.06BD + 0.52Clay + 

0.71Silt – 0.7

MLR6 log|h|, θs 0.0075 0.086 0.54 0.0694 –0.0020 0.38θs – 0.06log|h| + 0.028

MLR7 log|h|, θs, BD 0.0069 0.083 0.57 0.0654 –0.0007 0.38θs – 0.07log|h| – 0.18BD + 0.11

MLR8 log|h|, θs, Sand, BD, 

Clay, Silt, PD

0.0050 0.071 0.69 0.0540 –0.0019 0.26θs + 0.71Sand – 0.08log|h| –

0.13PD – 0.06BD + 0.52Clay + 

0.71Silt – 0.66

Table 3. Performance evaluation parameters of scaled numerical PTFs for several soil textures

Soil texture Number of soil MSE RMSE R2 MAE MBE

Sandy 30 0.0071 0.084 0.96 0.026 –0.009

Loamy sand 21 0.0040 0.063 0.96 0.039 –0.008

Sandy loam 11 0.0010 0.032 0.98 0.028 –0.010

Silt loam 10 0.0024 0.049 0.97 0.035 0.090

Silty clay loam 9 0.0014 0.038 0.96 0.032 0.010

Loam 8 0.0035 0.059 0.91 0.054 0.045

Sandy clay loam 6 0.0021 0.046 0.95 0.024 –0.013

Clay 2 0.0014 0.038 0.97 0.019 0.055

Silt 1 0.0005 0.023 0.96 0.023 0.005

Weighted average 0.0040 0.060 0.95 0.032 0.017
potential and MLR models are not f lexible enough to
simulate such nonlinear behavior.

Scaled Numerical PTFs
The results of scaled numerical PTFs with respect

to the soil texture are presented in Table 3. Scaled
numerical PTF predicts the WRC (weighted average
RMSE = 0.060) more accurately than the MLR8
PTFs (RMSE = 0.071). Although the input variables
of both MLR8 and scaled numerical PTF are PSD,
bulk and particle densities, and h, their predictions are
considerably different. The RMSE of scaled numeri-
cal PTFs ranges from 0.023 (silty soils) to 0.084 (sandy
soils). The comparison of RMSEs for sandy (0.084)
and clay (0.038) soils indicates that scaled numerical
PTF predicts the WRC of fine textured soil signifi-
cantly better than that of the coarse textured soils.
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
Furthermore, RMSE for loamy soils (0.059) is
similar to that of the weighted average (0.060) showing
that the performance of the scaled numerical PTF is
still acceptable in medium textured soils. It should be
noticed that RMSE for sandy soils (0.084) is approxi-
mately 1.5 times higher than that of the loamy soils
(0.059). The average MBE value for all soil textures
shows that the results of scaled numerical PTFs are
over-predicted (Table 3). Maximum over-prediction
is seen in clay soils. However, in sandy, loamy sand,
sandy loam and sandy clay loam soils, slight under-
prediction is observed (Table 3). MV model assumes
that all soil particles are spherical, and the soil struc-
ture can only influence the soil bulk density. The
effects of soil organic matter content, particle surface
energy, and lens and film water volume are not sup-
ported by this model [44, 45]. Therefore, the predic-
tion error obtained by the scaled numerical model can
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Fig. 2. (a–i). The experimental and estimated WRC using scaled numerical model for various soil textures. Black points are mea-
sured data while the curves indicate the predicted values.
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(a) soil code: 3165 sandy (b) soil code: 2104 loamy sandy (c) soil code: 3180 sandy loam

(d) soil code: 3220 silty loam (e) soil code: 3110 silty clay loam (f) soil code: 3221 loam

(g) soil code: 1151 sandy clay loam (h) soil code: 4120 clay (i) soil code: 3214 silty
be partially attributed to the suggestions made by the

MV model. Weighted average RMSEs (0.06) of scaled

numerical PTF is similar to that obtained by Meskini-

Vishkaee et al. [23].

Figure 2 represents the measured and predicted

WRC for clay (code: 4120), loamy (code: 3221), sandy

(code: 3165), sandy clay loam (code: 1151), sandy loam

(code: 3180), silty loam (code: 3220), silty (code: 3214),

silty clay loam (code: 3110) and loamy sand (code: 2104)

soils using scaled numerical PTF. Scaled numerical

PTF slightly under-predicts the dry range of WRC in

sandy loam soil while the model slightly over-predicts

the dry range in loamy sand soils. The scaled numeri-

cal model in clay over-predicts the full range of WRC
while the full range of WRC in sandy soils is predicted

accurately. In sandy loam soil, slight under-prediction

of the WRC is seen in dry range while the WRC is pre-

dicted accurately in wet range using scaled numerical

model. Lack of soil structure in most coarse textured

soil reduces the performance of WRC prediction.

Soil structure creates bias towards measured and

predicted WRC near saturation which reduces the pre-

diction performance of WRC in the wet range. The

inaccurate prediction of WRC at the end regions of the

curves can be addressed to linear nature of WRC in the

dry range [15]. The WRC of silty clay loam and sandy

clay loam soils are properly predicted by scaled numer-

ical PTF. Similar results are reported by Li et al. [17]
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
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Fig. 3. (a–h). Comparison of measured vs. predicted soil water content of given matric potential using MLR models. Dashed line
shows the fitted equation to the predicted values while the solid line indicates the y = x.
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(a) MLR 1

y = 0.6168x + 0.1233

(b) MLR 2

y = 0.6394x + 0.1161

(c) MLR 3

y = 0.6421x + 0.1165

(d) MLR 4

y = 0.6464x + 0.1132

(e) MLR 5

y = 0.6466x + 0.1672

(f) MLR 6

y = 0.5114x + 0.1576

(g) MLR 7

y = 0.5506x + 0.1437

(h) MLR 8

y = 0.6478x + 0.1141
who compared the performance of AP, MV and
Rosetta PTFs to predict available WRC of the corre-
sponding matric potential. They indicated that MV
model can provide the best fitted PTFs to measured
data in comparison with AP and Rosetta PTFs. The
WRC of silty soil is under-predicted using scaled
numerical model particularly in dry range. The under-
prediction of scaled numerical model can be partially
attributed to the assumptions of the MV model.

The predicted full ranges of WRC using scaled
numerical PTF in loamy and loamy sand soils have
similar trends. The scaled numerical PTF slightly
over-predicts the WRC for clay soil. The knowledge of
clay mineralogy is capable of justifying over-predic-
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
tion of WRC for clay soils which is not considered in
this study. The organic carbon (OC), clay and silt frac-
tion contents determine the amount of adsorbed water
to solid surfaces which cause systematic errors for the
WRC prediction.

ANN PTFs

Table 4 shows the results of ANN performance

evaluation parameters including MSE, RMSE, R2,
MAE and MBE. The number of neurons in network
hidden layer is changed from 5 to 15 and the highest
performance for each model is brought in Table 4.
Results reveal that the RMSE of ANN models ranges
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Table 4. Performance evaluation parameters of ANN PTFs according different input variables

*h, θs, n, BD and PD indicate matric potential, saturated water content, porosity, bulk and particle densities, respectively.

Model Input variables* Neurons N MSE RMSE R2 MAE MBE

ANN1 log|h|, θs, Sand 10 0.0026 0.051 0.83 0.055 –0.0014

ANN2 log|h|, θs, Sand, n 6 0.0021 0.046 0.86 0.031 0.0003

ANN3 log|h|, θs, Sand, n, BD 9 0.0012 0.035 0.92 0.027 0.0009

ANN4 log|h|, θs, Sand, n, BD, Clay 11 0.0012 0.035 0.93 0.026 –0.0005

ANN5 log|h|, θs, Sand, n, BD, Clay, Silt 11 0.0008 0.029 0.96 0.026 –0.0006

ANN6 log|h|, θs 10 0.0014 0.037 0.91 0.028 –0.0003

ANN7 log|h|, θs, BD 6 0.0034 0.058 0.78 0.047 0.0004

ANN8 log|h|, θs, Sand, BD, Clay, Silt, PD 10 0.0010 0.032 0.93 0.054 0.0019
from 0.029 (ANN5) to 0.058 (ANN7). The compari-
son of ANN8 (RMSE = 0.032) and ANN5 (RMSE =
0.029) shows that in contrast with MLR PTFs, using
porosity instead of PD as an input variable can
increase the performance of the ANN model.

The general trend of ANN RMSE indicates that by
increasing the number of input variables up to seven
including sand, silt, clay, saturated water content, log |h|,
and bulk and particle densities, the RMSE moderately
decreases. For instance, the RMSE of ANN1 (0.051)
with three input variables is considerably more than
RMSE of ANN5 (0.029) with seven input variables.
Similar results are reported by Nemes et al. [12] and
Vereecken et al. [30]. The negative MBE values of
ANN1, ANN4, ANN5 and ANN6 indicate that some
of the ANN PTFs under-predict the WRC while
ANN2, ANN3, ANN7 and ANN8 slightly over-pre-
dict the WRC. The ANN5 model is significantly capa-
ble of describing the relationships of SWC and matric
potential. In along with findings of this study, Moreira
and Pedrollo [63] reported that ANN models resulted
in under-prediction in some soil textures.

Although input variables of ANN3 and ANN4 are
different in clay fraction, according to RMSE values,
ANN3 has similar performance to ANN4 in predic-
tion of the WRC. This shows that clay fraction does
not have remarkable effects on the WRC prediction
using ANN models, while Wuddivira et al. [48] stated
that SWC is directly related to clay content and clay
particles control soil hydraulic characteristics. It is
likely because of the complexity of hydraulic functions
and ANN nature. Although the amount of adsorbed
water is highly correlated with clay fraction content
[36, 48] and clay mineralogy [15], slight under-predic-
tion is observed in ANN4 with clay fraction as one of
input variables.

Comparison of input variables of ANN3, ANN4
and ANN5 indicates that silt fraction has fundamental
role in the prediction of the WRC. ANN predicts the
WRC more accurately using full PSD fraction data
than partial PSD fraction data. Moreover, previous
studied stated that organic matter and silt fraction as
well as clay fraction play considerable role in WRC
predictions [15, 19].

Formation and stability of soil aggregation as soil
structure index is attributed to organic matter. Fine silt
(2–20 μm) and coarse silt (20–50 μm) fraction
remarkably influence the WRC predictions [15]. Pos-
itive correlation of organic matter and clay fraction in
WRC prediction has already reported in previous stud-
ies [1, 64].

Figures 4a–4h visually illustrates the measured vs.
predicted WRC using ANN models. Fractional over-
estimation in prediction of WRC using ANN models
can be observed in ANN2, ANN3, ANN4, ANN5 and
ANN6 when soil water content is less than mean satu-
rated water content of all soil samples. Slight underes-
timation of WRC in ANN2, ANN3, ANN4, ANN5
and ANN6 occurred when the soil water content
reached more than mean saturated soil water content.
Comparison of various ANN and MLR models for the
given dataset reveals more accurate prediction of full
range of WRC using ANN models than MLR models.

ANFIS PTFs

Table 5 demonstrates the performance evaluation
parameters of Gaussian ANFIS PTFs with regard to
different input variables. The RMSE of ANFIS PTFs
ranges from 0.035 (ANFIS8) to 0.082 (ANFIS6).
Results show that among the implemented ANFIS
PTFs, ANFIS8 with seven input variables including
sand, silt, clay, saturated water content, log |h|, bulk
and particle densities results in the most accurate pre-
diction according to the least RMSE (0.035) and the

most R2 (0.92). The RMSE of ANFIS5 (0.036) is
almost equal to the RMSE of ANFIS8 (0.035) which
shows that in contrast with MLR PTF, ANFIS PTF is
not sensitive to replacing porosity with particle density
as an input variable.

The silt fraction is the only input variable which
makes difference between ANFIS4 and ANFIS5.
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
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Fig. 4. (a–h). Comparison of measured vs. predicted soil water content of given matric potential using ANN models. Dashed line
shows the fitted equation to the predicted values while the solid line indicates the y = x.
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(a) ANN 1

y = 0.6595x + 0.1104

(b) ANN 2

y = 0.8606x + 0.0447

(c) ANN 3

y = 0.9067x + 0.0289

(d) ANN 4

y = 0.9025x + 0.0316

(e) ANN 5

y = 0.8987x + 0.0331

(f) ANN 6

y = 0.8866x + 0.0364

(g) ANN 7

y = 0.7616x + 0.0756

(h) ANN 8

y = 0.680x + 0.1000
Although ANFIS is known to be good at generaliza-
tion and being tolerant to missing data [11, 15], this
model was not capable of indicating silt fraction role
in improving accuracy prediction of WRC. This can
be attributed to systematic ANFIS error and fuzzi-
ness of input variables [32]. Differences in predicted
and measured soil water content using ANFIS model
is attributed to ANFIS systematic error, clay miner-
alogy, organic matter, simplified assumptions of soil
aggregate and pore system. Furthermore, the com-
parison of ANFIS4, ANFIS5 and ANFIS8 indicates
that ANFIS likely cannot distinguish heterogeneity
of PSD fraction data.

The comparison of the performance of ANFIS8
with seven input variables and ANFIS6 with two vari-
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
ables indicates that the input variables significantly
affect the performance of ANFIS PTFs. The RMSE
trend shows gradual reduction by increasing the num-
ber of input variables. However, Fashi [21] showed
that the number of input variables in ANFIS model
does not influence the WRC prediction.

Most of the ANFIS PTFs, with the exception of
ANFIS3 and ANFIS7, over-predict the WRC based
on their positive MBE values. Results of ANFIS PTFs
show that ANFIS predicts the WRC considerably
accurate similar to earlier findings [4, 42, 49, 54].

Figures 5a–5h compares measured vs. predicted
soil water contents using various ANFIS models. Most
of ANFIS models show slight inaccurate predictions
of WRC when the soil water content reached less or
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Table 5. Performance evaluation parameters of ANFIS PTFs according different input variables

* h, θs, n, BD and PD indicate matric potential, saturated water content, porosity, bulk and particle densities, respectively.
** N MF indicates the number of membership functions of input variables.

Model Input variables* N MF** MSE RMSE R2 MAE MBE

ANFIS1 log|h|, θs, Sand 3, 2, 2 0.0041 0.064 0.74 0.046 –0.0003

ANFIS2 log|h|, θs, Sand, n 3, 2, 2, 2 0.0027 0.052 0.83 0.033 –0.0010

ANFIS3 log|h|, θs, Sand, n, BD 3, 2, 2, 2, 2 0.0021 0.046 0.87 0.029 0.0001

ANFIS4 log|h|, θs, Sand, n, BD, Clay 3, 2, 2, 2, 2, 2 0.0014 0.038 0.91 0.025 –0.0001

ANFIS5 log|h|, θs, Sand, n, BD, Clay, Silt 3, 2, 2, 2, 2, 2, 2 0.0013 0.036 0.92 0.023 –0.0002

ANFIS6 log|h|, θs 3, 3 0.0068 0.083 0.55 0.068 –0.0006

ANFIS7 log|h|, θs, BD 3, 3, 3 0.0058 0.076 0.63 0.057 0.0001

ANFIS8 log|h|, θs, Sand, BD, Clay, Silt, PD 3, 2, 2, 2, 2, 2, 2 0.0012 0.035 0.92 0.024 –0.0002

Fig. 5. (a–h). Comparison of measured vs. predicted soil water content of given matric potential using ANFIS models. Dashed
line shows the fitted equation to the predicted values while the solid line indicates the y = x.
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(a) ANFIS 1

y = 0.7483x + 0.0804

(b) ANFIS 2

y = 0.8372x + 0.0529

(c) ANFIS 3

y = 0.8767x + 0.0392

(d) ANFIS 4

y = 0.8982x + 0.0326

(e) ANFIS 5

y = 0.9028x + 0.0312

(g) ANFIS 7

y = 0.6409x + 0.1142

(h) ANFIS 8

y = 0.9074x + 0.0297

(f) ANFIS 6

y = 0.5308x + 0.15
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Table 6. Comparison of the best PTFs performances in various soil textures

Soil texture Best method MSE RMSE R2 MAE MBE

Sandy

MLR8 0.017 0.130 0.46 0.069 –0.0001

Scaled PTF 0.007 0.084 0.96 0.026 –0.009

ANFIS5 0.012 0.110 0.80 0.036 –0.0002

ANN4 0.011 0.105 0.83 0.035 –0.003

Loamy sand

MLR8 0.007 0.084 0.89 0.070 –0.02

Scaled PTF 0.004 0.063 0.97 0.039 –0.008

ANFIS8 0.001 0.032 0.98 0.028 –0.0028

ANN5 0.001 0.032 0.98 0.030 –0.0025

Sandy loam

MLR8 0.001 0.032 0.98 0.030 –0.006

Scaled PTF 0.0010 0.032 0.98 0.028 –0.01

ANFIS3 0.0002 0.014 0.99 0.023 –0.004

ANN6 0.0005 0.022 0.99 0.017 –0.004

Silt loam

MLR3 0.002 0.045 0.99 0.040 –0.03

Scaled PTF 0.0024 0.049 0.97 0.035 0.09

ANFIS8 0.00005 0.007 1 0.005 0.0003

ANN5 0.0002 0.014 0.99 0.011 –0.0001

Silty clay loam

MLR1 0.001 0.032 0.74 0.033 0.016

Scaled PTF 0.0014 0.038 0.96 0.032 0.01

ANFIS5 0.0001 0.010 0.97 0.009 –0.001

ANN2 0.0004 0.020 0.92 0.015 –0.001

Loamy

MLR8 0.004 0.063 0.98 0.040 0.02

Scaled PTF 0.0035 0.059 0.91 0.054 0.045

ANFIS5 0.001 0.032 0.99 0.020 0

ANN5 0.002 0.045 0.99 0.020 0

Sandy clay loam

MLR1 0.002 0.045 0.98 0.043 0.031

Scaled PTF 0.0021 0.046 0.95 0.024 –0.013

ANFIS8 0.00001 0.003 0.99 0.009 –0.0013

ANN4 0.00003 0.005 0.99 0.015 0.0039

Clay

MLR4 0.0004 0.020 0.99 0.020 –0.011

Scaled PTF 0.0014 0.038 0.97 0.020 0.055

ANFIS4 0.00008 0.009 0.99 0.008 0

ANN5 0.00006 0.008 1 0.006 0.001

Silty

MLR6 0.0001 0.010 1 0.010 0.002

Scaled PTF 0.0005 0.023 0.96 0.023 0.005

ANFIS8 0.00001 0.003 1 0.003 0.0001

ANN7 0.00002 0.004 1 0.004 –0.0032
more than mean saturated water content of all soil
samples except ANFIS6 and ANFIS7. Inaccurate pre-
dictions of WRC using ANFIS6 and ANFIS7 are also
proved by higher RMSEs of these two ANFIS models
than the other implemented ANFIS models (Table 5).

Comparison of Implemented PTFs 
in Various Soil Textures

Table 6 compares the models’ performance in sev-
eral soil textures according to the performance evalua-

tion criteria including MSE, RMSE, R2, MAE and
MBE. A glance at the results shows that ANFIS PTFs
with different number of input variables have the best
EURASIAN SOIL SCIENCE  Vol. 52  No. 12  2019
PTF efficiency in sandy loam, silty loam, silty clay
loam, loamy, sandy clay loam and silty soils. In loamy
sand soils, ANFIS and ANN have similar perfor-
mance with RMSE being equal to 0.032.

ANN PTFs with different input variables are the
best fitted PTFs in clay soils showing that ANN
method is capable of predicting the WRC of fine tex-
tured soils. However, in sandy soils, it seems that tra-
ditional numerical scaled PTFs have performed more
accurately in the prediction of WRC. ANN4 with six
input variables (RMSE = 0.105) and ANFIS5 with
seven input variables (RMSE = 0.110) are not suitable
compared to scaled numerical PTF (RMSE = 0.084)
in this soil texture.
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All the fitted PTFs under-predict the WRC in sandy
soils regarding MBE values. Slight under-predictions of
WRC are also seen in loamy sand, sandy loam, and
sandy soils. Slight prediction error occurs in sandy soils
due to its macro pores and void ratio [17, 23]. The
RMSE of ANFIS5 (0.032) and ANN5 (0.045) with the
same number of input variables in loamy soils show that
the ANFIS PTF predicts the WRC more accurately in
moderate textured soils.

Scaled numerical PTF has better PTF perfor-
mance than MLR8 with RMSEs equal to 0.059 and
0.063, respectively, in loamy soils. ANFIS8, MLR6
and scaled numerical PTF over-predict the WRC
(positive MBE) while ANN7 under-predicts the WRC
in silty soils. According to the RMSE criterion,
ANFIS8 in both sandy clay loam and silty soils is the
best fitted PTF. ANFIS8 with seven input variables
under-predicts the WRC in sandy clay loam while it
over-predicts the WRC in silty soils.

Comparison of ANN in several soil textures indi-
cates under-prediction of WRC in most soil textures
with high sand and low clay percentages including
sandy, loamy sand, sandy loam, silty loam, silty clay
loam and silty soils. Lack of soil structure can be a
source of prediction errors in coarse textured (sandy)
soils [15] which deviates the predicted from the mea-
sured SWC.

In fine textured soils, since the fine silt and clay
fraction content adsorb soil water to soil solid surface
by surface adsorptive forces [15], inaccurate WRC pre-
diction is expected. Micro-pores and physicochemical
characteristics of clay fraction play an inevitable role
in water f low and soil hydraulic conductivity [17, 23].
It is worth mentioning that clay mineralogy and the
considerable effect of silt on water adsorption in WRC
predictions should not be neglected [16]. The results
of the current study are consistent with the findings
reported by Moreira and Pedrollo [63].

CONCLUSIONS

Comparative study is a well-established approach
to identify weaknesses and strengths of several data-
modeling methods, particularly when they are differ-
ent in nature and assumptions. To achieve the objec-
tives of this work, performances of different models
including MLR, ANN and ANFIS to predict WRC
are compared regardless to soil texture. Recently
developed scaled numerical PTF using PSD data is
also proposed to predict WRC for several soil textures.
Comparative results, regardless of the soil texture, indi-
cate that the ANN having log|h|, θs, sand, clay, and silt

fractions, porosity, and bulk density as its input vari-

ables results in the highest performance (R2 = 0.96).
This offers machine learning methods for field appli-
cations due to their robustness on nonlinearities, out
of range input data and/or noise in inputs.
In comparison with the MLR method, scaled
numerical approach is capable of predicting WRC
more accurately especially in the dry range. Consider-
ing the soil texture, machine learning models do not
perform well in sandy soils while numerical scaled
PTF has resulted an acceptable performance. In other
soil textures, the high accuracy of machine learning
methods including ANN and ANFIS is obvious. The
findings of this study can provide researchers with the
best method of the WRC prediction and help them to
improve other methods based on the advantages and
disadvantages of the studied models.
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